

Dataflow Analysis Framework: Summary and precision

We have looked at

- Live Variables
- Available Expressions
- Reaching Definitions
- Copy Propagation
 - as instances of a general dataflow analysis method
 - as points in a control flow graph
 - as data flow equations that associate sets with the points
 - as positions in a partial order (lattice) of possible sets
- Today, we'll add one more (Constant Folding) and look at how good our iterative solution is

Constant Folding (and propagation)

- The domain we're after is pairs of variables, and their constant values.
 - Obviously, not every variable will *have* a constant value, more in a minute
- Forward analysis
 - Traces paths from a point where a variable may be constant, to any point where we have determined that it isn't
- An intersection meet operator (of sorts)
 - A constant value must be the same along every path, otherwise it isn't very constant

Three levels of information

- We can say three things about the constant-ness of a variable X
 - 1) X may be a constant, but we haven't found its value yet
 - 2) X may be a constant, its value has only been 36 (or some other number)
 - 3) X is not constant, we've seen changes in its value
- We can order these observations according to how much we've found out about X:
 - $X = \top$ \leftarrow Can't say anything about X yet ("least precise knowledge")
 - $X = 21 \quad \leftarrow X \text{ is } 21 \text{ somewhere in the program}$
 - $X = \bot$ $\leftarrow X$ is not 21 everywhere ("most precise knowledge")

The program logic

- An assignment of a constant to a variable (v=c) generates that pair as a possibly constant value gen [1] = {v=c}
- It also destroys the possibility that v is any other constant than c

```
kill [ I ] = {v=n where n \neq c}
```

 An assignment of an expression (v=u+w) generates a possibly constant value if all its terms are constant

```
gen [I] = {v=k} kill [I] = { v=n where n \neq k}
k=u+w if u,w are constants
k= \perp if u or w are \perp (known to be not-constant)
k= T otherwise
```


If we draw the three levels

- There is an infinity of constants
- "X=36" is as informative as "X=21", but taken together, they say that X is neither 36 nor 21 *always*
- A lattice of more and less informative levels becomes

(It's infinitely wide, but has finite height)

NTNU – Trondheim Norwegian University of Science and Technology

When X=T meets X=2

- One set of observations haven't seen any value for X
- The other has only seen that X = 2
- X could be the constant 2
- {X=⊤} □ {X=2} gives {X=2}

(greatest lower bound in the order)

When X=-1 meets X=2

- One set of observations have only seen that X=-1
- The other has only seen that X = 2
- X can't be a constant, there are two different values
- {X=-1} \square {X=2} gives {X= \bot } (greatest lower bound in the order)

Part of a meet operator

• This ordering relation of

 $\bot \sqsubseteq$ (numbers) $\sqsubseteq \top$

and the meet operator

 $p \sqcap q = glb(p, q)$ (in our constants-lattice)

gives how to handle multiple observations about one variable

- The p-s and q-s here are set elements like "X=64", "X=⊥", "X=⊤", et cetera.
- Those all talk about one variable
- "Y=27", "Y=13", "Y=⊤" are positions in a separate lattice, which describes the constant-ness of Y

(that has the exact same structure)

When there are more variables

 The domain of the Constant Folding analysis is sets of bindings to values

```
\{v_1=c_1, v_2=c_2, v_3=c_3,...\}
```

```
where the c-s are \bot, \top, or numbers
```

 Between two program points, the transfer function then takes us between

```
\{v_1=c_1, v_2=c_2, v_3=c_3, \ldots\}
and
\{v_1'=c_1', v_2=c_2', v_3=c_3', \ldots\}
```

· Can we confidently say that

```
\{v_1 {=} C_1, v_2 {=} C_2, v_3 {=} C_3, \ldots\} \sqsupseteq \{v_1` {=} C_1`, v_2 {=} C_2` v_3 {=} C_3`, \ldots\}
```

so that the transfer function will work towards a guaranteed, finite goal?

Products of lattices

- Lattices are partial orders, they consist of a set, and an order (which fulfills the constraint that all subsets have a g.l.b. and l.u.b.)
- The sets have Cartesian products

```
L_1 \times L_2 = \{ (x,y) \mid x \in L_1, y \in L_2 \}

L_1 \times L_2 \times L_3 = \{ (x,y,z) \mid x \in L_1, y \in L_2, z \in L_3 \}

...and so on...
```

• If L₁, ... L_n are (complete) lattices, their Cartesian product is a (complete) lattice as well, with the order defined so that the n-tuples

```
(y_1, y_2, \dots, y_n) \sqsupseteq (x_1, x_2, \dots, x_n)
if and only if
y_1 \sqsupseteq x_1, y_2 \sqsupseteq x_2, \dots, y_n \sqsupseteq x_n
```

• In other words, if we apply a monotonic function to all the elements in the ntuple from a lattice product, the n-tuples preserve the same order

The whole meet operator

• When two control paths meet up, their respective constinformation sets might be something like

{x = 3, y = \top , z = 5} and {x = 3, y = 2, z = \bot }

• The CF meet operator applies the constant-glb relation to all pairs

{x = 3, y = \top , z = 5} \Box {x = 3, y = 2, z = \bot } = {x = 3, y = 2, z = \bot }

glb(3,3) = 3, $glb(\top,2) = 2$, $glb(5,\perp) = \perp$

Convergence

- The whole CF lattice is ordered by the relation from the constant-lattices of each of its variables
- The meet op. (glb) of the constant-ness states of one variable is monotonic
 - It never goes from "X = 24" to "X is still unknown" (\top)
 - It never goes from "X is not constant" (\bot) to "X is 62" either
- Therefore, the combination of individual meets for all the variables is monotonic also
 - Same rationale, it's not going to go from a "more specific" point

```
{x = 3, y = 2, z = \bot}
```

to a "less specific" point like

 ${x = 3, y = 2, z = 5}$

because that's not what comes out of $\{z = \bot\} \sqcap \{z = 5\}$

The analyses we have seen

- Ok... to recap what we know about all this stuff now
 - Domains are made up of elements that represent information from the source code, they are sets of
 - Live variables (Liveness)
 - Pairs of variables (Copy Propagation)
 - Expressions (Available Expressions)
 - Definitions / assignments (Reaching Definitions)
 - Constant-information about variables (Constant Folding)

Transfer functions

- Descriptions of how statements affect the sets at program points before • and after
 - LV: Iv before = { lv after - var. defined } [] { var. used }
 - CP: copies after = { copies before - copies ruined } \ \ { copies made }
 - AE: expr. after = { expr. before – expr. ruined } () { expr. evaluated }
 - RD: defs after = { defs before – defs overwritten } [] { defs made }
 - CF: const after = { const before – non-const found} \ \ { const made }

or, with more conventional notation

LV:	in[I] = { out[I] - def(I) } Use(I)	(Backward)
CP:	out[I] = { in[I] - kill(I) } \U gen(I)	(Forward)
AE:	out[I] = { in[I] - kill(I) } \U gen(I)	(Forward)
RD:	out[I] = { in[I] - kill(I) } \U gen(I)	(Forward)
CF:	out[I] = { in[I] - kill(I) } \U gen(I)	(Forward)

(what each analysis kills and generates follows from how the instructions affect its domain)

Meet operators

- Descriptions of how to combine control flow paths, when they cross
 - LV:U(variables used along any path)CP: \cap (copies made along every path)AE: \cap (expressions available along every path)RD:U(definitions coming from any path)CF: \sqcap_{CF} (glb relation from constant-ness lattices)

Monotonicity

- Guarantee that iterating over the data flow equations take program points strictly toward one end of the domain's order
- The contributions from instructions are static, the source code doesn't change during analysis
- The meet operators only contribute in one direction

LV:	хUу	is glb in power set lattice of variables
CP:	$x \cap y$	is glb in power set lattice of copies
AE:	$x \cap y$	is glb in power set lattice of expressions
RD:	хUу	is glb in power set lattice of definitions
CF:	$x \sqcap_{CF} y$	is glb in the product of constant-lattices we discussed

None of these analyses will run forever

Ups and downs

- Up until this point, I waved my hands at the beginning and pointed out that we can arrange our lattice orders
 - With \varnothing at the bottom and the set all elements at the top
 - With \varnothing at the top and the set of all elements at the bottom
 - With g.l.b. and l.u.b. determining the direction when points are combined
 - An idea of a "Top" (\top) and "Bottom" (⊥)
 - Some matching, vague notion of "more" and "less" program information

and suggested that all of these can be rearranged as a matter of notation

- I have played fast and loose with this because we haven't said anything where it matters
 - Same kind of nuisance as talking about stacks that grow into lower addresses, it's
 disruptive to stop and remember that up is down and plus is minus every 2 minutes

Making a choice

- Consistency matters more in an overview, so let's standardize it a bit
- Choose the top ⊤ to be the most an analysis can hope for
- Choose the meet operator □ to be the greatest lower bound of a lattice subset
- Choose the bottom \perp to be the worst outcome

Why choose these?

- The book draws with up/down in these directions (Fig. 9.22, p.622)
- We need a convention before discussing "precision"
- On the other hand
 - Several fixed points can solve the same system of constraint equations
 - The one that our iterative method finds is called the maximal fixed point
 - It is "maximal" in the sense of being at the end of a chain of states which is as long as possible
 - Paradoxically, that puts it closest to the order point called "bottom" (sigh)
 - That's the way it goes

Interpretations from top to bottom

For live variables:

Interpretations from top to bottom

For available expressions:

Most useful: All expressions can be re-used

Most careful:

No expressions

can be re-used

rondheim

Norwegian University of Science and Technology

Several solutions

- As a trivial example, take the "program" x = y+z, and consider liveness
 - We get 1 constraint equation: in = {out -x} U {y,z}
- Start from out = {x,y,z}

{y,z} are live here

 $\{x,y,z\}$ are live here

Start from out = {}

{y,z} are live here

{} is live here

- These are both solutions to the data flow equation
- Apply the constraints again, nothing changes in either case

What's the *best* solution?

That would be the one which captures what the program actually does:

 {b,c,d,e} live

if(true) a = b + cx = y + zThis path will if(true) never be taken a = d + e $\mathbf{X} = \mathbf{V} + \mathbf{W}$ NTNU – Trondheim Norwegian University of Science and Technology

{v,w,y,z} dead

www.ntnu.edu

Which solution does the framework suggest?

 That's the one which comes from considering the meet operator applied to all possible paths

 ${b,c,d,e} U {b,c,v,w} U {y,z,d,e} U {y,z,v,w} = {b,c,d,e,v,w,y,z}$

Which solution do we compute?

 The one that comes from starting every point at ⊤, and iterating with □ until there's no change

Names for those

• In order, we can call them

IDEAL(The one that accurately reflects the code)Meet-Over-Paths(The one that considers every path)Maximal Fixed Point(The one we get by iterating from ⊤)

- IDEAL is the *most precise* solution, because it would tell us exactly what the program means
 - Sadly, that can not be computed automatically
- MOP would be as close as we could get by static inspection
 - − Trace every possible execution individually, apply \square between all
 - Sadly, we can't compute that either
 - "Every possible execution" includes going through every (dynamically determined) loop once, two times, three times, ... and on to infinity

Their relationship

The solution we do get (the way we've been working), is the MFP.

The iterations for a point go through a descending chain

 $\top \sqsupseteq F(\top) \sqsupseteq F(F(\top)) \sqsupseteq \dots \sqsupseteq MFP$ (\leftarrow where we stop iterating)

- This is excessively careful
 - It combines paths as soon as possible, thereby losing precision
 - We'll see in a minute
- It's safe

 $\mathsf{MOP} \sqsupseteq \mathsf{MFP}$

- They're often the same (as in all our examples so far)
- When they differ, MOP is closer to the most useful end of the order

MFP evaluation

 MFP computes the function of B₃ on the combination of out(B₁) and out(B₂)

MOP evaluation

- MOP computes the function of B₃ by combining
 - B_3 s effect on out(B_1)
 - B_3 s effect on out(B_2)

Distributivity

• If F is a distributive function wrt. \sqcap , then

 $\mathsf{F}(\mathsf{x} \sqcap \mathsf{y}) = \mathsf{F}(\mathsf{x}) \sqcap \mathsf{F}(\mathsf{y})$

(that's the definition of distributive)

- When the function representing an analysis has this property, then the MFP solution (we can compute) is the same as the MOP solution (we can't compute)
- When
 - the function is just adding and removing elements to sets
 - the operator is just simple combinations of set elements
 - distributivity follows

If F is something like "delete element x", then practically by common sense,

 $F(\{x,y,z\} \cup \{v,w,x\}) = \{v,w,y,z\}$

 $F(\{x,y,z\}) \cup F(\{v,w,x\}) = \{y,z\} \cup \{v,w\} = \{v,w,y,z\}$

Distributivity vs Constant Folding

- LV, CP, AE, RD all give MFP=MOP, because their functions are distributive wrt. their respective union/intersection meet operators
- The constant-detecting scheme is <u>not</u> distributive *wrt.* its funny meet operator
- Witness:

Distributivity vs Constant Folding

This gives the MOP solution

 $\{X=3,Y=2, Z=5\} \sqcap_{CF} \{X=2,Y=3, Z=5\} = \{X=\bot, Y=\bot, \underline{Z=5}\}$

www.ntnu.edu

Distributivity vs Constant Folding

 The Maximal Fixed Point solution is less informative, it misses that Z=5 regardless of which way it's calculated

$$\{X=3,Y=2\}$$

$$\{X=3,Y=2\}$$

$$\{X=3,Y=2\}$$

$$\{X=3,Y=2\}$$

$$\{X=2,Y=3\}$$

$$\{X=1,Y=1\}$$

$$\{X=1,Y=1,Z=1\}$$

