NTNU - Trondheim Norwegian University of Science and Technology

Dataflow Analysis Framework: Summary and precision

We have looked at

- Live Variables
- Available Expressions
- Reaching Definitions
- Copy Propagation
- as instances of a general dataflow analysis method
- as points in a control flow graph
- as data flow equations that associate sets with the points
- as positions in a partial order (lattice) of possible sets
- Today, we'll add one more (Constant Folding) and look at how good our iterative solution is

Constant Folding (and propagation)

- The domain we're after is pairs of variables, and their constant values.
- Obviously, not every variable will have a constant value, more in a minute
- Forward analysis
- Traces paths from a point where a variable may be constant, to any point where we have determined that it isn't
- An intersection meet operator (of sorts)
- A constant value must be the same along every path, otherwise it isn't very constant

Three levels of information

- We can say three things about the constant-ness of a variable X

1) X may be a constant, but we haven't found its value yet
2) X may be a constant, its value has only been 36 (or some other number)
3) X is not constant, we've seen changes in its value

- We can order these observations according to how much we've found out about X :
$X=T \quad \leftarrow$ Can't say anything about X yet ("least precise knowledge")
$X=21 \leftarrow X$ is 21 somewhere in the program
$X=\perp \quad \leftarrow X$ is not 21 everywhere ("most precise knowledge")

The program logic

- An assignment of a constant to a variable $(\mathrm{v}=\mathrm{c})$ generates that pair as a possibly constant value

$$
\operatorname{gen}[1]=\{v=c\}
$$

- It also destroys the possibility that v is any other constant than c

$$
\text { kill }[1]=\{v=n \text { where } n \neq c\}
$$

- An assignment of an expression ($\mathrm{v}=\mathrm{u}+\mathrm{w}$) generates a possibly constant value if all its terms are constant

```
gen [l] = {v=k} kill [l] = {v=n where n m k}
    k=u+w if u,w are constants
    k= \perp if u or w are }\perp\quad\mathrm{ (known to be not-constant)
    k= T otherwise
```


If we draw the three levels

- There is an infinity of constants
- " $X=36$ " is as informative as " $X=21$ ", but taken together, they say that X is neither 36 nor 21 always
- A lattice of more and less informative levels becomes

(It's infinitely wide, but has finite height)

When $X=\top$ meets $X=2$

- One set of observations haven't seen any value for X
- The other has only seen that $X=2$
- X could be the constant 2
- $\{\mathrm{X}=\mathrm{T}\} \sqcap\{\mathrm{X}=2\}$ gives $\{\mathrm{X}=2\} \quad$ (greatest lower bound in the order)

When $X=-1$ meets $X=2$

- One set of observations have only seen that $X=-1$
- The other has only seen that $X=2$
- X can't be a constant, there are two different values
- $\{X=-1\} \sqcap\{X=2\}$ gives $\{X=\perp\} \quad$ (greatest lower bound in the order)

Part of a meet operator

- This ordering relation of
$\perp \sqsubseteq$ (numbers) $\sqsubseteq \top$
and the meet operator $\mathrm{p} \sqcap \mathrm{q}=\mathrm{glb}(\mathrm{p}, \mathrm{q})$ (in our constants-lattice)
gives how to handle multiple observations about one variable
- The p-s and q-s here are set elements like " $X=64$ ", " $X=\perp$ ", " $X=T$ ", et cetera.
- Those all talk about one variable
- " $\mathrm{Y}=27$ ", " $\mathrm{Y}=13$ ", " $\mathrm{Y}=\mathrm{T}$ " are positions in a separate lattice, which describes the constant-ness of Y (that has the exact same structure)

When there are more variables

- The domain of the Constant Folding analysis is sets of bindings to values
$\left\{\mathrm{v}_{1}=\mathrm{c}_{1}, \mathrm{v}_{2}=\mathrm{c}_{2}, \mathrm{v}_{3}=\mathrm{c}_{3}, \ldots\right\}$
where the c -s are \perp, T, or numbers
- Between two program points, the transfer function then takes us between

$$
\begin{aligned}
& \left\{\mathrm{v}_{1}=\mathrm{c}_{1}, \mathrm{v}_{2}=\mathrm{c}_{2}, \mathrm{v}_{3}=\mathrm{c}_{3}, \ldots\right\} \\
& \text { and } \\
& \left\{\mathrm{v}_{1}^{\prime}=\mathrm{c}_{1}^{\prime}, \mathrm{v}_{2}=\mathrm{c}_{2}^{\prime} \mathrm{v}_{3}=\mathrm{c}_{3}^{\prime}, \ldots\right\}
\end{aligned}
$$

- Can we confidently say that

$$
\left\{v_{1}=c_{1}, v_{2}=c_{2}, v_{3}=c_{3}, \ldots\right\} \sqsupset\left\{v_{1}^{\prime}=c_{1}^{\prime}, v_{2}=c_{2}^{\prime} v_{3}=c_{3}^{\prime}, \ldots\right\}
$$

so that the transfer function will work towards a guaranteed, finite goal?

Products of lattices

- Lattices are partial orders, they consist of a set, and an order (which fulfills the constraint that all subsets have a g.l.b. and I.u.b.)
- The sets have Cartesian products
$L_{1} x L_{2}=\left\{(x, y) \mid x \in L_{1}, y \in L_{2}\right\}$
$L_{1} \times L_{2} \times L_{3}=\left\{(x, y, z) \mid x \in L_{1}, y \in L_{2}, z \in L_{3}\right\}$
...and so on...
- If $L_{1}, \ldots L_{n}$ are (complete) lattices, their Cartesian product is a (complete) lattice as well, with the order defined so that the n-tuples
$\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \sqsupseteq\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
if and only if
y_{1} Ə $\mathrm{x}_{1}, \mathrm{y}_{2} \sqsupseteq \mathrm{x}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}$ Ə x_{n}
- In other words, if we apply a monotonic function to all the elements in the n tuple from a lattice product, the n -tuples preserve the same order

The whole meet operator

- When two control paths meet up, their respective constinformation sets might be something like

$$
\begin{aligned}
& \{x=3, y=\top, z=5\} \\
& \text { and } \\
& \{x=3, y=2, z=\perp\}
\end{aligned}
$$

- The CF meet operator applies the constant-glb relation to all pairs

$$
\begin{aligned}
& \quad\{x=3, y=\top, z=5\} \\
& \sqcap\{x=3, y=2, z=\perp\} \\
& =\{x=3, y=2, z=\perp\} \\
& \\
& \operatorname{glb}(3,3)=3, \operatorname{glb}(\top, 2)=2, \operatorname{glb}(5, \perp)=\perp
\end{aligned}
$$

Convergence

- The whole CF lattice is ordered by the relation from the constant-lattices of each of its variables
- The meet op. (glb) of the constant-ness states of one variable is monotonic
- It never goes from " $X=24$ " to " X is still unknown" (T)
- It never goes from " X is not constant" (\perp) to " X is 62 " either
- Therefore, the combination of individual meets for all the variables is monotonic also
- Same rationale, it's not going to go from a "more specific" point

$$
\{x=3, y=2, z=\perp\}
$$

to a "less specific" point like

$$
\{x=3, y=2, z=5\}
$$

because that's not what comes out of $\{z=\perp\} \sqcap\{z=5\}$

The analyses we have seen

- Ok... to recap what we know about all this stuff now
- Domains are made up of elements that represent information from the source code, they are sets of

Live variables (Liveness)
Pairs of variables (Copy Propagation)
Expressions (Available Expressions)
Definitions / assignments (Reaching Definitions)
Constant-information about variables (Constant Folding)

Transfer functions

- Descriptions of how statements affect the sets at program points before and after

```
LV: Iv before = { Iv after - var. defined } \cup{var. used }
CP: copies after = { copies before - copies ruined } U{copies made }
AE: expr. after = { expr. before - expr. ruined } }\cup{\mathrm{ expr. evaluated }
RD: defs after ={ defs before - defs overwritten } U{defs made }
CF: const after = { const before - non-const found} U { const made }
```

or, with more conventional notation

LV:	in[I] = \{ out[I] - def(I) \} \cup use(I)	(Backward)
CP:	out[I] $=\{$ in[I] - kill (I) $\} \cup$ gen(I)	(Forward)
AE:	out[I] $=\{$ in[I] - kill(I) $\} \cup$ gen(I)	(Forward)
RD:	out[I] $=\{$ in[I] - kill (I) $\} \cup$ gen(I)	(Forward)
CF:	out[I] $=\{$ in[I] - kill($(1)\} \cup$ gen(I)	(Forward)

(what each analysis kills and generates follows from how the instructions affect its domain)
NTNU - Trondheim
Norwegian University of Science and Technology

Meet operators

- Descriptions of how to combine control flow paths, when they cross

LV:	U	(variables used along any path)
CP:	\cap	(copies made along every path)
AE:	\cap	(expressions available along every path)
RD:	U	(definitions coming from any path)
CF:	$\Pi_{C F}$	(glb relation from constant-ness lattices)

Monotonicity

- Guarantee that iterating over the data flow equations take program points strictly toward one end of the domain's order
- The contributions from instructions are static, the source code doesn't change during analysis
- The meet operators only contribute in one direction

LV:	$x \cup y$	is glb in power set lattice of variables
CP:	$x \cap y$	is glb in power set lattice of copies
AE:	$x \cap y$	is glb in power set lattice of expressions
RD:	$x \cup y$	is glb in power set lattice of definitions
CF:	$x \Pi_{\text {CF }} y$	is glb in the product of constant-lattices we discussed

- None of these analyses will run forever

Ups and downs

- Up until this point, I waved my hands at the beginning and pointed out that we can arrange our lattice orders
- With \varnothing at the bottom and the set all elements at the top
- With \varnothing at the top and the set of all elements at the bottom
- With g.I.b. and l.u.b. determining the direction when points are combined
- An idea of a "Top" (T) and "Bottom" (\perp)
- Some matching, vague notion of "more" and "less" program information and suggested that all of these can be rearranged as a matter of notation
- I have played fast and loose with this because we haven't said anything where it matters
- Same kind of nuisance as talking about stacks that grow into lower addresses, it's disruptive to stop and remember that up is down and plus is minus every 2 minutes

Making a choice

- Consistency matters more in an overview, so let's standardize it a bit
- Choose the top T to be the most an analysis can hope for
- Choose the meet operator Π to be the greatest lower bound of a lattice subset
- Choose the bottom \perp to be the worst outcome

Why choose these?

- The book draws with up/down in these directions (Fig. 9.22, p. 622)
- We need a convention before discussing "precision"
- On the other hand
- Several fixed points can solve the same system of constraint equations
- The one that our iterative method finds is called the maximal fixed point
- It is "maximal" in the sense of being at the end of a chain of states which is as long as possible
- Paradoxically, that puts it closest to the order point called "bottom" (sigh)
- That's the way it goes

Interpretations from top to bottom

For live variables:

Most useful:
No variables are needed

Most careful: All variables are needed

Interpretations from top to bottom

For available expressions:
Most useful:

Several solutions

- As a trivial example, take the "program" $x=y+z$, and consider liveness
- We get 1 constraint equation: in $=\{$ out $-x\} \cup\{y, z\}$
- Start from out $=\{x, y, z\}$
$\{y, z\}$ are live here
$x=y+z$
$\{x, y, z\}$ are live here
- Start from out $=\{ \}$
$\{y, z\}$ are live here

$$
x=y+z
$$

$\}$ is live here

- These are both solutions to the data flow equation
- Apply the constraints again, nothing changes in either case

What's the best solution?

- That would be the one which captures what the program actually does:
$\{b, c, d, e\}$ live
$\{\mathrm{v}, \mathrm{w}, \mathrm{y}, \mathrm{z}\}$ dead

Which solution does the framework suggest?

- That's the one which comes from considering the meet operator applied to all possible paths

Which solution do we compute?

- The one that comes from starting every point at T, and iterating with Π until there's no change

Names for those

- In order, we can call them

IDEAL (The one that accurately reflects the code)
Meet-Over-Paths (The one that considers every path)
Maximal Fixed Point (The one we get by iterating from T)

- IDEAL is the most precise solution, because it would tell us exactly what the program means
- Sadly, that can not be computed automatically
- MOP would be as close as we could get by static inspection
- Trace every possible execution individually, apply \sqcap between all
- Sadly, we can't compute that either
- "Every possible execution" includes going through every (dynamically determined) loop once, two times, three times, ... and on to infinity

Their relationship

- The solution we do get (the way we've been working), is the MFP

The iterations for a point go through a descending chain
$T \sqsupseteq F(T) \supseteq F(F(T)) \sqsupseteq \ldots$ D MFP $\quad(\leftarrow$ where we stop iterating)

- This is excessively careful
- It combines paths as soon as possible, thereby losing precision
- We'll see in a minute
- It's safe

MOP 〕MFP

- They're often the same (as in all our examples so far)
- When they differ, MOP is closer to the most useful end of the order
- MOP applies constraints along paths never taken, when there are any IDEAL \sqsupseteq MOP \supseteq MFP

MFP evaluation

- MFP computes the function of B_{3} on the combination of out $\left(\mathrm{B}_{1}\right)$ and out $\left(\mathrm{B}_{2}\right)$

MOP evaluation

- MOP computes the function of B_{3} by combining
- $B_{3} s$ effect on out $\left(B_{1}\right)$
- B_{3} s effect on out $\left(B_{2}\right)$

Distributivity

- If F is a distributive function wrt. $п$, then
$F(x \sqcap y)=F(x) \sqcap F(y)$
(that's the definition of distributive)
- When the function representing an analysis has this property, then the MFP solution (we can compute) is the same as the MOP solution (we can't compute)
- When
- the function is just adding and removing elements to sets
- the operator is just simple combinations of set elements

distributivity follows

If F is something like "delete element x ", then practically by common sense,
$F(\{x, y, z\} \cup\{v, w, x\})=\{v, w, y, z\}$
$F(\{x, y, z\}) \cup F(\{v, w, x\})=\{y, z\} \cup\{v, w\}=\{v, w, y, z\}$

Distributivity vs Constant Folding

- LV, CP, AE, RD all give MFP=MOP, because their functions are distributive wrt. their respective union/intersection meet operators
- The constant-detecting scheme is not distributive wrt. its funny meet operator
- Witness:

Distributivity vs Constant Folding

- By Meet-Over-Paths, here are the two paths

$\{X=3, Y=2, Z=5\}$

$\{X=2, Y=3, Z=5\}$

This gives the MOP solution

$$
\{X=3, Y=2, Z=5\} \sqcap_{C F}\{X=2, Y=3, Z=5\}=\{X=\perp, Y=\perp, \underline{Z=5}\}
$$

Distributivity vs Constant Folding

- The Maximal Fixed Point solution is less informative, it misses that $\mathrm{Z}=5$ regardless of which way it's calculated

$$
\{\mathrm{X}=3, \mathrm{Y}=2\} \begin{gathered}
\mathrm{X}=3 \\
\mathrm{Y}=2
\end{gathered}
$$

