

Instruction selection

Where we are

- We have a fairly low-level view of the program, but
 - It features a memory model of infinite temporary variables
 - It isn't specific in terms of operations provided by the architecture
- These will be our last two topics
 - Selecting machine-specific operations
 - Mapping variables to memory locations

Low-IR vs. machinery

 The instructions of low-level IR are not the same as the target machine

Straightforward solution

Map every low-level IR to a fixed sequence of assembly ٠ instructions

y,r1

z,r2

$$\begin{array}{ll} x = y + z & \longrightarrow \\ & \text{move } y, r1 \\ & \text{move } z, r2 \\ & \text{add } r1, r2 \\ & \text{move } r2, x \end{array}$$

- Disadvantages: ٠
 - Lots of redundant operations —
 - More memory traffic than necessary —

There may be several alternatives

 Translate a[i+1] = b[j] using these operations

add r2,r1	←	r1 = r1 + r2
mul c, r1	←	r1 = r1 * c
load r2, r1	\leftarrow	r1 = *r2
store r2, r1	\leftarrow	*r1 = r2
movem r2, r1	\leftarrow	*r1 = *r2
movex r3, r2, r1	\leftarrow	*r1 = *(r2+r3)

The general steps

Let's say that everything is 8-byte elements, and

- Register r_a holds &a
- Register r_b holds &b
- Register r_i holds i
- Register r_j holds j

a[i+1] = b[j] needs to

- Find address of b[j]
- Load b[j]
- Find address of a[i+1]
- Store into a[i+1]

One translation

Another translation

Store into a[i+1]
 movem r_b, r_a

TAC

$$t1 = j*8$$

 $t2 = b+t1$
 $t3 = *t2$
 $t4 = i+1$
 $t5 = t4*8$
 $t6 = a+t5$
*t6 = t3

One more translation

movex r_j, r_b, r_a

TAC t1 = j*8 t2 = b+t1 t3 = *t2 t4 = i+1 t5 = t4*8 t6 = a+t5*t6 = t3

Why care?

- Not all instructions are created equal
- Some complete in a clock cycle
- Others decompose into a sequence of steps, and take many
- If we have a choice of translations, we'd like the one with the smallest sum of costs

Partial instructions aren't necessarily adjacent

- Address of b[j] mulc 8,r_j
- Address of a[i+1] add 1, r_i mulc 8, r_i add r_i, r_a
- Store into a[i+1] movex r_j, r_b, r_a —

TAC

$$t1 = j*8$$

 $t2 = b+t1$
 $t3 = *t2$
 $t4 = i+1$
 $t5 = t4*8$
 $t6 = a+t5$
 $*t6 = t3$

Tree representation

• The 4 overall steps can be written as a tree

Instructions can be tiles

(Subtrees of a particular pattern)

Instructions can be tiles

Tiling

An instruction selection covers the tree with disjoint tiles

Tiling

An instruction selection covers the tree with disjoint tiles

Tilings for comparison

Alternate tilings give different costs

Better than trees

- If we let common sub-expressions be represented by the same node, the trees become *directed acyclic* graphs (DAGs)
- Separate labels and annotations
 - Label nodes with variales, constants or operators
 - Annotate nodes with variables that hold their value
 - Construct DAG from low-level IR

Basic procedure

For each instruction in a basic block

if it's "x = y *op* z"

find or create a node annotated y find or create a node annotated z find or create a node labeled *op* with operands y and z remove annotation x from everywhere add annotation x to the *op* node

if it's "x = y"

find or create a node annotated y add annotation x to it

$$t = y + 1$$

 $w = y + 1$
 $y = z * t$
 $t = t + 1$
 $z = t * y$
 $w = z$

$$t = y + 1$$

 $w = y + 1$
 $y = z * t$
 $t = t + 1$
 $z = t * y$
 $w = z$

