NTNU - Trondheim Norwegian University of Science and Technology

Instruction selection

Where we are

- We have a fairly low-level view of the program, but
- It features a memory model of infinite temporary variables
- It isn't specific in terms of operations provided by the architecture
- These will be our last two topics
- Selecting machine-specific operations
- Mapping variables to memory locations

Low-IR vs. machinery

- The instructions of low-level IR are not the same as the target machine

Straightforward solution

- Map every low-level IR to a fixed sequence of assembly instructions

$$
\begin{array}{ll}
x=y+z \rightarrow & \begin{array}{l}
\text { move } y, r 1 \\
\text { move } z, r 2
\end{array} \\
& \begin{array}{l}
\text { add } 1, r 2 \\
\text { move } r 2, x
\end{array}
\end{array}
$$

- Disadvantages:
- Lots of redundant operations
- More memory traffic than necessary

There may be several alternatives

- Translate $a[i+1]=b[j]$
using these operations

add $\mathrm{r} 2, \mathrm{r} 1$	\leftarrow	$\mathrm{r} 1=\mathrm{r} 1+\mathrm{r} 2$
mul $\mathrm{c}, \mathrm{r} 1$	\leftarrow	$\mathrm{r} 1=\mathrm{r} 1^{*} \mathrm{c}$
load $\mathrm{r} 2, \mathrm{r} 1$	\leftarrow	$\mathrm{r} 1={ }^{*} \mathrm{r} 2$
store $\mathrm{r} 2, \mathrm{r} 1$	\leftarrow	${ }^{*} \mathrm{r} 1=\mathrm{r} 2$
movem $\mathrm{r} 2, \mathrm{r} 1$	\leftarrow	${ }^{*} \mathrm{r} 1={ }^{*} \mathrm{r} 2$
movex $\mathrm{r} 3, \mathrm{r} 2, \mathrm{r} 1$	\leftarrow	${ }^{*} \mathrm{r} 1={ }^{*}(\mathrm{r} 2+\mathrm{r} 3)$

The general steps

Let's say that everything is 8-byte elements, and

- Register r_{a} holds \&a
- Register r_{b} holds \&b
- Register r_{i} holds i
- Register r_{j} holds j
$a[i+1]=b[j]$ needs to
- Find address of $b[j]$
- Load b[j]
- Find address of a[i+1]
- Store into a[i+1]

One translation

- Address of b[j]

- Load b[j]
load $r_{b}, r 1$
- Address of a[i+1]
add $1, r_{i}$
mulc $8, r_{i}$ add r_{i}, r_{a}
- Store into a[i+1]
store $\mathrm{r} 1, \mathrm{r}_{\mathrm{a}}$

TAC
$\mathrm{t} 1=\mathrm{j}^{*} 8$
$\mathrm{t} 2=\mathrm{b}+\mathrm{t} 1$
$\mathrm{t} 3=$ *t2
$\mathrm{t} 4=\mathrm{i}+1$
$\mathrm{t} 5=\mathrm{t} 4^{*} 8$
$\mathrm{t} 6=\mathrm{a}+\mathrm{t} 5$
*t6 = t3

Another translation

- Address of b[j]
mulc $8, r_{j}$ -
add r_{j}, r_{b}
- Address of a[i+1]
add $1, r_{i}$
mulc $8, r_{i}$
add r_{i}, r_{a}
- Store into a[i+1]

TAC
$\mathrm{t} 1=\mathrm{j}^{*} 8$
$\mathrm{t} 2=\mathrm{b}+\mathrm{t} 1$
$\mathrm{t} 3=$ *t2
$\mathrm{t} 4=\mathrm{i}+1$
t5 $=\mathrm{t} 4 * 8$
$\mathrm{t} 6=\mathrm{a}+\mathrm{t} 5$
*t6 = t3
movem r_{b}, r_{a}

One more translation

- Address of b[j]
mulc $8, r_{j}$ _
- Address of a[i+1]
add $1, r_{i}$
mulc $8, r_{i}$
add r_{i}, r_{a}
- Store into a[i+1]
movex r_{j}, r_{b}, r_{a}

TAC
$\mathrm{t} 1=\mathrm{j}^{*} 8$
$\mathrm{t} 2=\mathrm{b}+\mathrm{t} 1$
t3 $=$ *t2
$\mathrm{t} 4=\mathrm{i}+1$
t5 $=\mathrm{t} 4 * 8$
$\mathrm{t} 6=\mathrm{a}+\mathrm{t} 5$
*t6 = t3

Why care?

- Not all instructions are created equal
- Some complete in a clock cycle
- Others decompose into a sequence of steps, and take many
- If we have a choice of translations, we'd like the one with the smallest sum of costs

Partial instructions aren't necessarily adjacent

- Address of b[j]
mulc $8, \mathrm{r}_{\mathrm{j}}$
- Address of a[i+1]
add 1, r_{i}
mulc $8, r_{i}$
add r_{i}, r_{a}
- Store into a[i+1]

\quad TAC	
t 1	$=\mathrm{j} *$
t 2	$=\mathrm{b}+\mathrm{t} 1$
t 3	$=* \mathrm{t} 2$
t 4	$=\mathrm{i}+1$
t 5	$=\mathrm{t} 4 * 8$
t 6	$=\mathrm{a}+\mathrm{t} 5$
$* \mathrm{t} 6$	$=\mathrm{t} 3$

Tree representation

- The 4 overall steps can be written as a tree

Instructions can be tiles

(Subtrees of a particular pattern)

Instructions can be tiles

(Subtrees of a particular pattern)

Tiling

An instruction selection covers the tree with disjoint tiles

Tiling

An instruction selection covers the tree with disjoint tiles

Tilings for comparison

Alternate tilings give different costs

Better than trees

- If we let common sub-expressions be represented by the same node, the trees become directed acyclic graphs (DAGs)
- Separate labels and annotations
- Label nodes with variales, constants or operators
- Annotate nodes with variables that hold their value
- Construct DAG from low-level IR

Basic procedure

- For each instruction in a basic block
if it's "x = y op z"
find or create a node annotated y
find or create a node annotated z
find or create a node labeled op with operands y and z remove annotation x from everywhere add annotation x to the op node
if it's " $x=y$ "
find or create a node annotated y
add annotation x to it

Like so: step 1

$$
\begin{aligned}
& t=y+1 \\
& w=y+1 \\
& y=z * t \\
& t=t+1 \\
& z=t^{*} y \\
& w=z
\end{aligned}
$$

Like so: step 2

$$
\begin{aligned}
& t=y+1 \\
& w=y+1 \\
& y=z * t \\
& t=t+1 \\
& z=t^{*} y \\
& w=z
\end{aligned}
$$

Like so: step 3

$$
\begin{aligned}
& t=y+1 \\
& w=y+1 \\
& y=z * t \\
& t=t+1 \\
& z=t^{*} y \\
& w=z
\end{aligned}
$$

Like so: step 4

$$
\begin{aligned}
& t=y+1 \\
& w=y+1 \\
& y=z * t \\
& t=t+1 \\
& z=t^{*} y \\
& w=z
\end{aligned}
$$

Like so: step 5

$$
\begin{aligned}
& t=y+1 \\
& w=y+1 \\
& y=z * t \\
& t=t+1 \\
& z=t^{*} y \\
& w=z
\end{aligned}
$$

Like so: step 6

$$
\begin{aligned}
& t=y+1 \\
& w=y+1 \\
& y=z * t \\
& t=t+1 \\
& z=t^{*} y \\
& w=z
\end{aligned}
$$

