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Lexical analysis

• Lexical analysis covers splitting of text into
– Tokens (symbolic values for what kind of word we see)
– Lexemes (the text which is the actual recognized word)

• That is, things like
– Language keywords (fixed strings of predefined words)
– Operators (typically, short strings of funny characters)
– Names (alphanumeric strings)
– Values (integers, floating point numbers, string literals...)

• Why does it happen?
– Technically, this could all be defined syntactically
– This would inflate the grammar for no good reason
– Choosing an appropriate dictionary and separating it in a scanner makes design easier
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Lexical analysis

• What happens?
– Characters are grouped into indivisible lumps, in pairs of token values and 

lexemes
– The token value is just an arbitrary number, which can be used for a 

placeholder in a grammar, but says nothing about the text which produced it.
– The lexeme is the text matching the token, it says nothing about the 

grammatical role of the word, but everything about which particular instance 
from a class of words we are dealing with

• How does it happen?
– Deterministic finite state automata are simulated with the source program as 

input, changing state on each read character
– There is a 1-1 correspondence between DFA and regular expressions
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DFA & regular expressions

• Regular expressions are defined in terms of
– Literal characters, and groups of them

– Closures (zero-or-more *, “Kleene closure”), (one-or-more, +)

– Selection (either-or, |)

• Character classes denote the transitions between states 
(arcs in a directed graph representation of DFA)

• Kleene closure is an edge from a state to itself
– One-or-more follows by prepending one state

• Selection is nodes where two branches in the graph diverge 
from one another
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NFA and DFA

• When multiple edges leave an FA state on the same symbol (or 
equivalently, an FA state may have transitions taken without input), it 
is a lot easier to construct an automaton for a given class of words

• This breaks the simple DFA simulation algorithm, as the automaton 
is now NFA (Nondeterministic FA)
– With two transitions possible, two paths in the graph diverge – if only one of them ends 

in accept, that one should be taken, but we will not know until later which one it is, if 
any

• Still, the family of languages recognized by these two classes of 
automata is the same
– That is, the regular languages
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NFA, DFA equivalence

• We can demonstrate this equivalence by constructing mappings 
between NFA, DFA and reg. ex.

• Reg. ex. turn into NFA because there is an NFA construct for every 
element of basic reg. ex. (character classes, selection, Kleene closure)
– A class of N characters becomes N arcs with one char. Each

– Selection is constructed inductively: the NFA of one alternative and the NFA of the other are 
connected by introducing start and end states with transitions-on-nothing (epsilon) at the front 
and back

– Zero-or-more is similarly created with a back arc from the tail of a construct to its beginning, 
and an epsilon arc from start to an end state

• This is the McNaughton-Thompson-Yamada algorithm
– Formerly known as Thompson's Construction, but we wouldn't want to sell McNaughton and 

Yamada short.
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NFA, DFA equivalence

• Turning an NFA into a DFA is a matter of taking sets of states 
reachable on no input, and lumping them together into new 
states
– The epsilon-closure of a state is the set of states thus reachable

– All transitions on a symbol from the e-closure of a state implies a new e-closure 
at its destination

– These closures are turned into single states of a DFA

• This is the subset construction

• There is also an algorithm for direct simulation of NFA, which 
essentially computes e-closures as we go along
– Know that it is there / how it operates
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NFA, DFA equivalence

• We know now that
– Regular expressions turn into NFA

– NFA turn into DFA

• Add to this
– DFA are already NFA, they just happen to have 0 e-transitions

– We can turn DFA back into reg.ex. - branches are selection, loops are closures

• Know that these things are the same, be able to pun between 
them
– If you feel that it is easier to memorize the systematic algorithms to do so, please 

go ahead

– If you see the equivalence by common sense, that is ok too
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Minimizing states

• DFA states are equivalent if there is a subset of 
states which share in and out edges

• These can be merged together without making a 
difference to the program

• The grouping is a recursive split wherever there are 
distinguishable states in a group
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How do we write programs?

• Use a regular expression library or generator
– Yes, it's doable by hand

– It's a waste of effort to do so except in very special circumstances

• On the practical side, we've worked with Lex, know how to deal 
with it
– Where are tokens defined?

– Where does the lexeme go?

– How are these two transferred to external code?

• It is as important to be able to read and interface to this sort of 
thing as it is to write it
– Given a scanner in Lex, know what to do with it, or how to change it



  

12

Syntactic analysis (parsing)

• Lexically, a language is just a pile of words
• Syntax gives structure in terms of which words can appear in which 

capacity
– Mostly dealt with in terms of sequencing in programming languages

• Context-Free Grammars give a notation to identify this sort of 
structure, forming trees from streams of tokens

• We  have a number of systematic ways to perform this construction
– None of them do arbitrary grammars
– Since the languages we analyze are synthetic, the problems can be avoided by designing 

them so as to be easy to parse
– It is mostly simpler to devise a different way of expressing something than to adapt the 

parsing scheme
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Ambiguity and CFG

• A single grammar can admit multiple tree representations of 
the same text

• That makes it ambiguous,  and it is a problem to computers 
because they aren't very clever about context (and none can 
be found in the grammar)

• This cannot really be fixed – if two trees are valid, then they 
are both valid

• It can be worked around by adding some rule which 
consistently picks one interpretation over the other

(Essentially adding a very primitive idea of context)
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Parsing

• What happens?
– Some tree structure is suggested to match the structure of a token stream, and 

verified to be accurate
– Verification can be done by predicting the tree and verifying the stream 

(predictive parsing, top-down)
– Verification can be done by constructing the tree after seeing the stream, and 

checking that it corresponds to the grammar (shift/reduce parsing, bottom-up)

• Why does it happen?
– Grammar is a general theory of language structure, so all our languages contain 

special cases of it

– The more generally we can manipulate the common elements of every 
language, the less trouble it is to describe each particular one



  

15

Parsing: how?

• Top-down:
– Start with no tree, check a little bit of the token stream
– Expand the tree with an educated guess about which tokens will appear soon
– Read as many as the guess permits, then guess again until finished

• Bottom-up:
– Start with no tree, read tokens onto a stack until they form the bottom/left corner of 

a tree (shift)
– Pop them off, and push the top of their sub-tree instead (to remember the part 

which was already seen) (reduce)
– Build the next sub-tree in the same way
– When the sub-trees form a bigger sub-tree, reduce that too
– Keep going until only the root of a valid tree is left on stack
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What we need for top-down

• The grammar must conform so that
– A prediction can be made by looking a small number of tokens ahead (lookahead)

– A prediction leads to consuming some tokens, so that the small set which give the 
next prediction will be different from the ones which gave this one (no left-
recursive constructs)

• If it is impossible to discriminate between two constructs 
because the lookahead is too short, left factoring splits the work 
of one prediction into two predictions with no common part

• If left recursion is present, it can be eliminated systematically
– Note: neither of these are ambiguities – there is still a unique correct 

interpretation, the problem lies in how to reach it algorithmically.
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Predictive parser construction

• Scheme works by recursive descent
– Make prediction for (nonterminal, lookahead) pair
– Extend tree
– Recursively traverse new subtree, until nonterminal is encountered
– Repeat procedure

• The corresponding grammar class is called LL(k)
– Left-to-right scan (tokens appear in reading order)
– Leftmost derivation (1st child is on the left)
– k symbols of lookahead are needed for the prediction

• Practically, k=1 is enough for us
– Parsing table grows with # of k-long token combinations columns
– Pred. parsing is useful because it is easy, less point when it gets hard
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Predictive parser construction

• The parsing table is easier to construct after finding the FIRST, FOLLOW 
properties of nonterminals
– Really, relations on intermediate forms, but knowing them for the nonterminals alone simplifies 

reasoning about the grammar

• Knowing these, deriving a parsing table is a matter of following simple rules

• Knowing the parsing table, constructing code is a matter of following simple 
rules
– Again: if you are given to memorizing algorithms, that's an easy way
– If you feel that you see how the principles work, there will be no questions asking you to recall 

specific pseudocode from the Dragon

• Learning to do this is practice & repetition

• Not learning to do this is ill advised
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What we need for bottom-up

• Bottom-up parsing is a little more general, it doesn't mind left-
recursion
– There are still grammars which are LL-but-not-LR for given lookaheads, but they are 

constructed with the purpose of proving a point, rather than being helpful

• Still, grammars need to be free of conflicts
– Shift/reduce conflicts arise when the r.h.s. of a production appears on stack, but shifting 

some more symbols could create a different r.h.s.
– This is analogous to the left-factoring scenario, and can be decided by  choosing a 

favorite production to go for (multiply-first, longest-match-first, or similar)
– Reduce/reduce conflicts arise when the stack state is the r.h.s. of multiple productions, 

and the parser cannot choose which one
– This is a symptom of an ambiguity in the language, and strongly indicates that the 

grammar should be rewritten
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Bottom-up basics

• The productions of a grammar imply a number of items, which are the 
productions themselves + an indicator of how far the r.h.s. has been 
parsed already

• The closure of an item results from expanding the nonterminal just after 
the I-am-here symbol in all the ways it can possibly be expanded

• The LR(0) automaton results from starting with the first production, and 
creating states from the closure of items

• Next-states and transitions follow from shifting the I-am-here marker 
one symbol forward (thereby changing the item)

• When the marker is at the end of a production, a reduction happens, 
and the parser backtracks to where it can start a new construct.
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SLR, LR(1), LALR

• The LR(0) method in itself is overly restrictive: constructs 
with an optional tail cause shift/reduce conflicts

• SLR is the simplest modification: add a symbol of 
lookahead, and select whether to shift or reduce based 
on the FOLLOW set of the nonterminal

• LR(1) is more general, adds lookahead symbol to items, 
increasing number of states

• LALR strikes tradeoff, taking LR(1) approach and 
merging states which are identical up to the lookahead
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How do we write programs?

• For bottom-up parsing, we've been using Yacc

• Translating a grammar into an automaton/table is a 
fairly straightforward operation

• Transforming it into a program is just as sensibly left 
to a generator

• Know how to read and write Yacc specifications



  

23

Semantics

• Semantics attach meaning to syntactic constructs

• Syntax-directed definition addresses the matter by 
attaching semantic rules to grammar specifications

• Influenced by the parsing scheme chosen:
– Bottom-up → synthesized attributes
– Top-down → inheritance from above/left

• Type of a variable is typically the sort of information 
we are attaching
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Symbol tables

• Symbol tables connect the names of programmer-defined 
entities to their occurrences in the syntax tree

• A fundamental thing to associate with them is their type

• A type-safe program contains only combinations of 
compatible entities
– Strong type systems permit only this, check and enforce it

– Weak type systems relax the requirements

• Tradeoff: there are type-safe programs which cannot be 
automatically recognized as such
– How many programs to allow?
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Symbol tables

• Symbol tables are frequently used, require fast insert and 
lookup

• Three implementations suggested:
– Array (not very useful, fixed finite set of allowed symbols)
– Linked list (fast insertion, avg. lookup time of ½ the list length)
– Hash table (better balance between lookup and insertion)

• How do we write programs?
– Compute mapping from arbitrary length strings to fixed-length checksums
– Make fixed-length array, select slot by checksum modulo length
– Resolve conflicts by rooting linked lists in array
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Type checking

• Type comparison is not a simple equality, because 
some types can be converted into each others' 
representations

• Valid conversions can be seen as inference rules in 
restricted natural semantics

• Deriving a judgment on the equivalence of types is 
constructing a proof tree based on these rules

• Don't be put out if you see one
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Natural semantics

• We made a sidebar on how similar rules can 
characterize the execution of a program

• Attaching execution state to rules per type of statement 
gives a semantic specification of the language

• Program execution thus maps to a derivation of a tree 
also

• Don't be put out if you see this either
– i.e. know what it means
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Memory management

• Exiting the front end, we've examined what the requirements of the 
executing program are

• Specifically, in order to turn it into a process image, we need to 
know what one looks like

• Processes have
– Code and an instruction counter

– Initialized data

– A stack

– A heap

• Variables need to be laid out in this image in order for the code to 
access them correctly
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Memory management & 
scope
• At the source program level, the location of a variable in 

memory is determined by where it is available in the source 
program

• Local things go on a stack, thrown away at the end of a scope
• Global things go directly in the process image
• Heap things never occur explicitly at the lower level, so code 

must be written or generated to manage them in terms of 
other variables which hold their references
– Pointers or references
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Objects

• We took a quick look at the implementation of objects

• The cornerstone is the need for run-time information before a function 
call can be resolved

• Dispatch vectors add a level of indirection, by specifying where to find 
the address of a function given a variable of a known type (instead of 
resolving it directly)
– Classes can have dispatch vectors constructed at compile time, from type information
– Interfaces specify only a (partial) layout of a dispatch vector, and disappear at compile time
– Abstract classes mix constraints from the two

• Run time system must support this
– Either as a general library loaded at run time to handle the housekeeping, or as code 

inserted by the compiler
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So far, so good

• As far as I am concerned, these are the essentials 
we have covered from the front end

• If you have a decent grasp of what all this means, 
you're in good shape
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