

1

TDT4205 Grand Summary, pt. 2

2

Process images

• Detailed image is in lecture note on assembly
(x86_64 Assembly language)

• Most of the detail level is relevant first at the system
level, but high IR can well be planned with the aim of
being simple to translate into it.

3

Stack machine exec. model

• In order to lay out the process image, some model of
execution must be assumed

• Most common is some variation on a stack machine
– Parameters spill on stack

– Locally scoped variables go on stack

• Other things are handled by address/dereference
– Addresses of functions

– Addresses of globals and heap

4

Stack frames

• This introduces the need for activation records, which

are the layouts of stack frames

• Contain (at least)
– Reference to caller (return pointer)
– Reference to stack frame of caller
– Local variables

• The exact choice of contents and their use are subject to
convention
– Ours: caller saves registers, callee takes care of frame, returns result in register
– This responsibility can be divided differently, with different implications for the

generated code

5

High IR

• Closely corresponds to source program
• Typically contains annotated syntax tree (+ any other

information needed for particular language constructs)
• Still discards parts of the source which are only of

syntactic value, reducing the syntax tree to an abstract
one

• The abstract part just means we've thrown away all the
now-redundant information which was an artifact of the
grammar and scanning

6

IR lowering

• Semantics-preserving transformations on the high IR take out
redundant information / admit high-level optimizations
– Different loop constructs can all be translated to one format

– “unless” is just “if” in a different guise

– Many other forms of syntactic sugar exist purely for the benefit of source program
prettiness, and vanish in translation

• The constructs of the resulting representation each need to be
associated with a translation scheme from high to low IR

• Choice of low-level IR is open to what is convenient
– Three Address Code (TAC) is what we used in lectures

– Practical work didn't really use a low-level IR, went straight to assembly

7

TAC

• TAC represents instructions as
– Basic operations
– At most two operands
– At most one target

• Encodable as quadruples
• Essentially, a high-level assembly

– Ifs, but label/jump for loops
– Function calls become sequence of parameters + actual call
– No concrete memory layout concerns yet
– All values are variables, as many as needed

8

Lowering scheme

• Each type of construct left in the high-IR needs a rule
• Expressions work by recursive translation of two-

operand operations, creating the overall expression
as string of three-adr. Ops

• Loops transform to conditionals and jumps
• Output marked by effects of the translation scheme

– Lots of temporary variables

– Parts of a single high-level construct may now be scattered
throughout the sequence of operations

9

Optimizations

• Optimization in the back end applies to all front ends
attachable to it
– May benefit multiple source languages

– Harder to detect what can be done

• Some optimizations apply to high IR, some to low,
some to both, some open possibilities for each other

• We went through a long list just to have a context for
further discussion

10

The long list

• Function inlining

• Function cloning

• Constant folding

• Constant propagation

• Dead code elimination

• Loop-invariant code motion

• Common sub-expression elimination

• Strength reduction

• Loop unrolling

11

Control flow graphs

• Divide programs in basic blocks

• Edges follow from conditionals, jumps

• Basic block has no diverging paths

• Separates effects of
– Basic blocks themselves

– Control paths through the program

12

Data flow analysis

• Analyses are instances of general framework which works in
terms of
– Partially ordered set
– Meet operator

where the set and order are chosen to reflect the information at
program points (found before/after instructions, basic blocks)

• General worklist algorithm guarantees Maximal Fixed Point
(MFP) solution if transfer function is monotone

• Monotone (monotonic) means it will only take a program point
to a less precise state in the lattice of possible states

13

Data flow analysis

• Meet-over-paths (MOP) solution is solution given by
following every possible path, applying the transfer
function to the chosen blocks separately'

• MFP is as precise as MOP when transfer function is
distributive
– i.e. applying it to the union of two paths is the same as applying it to

both paths and unifying the result

14

Data flow analysis instances

• Live Variables

• Reaching Definitions

• Available Expressions

• Constant Folding

• Dominator relation

(...and copy propagation...)

15

Live Variables

• Determines whether a variable can possibly used later
• Least precise: “all vars can be used later”
• Partial order is set inclusion, empty set is top
• Transfer function takes

– All variables live at the beginning of a block must be live at the end of all its
predecessors

– All variables used are live at input
– All variables defined are not live before

• Starts at end of program with no live variables at program points,
works backwards adding them

• Distributive meet/transfer

16

Available Expressions

• Works on sets of numbered expressions

• More expressions available = more precise

• Starts from top, adding expressions

• At meeting points, works with intersection, so that
expressions which are available have been made available
by every path to here

• Blocks add expressions they evaluate, remove expressions
which include variables changed in the block

• Works forward, distributive meet/transfer

17

Reaching Definitions

• Works on sets of numbered assignments, determines
which of them can be in effect at a later point

• Meet is union, so that all assignments which may have
been made (on one path or the other) are included

• More precise when fewer definitions are possible
• Blocks remove definitions at (re)assignments, add own

assignments instead
• Works forward, distributive meet/transfer

18

Constant Folding

• Lattice is product of variables and natural numbers

• Top is “unknown constant-ness” (not very informative,
but every variable which gets a value at some point
will come down from there)

• Middle is “known to be constant, value is n”

• Bottom is “known not to be constant”

• Forward analysis

• Meet/transfer not distributive

19

Dominator relation

• Works on set of basic blocks in control graph
– Really speaks about control flow, just does it in terms of data

• Forward, control flow is only interesting part

• Meet is intersection: what dominates all paths here dominate this
block also

• Distributive meet/transfer

• Dominators organize into a tree by attaching children to
immediate dominator

• Use is to detect back edges (loops) in control flow graphs:
– Jumping to a block which dominates this one is a loop

20

Instruction selection by tiling

• Instructions can be chosen from fixed-cost tiles, which map
sequences of instructions to a tree representation of code

• Tree representation can be compressed into directed
acyclic graph, saving work on repeated expressions

• Idea is that having a choice of tiles permits selecting the
least expensive overall combination

• Most relevant to CISC architectures, RISC has less choice
in tile construction

• On modern hardware, tile cost is very approximate

21

Register allocation

• Graph coloring problem, each register is a color

• Construct interference graph of variables that are
simultaneously live

• Infeasible to get optimal solution

• Approximation
– Reduce interference graph to nothing

– Reintroduce nodes and color optimistically

22

Moral from the back end

• Automatically detecting potential for optimization is
– Tricky (because it is)
– Conservative (because it has to be)

• Part of the point of going through the low level
programming is so that
– You can identify when (maybe, why) the compiler fails to help you

with it

– You can also do it yourself

23

Moral of the story

• As previously mentioned, few people go on to write a
lot of compilers

(Those who do find that it's rather more complicated still)

• As a compiler user, you have hopefully become a
little bit more familiar with the instrument you operate
– and where the precise meaning of the source language comes from

24

That's it from me

• At least in the auditorium, I'll still post things on
It's Learning, answer emails, etc.
– Do check in from time to time

• Thank you for your patience, effort, and participation

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

