
TDT4205 Compiler Construction
Recitation Lecture PS1

haavakro@stud.ntnu.no

Department of Computer Science

2023-01-20

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 1 / 25

Table of Contents

1 Regular expressions

2 Regex to NFA conversion

3 NFA to DFA conversion

4 DFA minimization

5 Help with C programming

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 2 / 25

Table of Contents

1 Regular expressions

2 Regex to NFA conversion

3 NFA to DFA conversion

4 DFA minimization

5 Help with C programming

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 3 / 25

Regular expressions

“A langauge for specifying regular languages.”

L(abc) = {abc}.

L(ab?c) = {ac, abc}.

L(ab*c) = {ac, abc, abbc, abbbc, . . .}

Terminology

If a string S ∈ L(R), we say that the regular expression R matches the
string S . We call S a match.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 4 / 25

Regex operator precedence

L(a|b) = {a, b}
L(ab|cd) = {ab, cd}
L(a(b|c)d) = {abd , acd}
L(ab*) = {a, ab, abb, abb, abbb, · · · }
L(ab+) = {ab, abb, abbb, abbbb, · · · }
L(ab?) = {a, ab}
L((ab)?) = {ab, ϵ}
L(a|b+) = {a, b, bb, bbb, bbbb, bbbbb, · · · }
L((a|b)+) = {a, b, aa, ab, bb, ba, aaa, aab, aba, abb, · · · }

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 5 / 25

Turning a description into regex

Let L be all strings over the alphabet {a, b}, with exactly two ’a’s.

It can start with a, but also b.
We can never have a?, a+ or a*, since we would lose count of ’a’s.
We can get the two ’a’s with any number of b in between.

R = b*ab*ab*

(Other posibilities can also work)
PS1 contains a problem like this, with a link to a website with tests.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 6 / 25

https://folk.ntnu.no/haavakro/tdt4205/regex.html

Turning a description into regex

Let L be all strings over the alphabet {a, b}, with exactly two ’a’s.

It can start with a, but also b.
We can never have a?, a+ or a*, since we would lose count of ’a’s.
We can get the two ’a’s with any number of b in between.

R = b*ab*ab*

(Other posibilities can also work)
PS1 contains a problem like this, with a link to a website with tests.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 6 / 25

https://folk.ntnu.no/haavakro/tdt4205/regex.html

Turning a description into regex

Let L be all strings over the alphabet {a, b}, with exactly two ’a’s.

It can start with a, but also b.
We can never have a?, a+ or a*, since we would lose count of ’a’s.
We can get the two ’a’s with any number of b in between.

R = b*ab*ab*

(Other posibilities can also work)
PS1 contains a problem like this, with a link to a website with tests.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 6 / 25

https://folk.ntnu.no/haavakro/tdt4205/regex.html

Table of Contents

1 Regular expressions

2 Regex to NFA conversion

3 NFA to DFA conversion

4 DFA minimization

5 Help with C programming

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 7 / 25

Turning a regex into an NFA

Known as Thompson’s construction.
We will use a?(bb)* as our example regex.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 8 / 25

Turning a regex into an NFA

Known as Thompson’s construction.
We will use a?(bb)* as our example regex.

a

a

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 8 / 25

Turning a regex into an NFA

Known as Thompson’s construction.
We will use a?(bb)* as our example regex.

a

a?

ε

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 8 / 25

Turning a regex into an NFA

Known as Thompson’s construction.
We will use a?(bb)* as our example regex.

a

a?

ε
b

bb

b

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 8 / 25

Turning a regex into an NFA

Known as Thompson’s construction.
We will use a?(bb)* as our example regex.

a

a?

ε
b

bb

bε ε
ε

ε
()*

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 8 / 25

Turning a regex into an NFA

Known as Thompson’s construction.
We will use a?(bb)* as our example regex.

a
ε

b bε ε
ε

ε
ε ε

a?(bb)*

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 8 / 25

Using some human intuition when making our NFA

We still use a?(bb)* as our example regex.

ε
b b

ε

ε
a?(bb)*

a

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 9 / 25

Table of Contents

1 Regular expressions

2 Regex to NFA conversion

3 NFA to DFA conversion

4 DFA minimization

5 Help with C programming

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 10 / 25

NFA to DFA

Also known as Subset construction.

ε
b b

ε

ε
a?(bb)*

a
0 1 2 3

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 11 / 25

NFA to DFA

ε
b b

ε

ε
a?(bb)*

a
0 1 2 3

{0,1,3}

We need to know every state we can get to without consuming any input:
ϵclosure({0}) = {0, 1, 3}

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 11 / 25

NFA to DFA

ε
b b

ε

ε
a?(bb)*

a
0 1 2 3

{0,1,3}

{1}

{2}

a

b

Now we need to know where we can end up, for each input
move({0, 1, 3}, a) = {1}
move({0, 1, 3}, b) = {2}

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 11 / 25

NFA to DFA

ε
b b

ε

ε
a?(bb)*

a
0 1 2 3

{0,1,3}

{1,3}

{2}

a

b

We must also include states accessible throuhg ϵ:
ϵclosure({1}) = {1, 3}
ϵclosure({2}) = {2}

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 11 / 25

NFA to DFA

ε
b b

ε

ε
a?(bb)*

a
0 1 2 3

{0,1,3} {}

{1,3}

{2}

a

b
b

a

Now we do the same for {1, 3}:
ϵclosure(move({1, 3}, a)) = {}
ϵclosure(move({1, 3}, b)) = {2}

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 11 / 25

NFA to DFA

ε
b b

ε

ε
a?(bb)*

a
0 1 2 3

{0,1,3} {}

{1,3}

{2}

a

ab
b

a
b

Now we do the same for {2}:
ϵclosure(move({2}, a)) = {}
ϵclosure(move({2}, b)) = {1, 3}

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 11 / 25

NFA to DFA

ε
b b

ε

ε
a?(bb)*

a
0 1 2 3

{0,1,3} {}

{1,3}

{2}

a

ab
b

a
b

[]ab

Since every state must have exactly one edge per input, we add a loop to
the “all VMs are dead” state.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 11 / 25

NFA to DFA

ε
b b

ε

ε
a?(bb)*

a
0 1 2 3

0 3

1

2

a

ab
b
a

b
[]ab

NFA subsets that contain accepting states, become accepting DFA states.
We finally renumber the states, and forget that the DFA originally came
from an NFA.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 11 / 25

Table of Contents

1 Regular expressions

2 Regex to NFA conversion

3 NFA to DFA conversion

4 DFA minimization

5 Help with C programming

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 12 / 25

Minimal DFAs

In the previous slides we actually got a minimal DFA from the Subset
construction, but that is not always the case.

The following DFA accpets the same langauge a?(bb)*, but uses one
more state.

0 41 2
a

a
b

b
a

b []ab
b

3
a

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 13 / 25

Moore’s algorithm

0 41 2
a

a
b

b
a

b []ab
b

3
a

We start by grouping the states into accepting and non-accepting.

0

24

1 3

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 14 / 25

Moore’s algorithm

0 41 2
a

a
b

b
a

b []ab
b

3
a

For each possible input, note which group you end up in.

0

24

1 3

a:
b:

0 1 2 3 4

0 1 2 3 4

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 14 / 25

Moore’s algorithm

0 41 2
a

a
b

b
a

b []ab
b

3
a

Note how states 1 and 3 are identical in all 3 partitionings.

0

24

1 3

a:
b:

0 1 2 3 4

0 1 2 3 4

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 14 / 25

Moore’s algorithm

0 41 2
a

a
b

b
a

b []ab
b

3
a

We actually care more about states that have differences, since that is
what forces us to split up groups.

0

24

1 3

a:
b:

0 1 2 3 4

0 1 2 3 4

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 14 / 25

Moore’s algorithm

0 41 2
a

a
b

b
a

b []ab
b

3
a

We split up the groups along the lines. This gives us more groups and
more colors.

0 24
1

3

a:
b:

0 1 2 3 4

0 1 2 3 4

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 14 / 25

Moore’s algorithm

0 41 2
a

a
b

b
a

b []ab
b

3
a

We must keep going until all groups only contain “identical” states.
In our case, only the pink group has more than one state, and they are
identical.

0 24
1

3

a:
b:

0 1 2 3 4

0 1 2 3 4

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 14 / 25

Finishing the DFA minimizaton

We can now create a DFA consisting of the groups instead. Any edge
from the original DFA that crosses groups, gets added to the new DFA.

0 41 2
a

a
b

b
a

b []ab
b

3
a

0 24
1

3

a

ab
b
a

b
[]ab

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 15 / 25

Finishing the DFA minimizaton

0 3

1

2

a

ab
b
a

b
[]ab

We now see that our original DFA was minimal.
Now that we are done, we can re-number our states (instead of colors).

0 24
1

3

a

ab
b
a

b
[]ab

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 16 / 25

Table of Contents

1 Regular expressions

2 Regex to NFA conversion

3 NFA to DFA conversion

4 DFA minimization

5 Help with C programming

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 17 / 25

Surviving and thriving in C

C lets you shoot yourself in the foot.

Accessing memory you didn’t intend to is easy.

The compiler will try to help with some things,
but C isn’t even strongly typed.
(If you want to treat a char* as a double, you can)

I will focus on runtime debugging.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 18 / 25

What happens when I do something bad?

If you access memory that your process doesn’t have, you will get a
Segmentation Fault. The OS kills you.

If you access array[N] in an array of length N, your process probably
owns that memory too. No crash.

If you read “out of bounds”, you get garbage.
If you write there, you can mess things up. The program might crash
down the line.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 19 / 25

Debugging crashes

If you get a Segmentation Fault, try compiling your program with -g to
include debug info in the executable.

Run it again using gdb <program>

Inside gdb, start the program with run <args here>

Once the program crashes, type bt to get a backtrace, aka the callstack
leading up to the crash.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 20 / 25

Example backtrace

Here I was trying to sum up a linked list with a recursive function.
It gave a Segmentation Fault.

The first 5 nodes have very similar addresses, all from malloc().
Then we get a very different address, something that is not a node. The
last list element didn’t set next to NULL!

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 21 / 25

Extra gdb tips

If your program is hanging forever, run in gdb, and hit Ctrl-Z to
pause your program. Now you can use bt to print where in the code
the program is stuck.

You can print the value of variables using p <variable name>, both
on the local stack, and global variables.

You can even do things like p nodes[x+5]->value, if nodes and x

are defined.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 22 / 25

More sneaky memory bugs

You might have a memory bug if:

Your program produces different results each time

Your program crashes in library code

You have values that make no sense

Your program crashes, but not in the debugger!

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 23 / 25

Valgrind

An emulator that keeps track of memory. Will tell you about:

Accessing out of bounds of arrays

Accessing out of bounds of a malloc

Accessing uninitialized memory

Accessing memory you have free()d

Accessing variables from scopes that no longer exist

Calling free() on the same allocation twice

Forgetting to free() some memory you malloc()ed.

Run using valgrind <program> <args>.
The downside? It runs slow.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 24 / 25

Some final C compiler flags

Remember to include -g to get debug info.

Enable warnings using -Wall, and maybe even -Wextra.

Enable address sanitazion and undefined behaviour sanitazion. It’s not as
thorough as valgrind, but it runs much faster.

-fsanitize=address,undefined

You can add extra parameters by modifying CFLAGS in the Makefile.

haavakro@stud.ntnu.no (Department of Computer Science)TDT4205 Compiler Construction 2023-01-20 25 / 25

	Regular expressions
	Regex to NFA conversion
	NFA to DFA conversion
	DFA minimization
	Help with C programming

