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Lexical analysis: Deterministic Automata

TDT4205, Lecture #2
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What we have

• A file, when you read it, is just a sequence of 
numbers from 0 to 255 (bytes):

72, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100, …

• By convention, some of them represent text 
characters:

‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘ ‘, ‘w’,’o’,’r’,’l’,’d’,…

• At this level, a source program just looks like a 
gigantic pile of bytes, which is not very informative
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What we don’t want

• A programming language key word like, say, “while” will 
appear as the sequence

w (119), h (104), i (105), l (108), e (10)

and it would be very tiresome to write a compiler that 
detects this sequence every time the programmer wants to 
start a while loop.

• You can’t stop them from calling a variable ‘whilf’:
w (119), h (104), i (105), l (108),   (looks like we’re starting a loop soon…)
...f (102)          (dang, rewind to 119 and try again, this is not a loop)
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What we want

• A neat and tidy grouping of characters into meaningful 
lumps, so that we can operate on those without caring 
about each character they are made from:

‘i’, ‘f’, ‘(‘, ‘w’,’h’, ‘i’, ‘l’, ‘f’, ‘=’, ‘=’, ‘2’, ‘)’, ‘{‘, ‘x’, ‘=’, ‘5’, ‘;’, ‘}’
is easier to read as
if ( whilf == 2 ) { x = 5; }
because characters are grouped together as words and punctuation.

• We could even make the color-coding meaningful:
keywords and punctuation
delimiters of groups
variables
operators
numbers
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What are the colors for?
• Consider this statement we already looked at:

if ( whilf == 2 ) { x = 5; }
• Consider this statement also:

while ( a < 42 ) { a += 2; }
if we respect the same coloring, it piles up as
while ( a < 42 ) { a += 2; }

• These two statements have wildly different meanings, but they 
share the same structure as far as our colors are concerned:

blue red green purple yellow red red green purple yellow blue red
• The structure they share is syntactic (or grammatical, if you like)
• The difference between them is lexical
• We’re talking about lexical analysis today, but we’ll need both, so we’ll 

(eventually) try to get both from the stream of meaningless data.
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Three useful words

• Lexeme
– Lexemes are units of lexical analysis, words
– They’re like entries in the dictionary, “house”, “walk”, “smooth”

• Token
– Tokens are units of syntactical analysis 
– They are units of sentence analysis, “noun”, “verb”, “adjective”

• Semantic
– This is what something means, there is no sensible unit
– It’s like explanations in the dictionary

• “house: a building which someone inhabits”
• “walk: the act of putting one foot in front of the other”
• “smooth: the property of a surface which offers little resistance”

(“dictionary: a highly useful volume of text which was not consulted for these explanations”)
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Classes of lexemes

• Some of the words we want to classify are fixed:
– “if”
– “while”
– “for”
– “==”

...et cetera…

• Other classes have countably infinite instances:
– 1
– 2
– …
– ...65536…

These are all specific cases of “integer”
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Finite Automata
• We need a mechanism to identify not just single, specific words, but entire 

classes of them
• Forget all about specific numbers for a while, let’s just try to find out whether 

we can make a rule to recognize a number when we see one
• Here’s a deterministic finite automaton, (drawn as a directed graph, because 

that’s easy to follow):

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

(You may remember these things from discrete 
mathematics, but I’ll repeat them anyway)
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Anatomy of a DFA

1 2 3

These are the states (1, 2 and 3)

The edges/arcs represent 
transitions between states 
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Start and finish

• One state is singled out as the starting state
• One or more states are identified as accepting states

– I’ve colored them green here, other common notations are to use a 
double circle or thicker lines

– Doesn’t matter as long as we can tell what it means

1 2 3(start)
(accept) (accept)
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Labels on the arcs

• Transitions are marked with sets of single characters 
that they apply to
– ‘.’ means the period character
– [0-9] is a shorthand for ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

1 2 3
[0-9]

[0-9] [0-9]

‘.’
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Traversing the graph

• The idea is that we start by pointing a finger at the 
starting state, and then
– Read a character of text
– Search for any transitions labeled with that character
– Throw away* the character, and point at the new state instead
– Repeat with another character until something fails

• When something fails, we’re either pointing at an 
accepting state, or not.
– If we are, the automaton accepts the text we read
– If we are not, the text was wrong**

* Programs won’t actually discard it, but the finite automaton no longer cares what it was
** “wrong” isn’t really the best word, but it’ll do for now
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Take “42.64”

• We start in state 1
• Read ‘4’
• Find a transition

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)
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We’re left with “2.64”

• We’re in state 2
• Read ‘2’
• Find a transition

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)
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We’re left with “.64”

• We’re in state 2
• Read ‘.’
• Find a transition

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)
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We’re left with “64”

• We’re in state 3
• Read ‘6’
• Find a transition

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)
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We’re left with “4”

• We’re in state 3
• Read ‘4’
• Find a transition

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)
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We’re out of characters...

• ...and standing in state 3
• That’s an accepting state, so this automaton 

recognizes the word “42.64”
• The state sequence (1,2,2,3,3,3) which we just 

constructed is a proof of that
(it’s not so important to call this “a proof”, but a couple of other 
proofs in this subject are constructed by just following a recipe, so 
we might as well say it right away.)

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)
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That was one class of words

• The DFA we just looked at recognizes integers with 
an optional (possibly empty) fractional part
– How would you change it to reject, say, “42.” while still accepting 

“42.0”, or accept “.64”?

• Discriminating between all the classes of words in an 
entire programming language requires a whole bunch 
of different DFAs to work in conjunction

• Luckily, we can program them very generally
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An alternative view

• One of the neat things about graphs is that we can 
write them up as tables

• Consider:

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

State
Symbol(s)

1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-
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Here’s “42.64” again, in the 
table view
• State 1, read ‘4’, go to state 2

• State 2, read ‘2’, go to state 2

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes
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Here’s “42.64” again, in the 
table view
• State 2, read ‘.’, go to state 3

• State 3, read ‘6’, go to state 3

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes
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Here’s “42.64” again, in the 
table view
• State 3, read ‘4’, go to state 3

• State 3, out of input, accept

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes
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Implementation

• This is the algorithm in Dragon Fig. 3.27, p. 151
– Store state (it’s just a row index into the table)
– Read character (it’s just a column index)
– Set state to the value found at entry (state,character) in the table
– Repeat

• The beauty of this is that the same program logic 
works for any DFA, changes in the automaton only 
require a different table to work with, not a different 
algorithm



  

25

So far, so good

• We have a graph representation that we can draw on 
paper and follow by pointing fingers at the graph and 
text

• We have a table representation that we can turn into 
a program
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Where we are going with this

• Programming a word-class recognizer (lexical analyzer, or 
scanner) with ad-hoc logic is complicated and error-prone

• Writing one using tables is a little easier, but requires 
punching in a bunch of boring table entries to represent 
specific DFAs

• Generating one is very convenient:
– Specify word classes as regular expressions
– Let a program write a gigantic table of states that includes all of the 

expressions
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How can such a generator work?

• We’ll need to write down the graph differently, 
programs have a really hard time understanding 
pictures

• We’ll need a path from that notation and into tables
• Doing it automatically will give us bigger tables than we 

need
– and thus, a great opportunity to shrink them to a minimum

(Stick around for the mesmerizing sequel, “Lexical Analysis II: Attack of the NFA”)
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