

1

Lexical analysis: Deterministic Automata

TDT4205, Lecture #2

2

What we have

• A file, when you read it, is just a sequence of
numbers from 0 to 255 (bytes):

72, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100, …

• By convention, some of them represent text
characters:

‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘ ‘, ‘w’,’o’,’r’,’l’,’d’,…

• At this level, a source program just looks like a
gigantic pile of bytes, which is not very informative

3

What we don’t want

• A programming language key word like, say, “while” will
appear as the sequence

w (119), h (104), i (105), l (108), e (10)

and it would be very tiresome to write a compiler that
detects this sequence every time the programmer wants to
start a while loop.

• You can’t stop them from calling a variable ‘whilf’:
w (119), h (104), i (105), l (108), (looks like we’re starting a loop soon…)
...f (102) (dang, rewind to 119 and try again, this is not a loop)

4

What we want

• A neat and tidy grouping of characters into meaningful
lumps, so that we can operate on those without caring
about each character they are made from:

‘i’, ‘f’, ‘(‘, ‘w’,’h’, ‘i’, ‘l’, ‘f’, ‘=’, ‘=’, ‘2’, ‘)’, ‘{‘, ‘x’, ‘=’, ‘5’, ‘;’, ‘}’
is easier to read as
if (whilf == 2) { x = 5; }
because characters are grouped together as words and punctuation.

• We could even make the color-coding meaningful:
keywords and punctuation
delimiters of groups
variables
operators
numbers

5

What are the colors for?
• Consider this statement we already looked at:

if (whilf == 2) { x = 5; }
• Consider this statement also:

while (a < 42) { a += 2; }
if we respect the same coloring, it piles up as
while (a < 42) { a += 2; }

• These two statements have wildly different meanings, but they
share the same structure as far as our colors are concerned:

blue red green purple yellow red red green purple yellow blue red
• The structure they share is syntactic (or grammatical, if you like)
• The difference between them is lexical
• We’re talking about lexical analysis today, but we’ll need both, so we’ll

(eventually) try to get both from the stream of meaningless data.

6

Three useful words

• Lexeme
– Lexemes are units of lexical analysis, words
– They’re like entries in the dictionary, “house”, “walk”, “smooth”

• Token
– Tokens are units of syntactical analysis
– They are units of sentence analysis, “noun”, “verb”, “adjective”

• Semantic
– This is what something means, there is no sensible unit
– It’s like explanations in the dictionary

• “house: a building which someone inhabits”
• “walk: the act of putting one foot in front of the other”
• “smooth: the property of a surface which offers little resistance”

(“dictionary: a highly useful volume of text which was not consulted for these explanations”)

7

Classes of lexemes

• Some of the words we want to classify are fixed:
– “if”
– “while”
– “for”
– “==”

...et cetera…

• Other classes have countably infinite instances:
– 1
– 2
– …
– ...65536…

These are all specific cases of “integer”

8

Finite Automata
• We need a mechanism to identify not just single, specific words, but entire

classes of them
• Forget all about specific numbers for a while, let’s just try to find out whether

we can make a rule to recognize a number when we see one
• Here’s a deterministic finite automaton, (drawn as a directed graph, because

that’s easy to follow):

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

(You may remember these things from discrete
mathematics, but I’ll repeat them anyway)

9

Anatomy of a DFA

1 2 3

These are the states (1, 2 and 3)

The edges/arcs represent
transitions between states

10

Start and finish

• One state is singled out as the starting state
• One or more states are identified as accepting states

– I’ve colored them green here, other common notations are to use a
double circle or thicker lines

– Doesn’t matter as long as we can tell what it means

1 2 3(start)
(accept) (accept)

11

Labels on the arcs

• Transitions are marked with sets of single characters
that they apply to
– ‘.’ means the period character
– [0-9] is a shorthand for ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

1 2 3
[0-9]

[0-9] [0-9]

‘.’

12

Traversing the graph

• The idea is that we start by pointing a finger at the
starting state, and then
– Read a character of text
– Search for any transitions labeled with that character
– Throw away* the character, and point at the new state instead
– Repeat with another character until something fails

• When something fails, we’re either pointing at an
accepting state, or not.
– If we are, the automaton accepts the text we read
– If we are not, the text was wrong**

* Programs won’t actually discard it, but the finite automaton no longer cares what it was
** “wrong” isn’t really the best word, but it’ll do for now

13

Take “42.64”

• We start in state 1
• Read ‘4’
• Find a transition

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

14

We’re left with “2.64”

• We’re in state 2
• Read ‘2’
• Find a transition

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

15

We’re left with “.64”

• We’re in state 2
• Read ‘.’
• Find a transition

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

16

We’re left with “64”

• We’re in state 3
• Read ‘6’
• Find a transition

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

17

We’re left with “4”

• We’re in state 3
• Read ‘4’
• Find a transition

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

18

We’re out of characters...

• ...and standing in state 3
• That’s an accepting state, so this automaton

recognizes the word “42.64”
• The state sequence (1,2,2,3,3,3) which we just

constructed is a proof of that
(it’s not so important to call this “a proof”, but a couple of other
proofs in this subject are constructed by just following a recipe, so
we might as well say it right away.)

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

19

That was one class of words

• The DFA we just looked at recognizes integers with
an optional (possibly empty) fractional part
– How would you change it to reject, say, “42.” while still accepting

“42.0”, or accept “.64”?

• Discriminating between all the classes of words in an
entire programming language requires a whole bunch
of different DFAs to work in conjunction

• Luckily, we can program them very generally

20

An alternative view

• One of the neat things about graphs is that we can
write them up as tables

• Consider:

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

State
Symbol(s)

1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

21

Here’s “42.64” again, in the
table view
• State 1, read ‘4’, go to state 2

• State 2, read ‘2’, go to state 2

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes

22

Here’s “42.64” again, in the
table view
• State 2, read ‘.’, go to state 3

• State 3, read ‘6’, go to state 3

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes

23

Here’s “42.64” again, in the
table view
• State 3, read ‘4’, go to state 3

• State 3, out of input, accept

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes

State
1
2
3

[0-9] ‘.’ <other>
2
2
3

-
3
-

-
-
-

Accept?
No
Yes
Yes

24

Implementation

• This is the algorithm in Dragon Fig. 3.27, p. 151
– Store state (it’s just a row index into the table)
– Read character (it’s just a column index)
– Set state to the value found at entry (state,character) in the table
– Repeat

• The beauty of this is that the same program logic
works for any DFA, changes in the automaton only
require a different table to work with, not a different
algorithm

25

So far, so good

• We have a graph representation that we can draw on
paper and follow by pointing fingers at the graph and
text

• We have a table representation that we can turn into
a program

26

Where we are going with this

• Programming a word-class recognizer (lexical analyzer, or
scanner) with ad-hoc logic is complicated and error-prone

• Writing one using tables is a little easier, but requires
punching in a bunch of boring table entries to represent
specific DFAs

• Generating one is very convenient:
– Specify word classes as regular expressions
– Let a program write a gigantic table of states that includes all of the

expressions

27

How can such a generator work?

• We’ll need to write down the graph differently,
programs have a really hard time understanding
pictures

• We’ll need a path from that notation and into tables
• Doing it automatically will give us bigger tables than we

need
– and thus, a great opportunity to shrink them to a minimum

(Stick around for the mesmerizing sequel, “Lexical Analysis II: Attack of the NFA”)

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

