

Lexical analysis: Regular Expressions and NFA

www.ntnu.edu \tag{TDT4205 - Lecture #3}

So, we have this DFA

- It can tell you whether or not you have an integer with an optional, fractional part
 - Just point at the first state and the first letter, and follow the arcs

Common things in lexemes

- Sequences of specific parts
 - These become chains of states in the graph
- Repetition
 - This becomes a loop in the graph
- Alternatives
 - These become different paths that separate and join

Some notation

- An alphabet is any finite set of symbols
 - {0,1} is the alphabet of binary strings
 - [A-Za-z0-9] is the alphabet of alphanumeric strings (English letters)
- Formally speaking, a *language* is a set of valid strings over an alphabet
 - L = {000, 010, 100, 110} is the language of even, positive binary numbers smaller than 8
- A finite automaton accepts a language
 - i.e. it determines whether or not a string belongs to the language embedded in the automaton by its construction

Things we can do with languages

- They can form unions:
 - $s \in L_1 \cup L_2$ when $s \in L_1$ or $s \in L_2$
- We can concatenate them:
 - $L₁L₂ = \{ s₁s₂ | s₁ ∈ L₁ and s₂ ∈ L₂ \}$
- Concatenating a language with itself is a multiplication of sorts (Cartesian product)
 - LLL = $\{ s_1 s_2 s_3 \mid s_1 \in L \text{ and } s_2 \in L \text{ and } s_3 \in L \} = L^3$
- We can find *closures*
 - − $L^* = v_{i=0,1,2,...} L^i$ (Kleene closure) ← sequences of 0 or more strings from L
 - − $L^+ = \upsilon_{i=1,2,...} L^i$ (Positive closure) ← sequences of 1 or more strings from L

Regular expressions

("regex", among friends)

- We denote the empty string as ε (epsilon)
- The alphabet of symbols is denoted Σ (sigma)

Basis

- ε is a regular expression, L(ε) is the language with only ε in it
- If a is in Σ , then a is also a regular expression (symbols can simply be written into the expression), L(a) is the language with only a in it

Induction

- If r_1 and r_2 are regular expressions, then $r_1 \mid r_2$ is a reg.ex. for $L(r_1) \cup L(r_2)$ (selection, *i.e.* "either r_1 or r_2 ")
- If r_1 and r_2 are regular expressions, then r_1r_2 is a reg.ex. for $L(r_1)L(r_2)$ (concatenation)
- If r is a regular expression, then r* denotes L(r)* (Kleene closure)
- (r) is a regular expression denoting L(r)
 (We can add parentheses)

DFA and regular expressions

(superficially)

 We already noted that this thing recognizes a language because of how it's constructed:

There's a corresponding regular expression:

Now we have 3 views

- Graphs, for sorting things out
- Tables, for writing programs that do what the graph does
- Regular expressions, for generating automatonprograms automatically

Regular languages

- All our representations show the same thing
 - We haven't shown how to construct either one from the other, but maybe you can see it still.
- The family of all the languages that can be recognized by reg.ex. / automata are called the regular languages
- They're a pretty powerful programming tool on their own, but they don't cover everything

(more on that later)

Combining automata

- Suppose we want a language which includes both of the words {"all", "and"}
- Separately, these make simple DFA:

Putting them together

 The easiest way we could combine them into an automaton which recognizes both, is to just glue their start and end states together:

This is slightly problematic

- The simulation algorithm from last time doesn't work that way:
 - Starting from state 0 and reading 'a', the next state can be either 1 or 2
 - If we went from 0 to 1 on an 'a' and next see an 'n', we should have gone with state 2 instead
 - If we see an 'a' in state 0, the only safe bet against having to backtrack is to go to states 1 and 2 at the same time...

The obvious solution

- Join states 1 and 2, thus postponing the choice of paths until it matters
- Now the simple algorithm works again (yay!)
- ...but we had to analyze what our two words have in common (how general is that?)

Non-deterministic Finite Automata

- One way to write an NFA is to admit multiple transitions on the same character
- Another is to admit transitions on the empty string, which we already denoted as "ε" (epsilon)
- These are equivalent notations for the same idea:

Relation to regular expressions

- NFA are easy to make from regular expressions
- The pair of words we already looked at can be recognized as the regex (all | and)
 - (equivalently, a (11 | nd) for the deterministic variant, but never mind for the moment)
- We can easily recognize the sub-automata from each part of the expression:

What can a regex contain?

Let's revisit the definition:

1) a character stands for itself (or epsilon, but that's invisible)

2) concatenation $R_1 R_2$

3) selection $R_1 \mid R_2$

4) grouping (R_1)

5) Kleene closure R₁*

- We can show how to construct NFA for each of these, all we need to know is that R_1 , R_2 are regular expressions
- Notice that a DFA is also an NFA
 - It just happens to contain zero ε-transitions
 - More properly put, DFA are a subset of NFA

1) A character

- Single characters (and epsilons) in a regex become transitions between two states in an NFA
- Working from (all | and), that gives us

Now we have a bunch of tiny Rs to combine

2) Concatenation

 Where R₁R₂ are concatenated, join the accepting state of R₁ with the start state of R₂:

In our example:

3) Selection

 Introduce new start+accept states, attach them using ε-transitions (so as not to change the language):

(That completes the example)

It's exactly what we did before:

4) Grouping

- Parentheses just delimit which parts of an expression to treat as a (sub-)automaton, they appear in the form of its structure, but not as nodes or edges
- cf. how the automaton for (all|and) will be exactly the same as that for ((a) (l) (l)) | ((a) (n) (d))

5) Kleene closure

- R₁* means zero or more concatenations of R₁
- Introduce new start/accept states, and ε-transitions to
 - Accept one trip through R₁
 - Loop back to its beginning, to accept any number of trips
 - Bypass it entirely, to accept zero trips

Q.E.D.

- We have now proven that an NFA can be constructed from any regular expression
 - None of these maneuvers depend on what the expressions contain
- It's the McNaughton-Thompson-Yamada algorithm

 (Bear with me if I accidentally call it "Thompson's construction", it's the same thing, but previous editions of the Dragon used to short-change McNaughton and Yamada)
- But wait... what about the positive closure, R₁+?
 - It can be made from concatenation and Kleene closure, try it yourself
 - It's handy to have as notation, but not necessary to prove what we wanted here

One lucid moment

- We've talked about closures
 - They are the outcome of <u>repeating a rule until the result stops</u> <u>changing</u> (possibly never)
- We've taken a notation and <u>attached general rules to</u> <u>all its elements, one at a time</u>
 - By induction, this guarantees that we cover all their combinations
 - That is the trick of a "syntax directed definition"
- Hang on to these ideas
 - They will appear often in what lies ahead of us

