

Lexical analysis: Regular Expressions and NFA

So, we have this DFA

- It can tell you whether or not you have an integer with an optional, fractional part
	- Just point at the first state and the first letter, and follow the arcs

Common things in lexemes

- Sequences of specific parts
	- These become chains of states in the graph
- **Repetition**
	- This becomes a loop in the graph
- Alternatives
	- These become different paths that separate and join

Some notation

- An *alphabet* is any finite set of symbols
	- $-$ {0,1} is the alphabet of binary strings
	- [A-Za-z0-9] is the alphabet of alphanumeric strings (English letters)
- Formally speaking, a *language* is a set of valid strings over an alphabet
	- $-L = \{000, 010, 100, 110\}$ is the language of even, positive binary numbers smaller than 8
- A finite automaton *accepts a language*
	- *i.e.* it determines whether or not a string belongs to the language embedded in the automaton by its construction

Things we can do with languages

- They can form *unions:* $-$ s \in L₁ \cup L₂ when s \in L₁ or s \in L₂
- We can *concatenate* them:

 $- L_1 L_2 = \{ s_1 s_2 \mid s_1 \in L_1 \text{ and } s_2 \in L_2 \}$

• Concatenating a language with itself is a multiplication of sorts (Cartesian product)

 $- LLL = \{ s_1 s_2 s_3 \mid s_1 \in L \text{ and } s_2 \in L \text{ and } s_3 \in L \} = L^3$

- We can find *closures*
	- $L^* = U$ _{i=0.1.2,...} Lⁱ (Kleene closure) \leftarrow sequences of 0 or more strings from L
	- $L^+ = 0$ $_{i=1,2,...} L^i$ (Positive closure) \leftarrow sequences of 1 or more strings from L

Regular expressions

("regex", among friends)

- The alphabet of symbols is denoted Σ (sigma)
- **Basis**
	- *ε* is a regular expression, L(*ε*) is the language with only ε in it
	- If *a* is in Σ, then *a* is also a regular expression (symbols can simply be written into the expression), L(*a*) is the language with only *a* in it

• **Induction**

– If r_1 and r_2 are regular expressions, then $r_1 \mid r_2$ is a reg.ex. for L(r_1) υ L(r_2)

(selection, *i.e.* "either r_1 or r_2 ")

 $-$ If r_1 and r_2 are regular expressions, then r_1r_2 is a reg.ex. for $L(r_1)L(r_2)$

(concatenation)

- If r is a regular expression, then r^* denotes $L(r)^*$ (Kleene closure)
- $-$ (r) is a regular expression denoting $L(r)$ (We can add parentheses)

DFA and regular expressions (superficially)

• We already noted that this thing recognizes a language because of how it's constructed:

• There's a corresponding regular expression:

 $[0-9]$ $[0-9]$ * (.)? $[0-9]$ *

Optional, because state 2 accepts

Now we have 3 views

- Graphs, for sorting things out
- Tables, for writing programs that do what the graph does
- Regular expressions, for generating automatonprograms automatically

Regular languages

- All our representations show the same thing
	- We haven't shown how to construct either one from the other, but maybe you can see it still.
- The family of all the languages that can be recognized by reg.ex. / automata are called the *regular languages*
- They're a pretty powerful programming tool on their own, but they don't cover *everything* (more on that later)

Combining automata

- Suppose we want a language which includes both of the words {"all", "and"}
- Separately, these make simple DFA:

Putting them together

• The easiest way we could combine them into an automaton which recognizes both, is to just glue their start and end states together:

This is *slightly* problematic

- The simulation algorithm from last time doesn't work that way:
	- Starting from state 0 and reading 'a', the next state can be either 1 $or 2$
	- If we went from 0 to 1 on an 'a' and next see an 'n', we should have gone with state 2 instead
	- If we see an 'a' in state 0, the only safe bet against having to backtrack is to go to states 1 *and* 2 at the same time...

The obvious solution

- Join states 1 and 2, thus postponing the choice of paths until it matters
- Now the simple algorithm works again (*yay!*)
- ...but we had to analyze what our two words have in common (*how general is that?*)

Non-deterministic Finite Automata

- One way to write an NFA is to admit multiple transitions on the same character
- Another is to admit transitions on the empty string, which we already denoted as "ε" (epsilon)
- These are equivalent notations for the same idea:

Relation to regular expressions

- NFA are easy to make from regular expressions
- The pair of words we already looked at can be recognized as the regex $($ all $|$ and $)$
	- (equivalently, $a(11 | nd)$ for the deterministic variant, but never mind for the moment)
- We can easily recognize the sub-automata from each part of the expression:

What can a regex contain?

• Let's revisit the definition:

- 1) a character stands for itself *(or epsilon, but that's invisible)*
- 2) concatenation $R_1 R_2$
- 3) selection $R_1 | R_2$
- 4) grouping (R_1)
- 5) Kleene closure R_{1}^{\star}

- We can show how to construct NFA for each of these, all we need to know is that $\mathsf{R}_{\mathsf{1}},\mathsf{R}_{\mathsf{2}}$ are regular expressions
- Notice that a DFA is also an NFA
	- It just happens to contain zero ε-transitions
	- More properly put, DFA are a subset of NFA

1) A character

- Single characters (and epsilons) in a regex become transitions between two states in an NFA
- Working from $($ all $|$ and $)$, that gives us

Now we have a bunch of tiny Rs to combine

17

2) Concatenation

• Where R_1R_2 are concatenated, join the accepting. state of R_1 with the start state of R_2 :

• In our example:

3) Selection

• Introduce new start+accept states, attach them using ε-transitions (so as not to change the language):

www.ntnu.edu

(That completes the example)

• It's exactly what we did before:

4) Grouping

- Parentheses just delimit which parts of an expression to treat as a (sub-)automaton, they appear in the form of its structure, but not as nodes or edges
- *cf.* how the automaton for (allland) will be exactly the same as that for $((a)(1)(1))|((a)(n)(d))$

5) Kleene closure

- R_1^* means zero or more concatenations of R_1^*
- Introduce new start/accept states, and ε-transitions to
	- $-$ Accept one trip through R₁
	- Loop back to its beginning, to accept any number of trips
	- Bypass it entirely, to accept zero trips

Q.E.D.

- We have now proven that an NFA can be constructed from any regular expression
	- None of these maneuvers depend on what the expressions contain
- It's the *McNaughton-Thompson-Yamada algorithm* (Bear with me if I accidentally call it "Thompson's construction", it's the same thing, but previous editions of the Dragon used to short-change McNaughton and Yamada)
- But wait... what about the positive closure, R_1^+ ?
	- It can be made from concatenation and Kleene closure, try it yourself
	- It's handy to have as notation, but not necessary to prove what we wanted here

One lucid moment

- We've talked about *closures*
	- They are the outcome of repeating a rule until the result stops changing (possibly never)
- We've taken a notation and <u>attached general rules to</u> all its elements, one at a time
	- By induction, this guarantees that we cover all their combinations
	- That is the trick of a "syntax directed definition"
- Hang on to these ideas
	- They will appear often in what lies ahead of us

