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NFA to DFA conversion and state minimization

TDT4205 – Lecture #4
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Where we were

• We have invented a way to turn the regex 
(all|and) into this:

(McNaughton, Thompson and Yamada)
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So, that doesn’t really help right away
(dang!)

• We can translate any regex to NFA, but what use is 
that when our DFA simulation algorithm doesn’t work 
for NFA?

• We’ll also have to translate NFA into equivalent DFA
(i.e. there’s another thing or two to prove before we’re happy)

• Luckily, that’s not so hard, it has a lot in common with 
what we first did when discussing NFA:
– Find out how far we can take parallel paths before they differ
– Take those parallel paths and merge them as single states:
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States and sets of states

• We’ll need to group states together, in order to treat them 
as one

• Very formally speaking, there is a difference between the 
state s itself and the set {s} which has it as the only member
– I’m going to wave my hands and ignore that difference, because it doesn’t 

add any valuable intuition
– The exposition in the book cares about the difference, though

• For brevity, let us talk about S as if it is a collection of one 
or more states, and assume that what we say applies to all 
the states that are included in it.
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ε-closure

• Given S in an NFA, its ε-closure is the set of states 
that can be reached through ε-transitions only

• Once again, this

is equivalent to this,
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move(S,c)

• move(S,c) is the set of states that you can reach from 
S when the input character is c

• In DFA-land, this is just the transition table (or function)
– In the deterministic parts of the automaton below, move(3,n) = {4}, 

move(2,l) = {5} and so on

• For NFAs, it’s a little more interesting
– move(0,a) = {1,3}
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Identifying ε-closures

• Numbering the states,

– ε-closure(0) = {0,1,5}
– ε-closure(4) = {4,9}
– ε-closure(8) = {8,9}

• The states in these sets can not be told apart as far 
as the automaton is concerned
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We’ll need a group of destinations
(let’s call it Dtran, for DFA transitions)

• We’ll need to collect the transitions that exit the set 
we want to merge
– move({0,1,5},a) = {2,6}
– Dtran[{0,1,5},a] = ε-closure({2,6}) = {2,6}
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More transitions with multiple 
destinations
• Dtran is relevant at the other end, too:

– Dtran[3,l] = ε-closure(move(3,l)) = ε-closure(4) = {4,9}
– Dtran[7,d] = ε-closure(move(7,d)) = ε-closure(8) = {8,9}
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DFA states from 
indistinguishable sets
• We can now merge the states we have grouped 

together into new ones that will become our DFA:

{0,1,5} {2,6}
{3}

{7}

{4,9}

{8,9}
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Reintroduce transitions

• Insert the transitions according to Dtran:

{0,1,5} {2,6}
{3}

{7}

{4,9}

{8,9}
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Find the start and end(s)

• If one original state was accepting, any ε-closure that 
contains it must be accepting, since accept can be 
reached there without reading any more input

{0,1,5} {2,6}
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This is a DFA

• It’s not quite as economical as our hand-conversion 
from the beginning
– There are more states than we need

• It can, however, be constructed automatically
• This method is called subset construction
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DFA state minimization

• Taking the path regex → NFA → DFA does not 
always introduce useless states

• We have seen that it can, though, there’s no use for 
both states 3 and 5 on the previous slide

• They just came out because we were strictly following 
a set of rules
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A matter of space and time

• Minimizing away {3,5} works, but it doesn’t illustrate the general 
procedure very well

• Developing a large DFA with plentiful redundant states doesn’t 
fit nicely into a slide/lecture

• Here’s what we can do
– Take a simple regex which directly gives a minimal DFA
– Create an equivalent, fluffier DFA by hand and intuition
– Minimize it, and see that the same result comes out

(Just mentioning it - if you think that the next example feels a bit contrived, that’s 
because you’re perfectly right, it’s artificial in order to be small.)
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REDO FROM START
• We can quickly take the regex b*ab*a through the 

motions we’ve already covered:
b* and a become these,

concatenate them into this,

merge ε-closures, transitions between subsets,

and concatenate 2 copies:
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Carelessly, by hand
b*ab*a must start with either b or a:

Next, there might be any number of b-s, before the mandatory a:

Concatenate 2 of those:
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Systematic minimization

We’ll be grouping states together, so start with an initial grouping of non-
final and final states

– A pair of states in group Gx are equivalent if and only if their transitions 
on any given symbol takes them to a state in the same group Gy

– Mind that it’s perfectly fine if Gx = Gy, the shared destination for a symbol 
can be the group our pair of states is already in, or a different one
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Check a pair for equivalence

This pair is not equivalent:

– Both have transitions on b that go from Gx to Gx itself, that’s fine

– The leftmost state transitions from Gx to Gx itself on a

– The rightmost transitions from Gx to Gy on a, so we’ll need to 
distinguish between them
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Check another pair for equivalence

This pair is equivalent:

– Both states have transitions on b that go from Gx to Gx itself

– Both states have transitions on a that also go from Gx to Gx itself
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Check every pair for equivalence
(at least until you’ve found one)

This pair is equivalent as well:

– Both states have transitions on b that go from Gx to Gx itself

– Both states have transitions on a that go from Gx to Gy

– There are three more pairs in Gx, but we can see where this is 
going without drawing them all…
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Divide and conquer

• These are the new groups of equivalent pairs:

• Split those into new groups, lather, rinse and repeat
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In the end

– The pair in Gw is equivalent:  a-s take us to Gz, b-s remain in Gw

– The pair in Gz is equivalent: a-s take us to Gy, b-s remain in Gz 

– It makes no difference to the rest of the automaton which distinct state 
within a group we’re going to or leaving

– Thus, we might as well make them single states:

– Hooray!
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Back where we were

– If you try the same thing with this one, you’ll find that the initial 
grouping into final and non-final states already captures the 
equivalence of the {4,9} and {8,9} states

– That creates what we want, but trivial examples are less meaningful

{0,1,5} {2,6}
{3}

{7}

{4,9}

{8,9}
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Optimized language acceptors

• We have now seen that this can be done:

NFA

DFA

Smaller DFA

Simulation

Regex

Source
code text Tokens and

lexemes

Scanner generator
handles this

Generated scanner
(lexical analyzer)
goes into compiler
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The roads not taken

• This is not necessarily exactly what happens in a given scanner 
generator
– DFA can be made directly from reg.ex.
– NFA can be simulated on the fly
– Lookup tables of transitions can be stored more compactly

• My goal is to convince you that there is at least one principled 
approach to the problem
– Formal languages and automata theory can be an entire subject
– Scanning and parsing methods can be one, too
– We’re just borrowing a necessary minimum to Get Things DoneTM

• I’ll round up the loose ends from Chapter 3 next time
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