

1

NFA to DFA conversion and state minimization

TDT4205 – Lecture #4

2

Where we were

• We have invented a way to turn the regex
(all|and) into this:

(McNaughton, Thompson and Yamada)

a l l

a
n d

3

So, that doesn’t really help right away
(dang!)

• We can translate any regex to NFA, but what use is
that when our DFA simulation algorithm doesn’t work
for NFA?

• We’ll also have to translate NFA into equivalent DFA
(i.e. there’s another thing or two to prove before we’re happy)

• Luckily, that’s not so hard, it has a lot in common with
what we first did when discussing NFA:
– Find out how far we can take parallel paths before they differ
– Take those parallel paths and merge them as single states:

a

a

a

4

States and sets of states

• We’ll need to group states together, in order to treat them
as one

• Very formally speaking, there is a difference between the
state s itself and the set {s} which has it as the only member
– I’m going to wave my hands and ignore that difference, because it doesn’t

add any valuable intuition
– The exposition in the book cares about the difference, though

• For brevity, let us talk about S as if it is a collection of one
or more states, and assume that what we say applies to all
the states that are included in it.

5

ε-closure

• Given S in an NFA, its ε-closure is the set of states
that can be reached through ε-transitions only

• Once again, this

is equivalent to this,

a l

a n d

l

a l l

a n d

ε

ε

ε

ε

6

move(S,c)

• move(S,c) is the set of states that you can reach from
S when the input character is c

• In DFA-land, this is just the transition table (or function)
– In the deterministic parts of the automaton below, move(3,n) = {4},

move(2,l) = {5} and so on

• For NFAs, it’s a little more interesting
– move(0,a) = {1,3}

0
1 2a l

3 4
5

a d

l

n

7

Identifying ε-closures

• Numbering the states,

– ε-closure(0) = {0,1,5}
– ε-closure(4) = {4,9}
– ε-closure(8) = {8,9}

• The states in these sets can not be told apart as far
as the automaton is concerned

1 2 3l l

6 7a n d5

4

8
90

ε

ε

ε

ε

a

8

We’ll need a group of destinations
(let’s call it Dtran, for DFA transitions)

• We’ll need to collect the transitions that exit the set
we want to merge
– move({0,1,5},a) = {2,6}
– Dtran[{0,1,5},a] = ε-closure({2,6}) = {2,6}

2 3l l

6 7a n d

4

8
9

ε

ε

a
2 3l l

6 7a n d

4

8
9

ε

ε

a
2 3l l

6 7a n d

4

8
9

ε

ε

a1

5
0

ε

ε

9

More transitions with multiple
destinations
• Dtran is relevant at the other end, too:

– Dtran[3,l] = ε-closure(move(3,l)) = ε-closure(4) = {4,9}
– Dtran[7,d] = ε-closure(move(7,d)) = ε-closure(8) = {8,9}

2 3l l

6 7a n d

4

8
9

ε

ε

a
2 3l l

6 7a n d

4

8
9

ε

ε

a
2 3l l

6 7a n d

4

8
9

ε

ε

a
1

5
0

ε

ε

10

DFA states from
indistinguishable sets
• We can now merge the states we have grouped

together into new ones that will become our DFA:

{0,1,5} {2,6}
{3}

{7}

{4,9}

{8,9}

11

Reintroduce transitions

• Insert the transitions according to Dtran:

{0,1,5} {2,6}
{3}

{7}

{4,9}

{8,9}

a
l l

n
d

12

Find the start and end(s)

• If one original state was accepting, any ε-closure that
contains it must be accepting, since accept can be
reached there without reading any more input

{0,1,5} {2,6}
{3}

{7}

{4,9}

{8,9}

a
l l

n
d

13

This is a DFA

• It’s not quite as economical as our hand-conversion
from the beginning
– There are more states than we need

• It can, however, be constructed automatically
• This method is called subset construction

0 1

2

4

3

5

a
l l

n d

14

DFA state minimization

• Taking the path regex → NFA → DFA does not
always introduce useless states

• We have seen that it can, though, there’s no use for
both states 3 and 5 on the previous slide

• They just came out because we were strictly following
a set of rules

15

A matter of space and time

• Minimizing away {3,5} works, but it doesn’t illustrate the general
procedure very well

• Developing a large DFA with plentiful redundant states doesn’t
fit nicely into a slide/lecture

• Here’s what we can do
– Take a simple regex which directly gives a minimal DFA
– Create an equivalent, fluffier DFA by hand and intuition
– Minimize it, and see that the same result comes out

(Just mentioning it - if you think that the next example feels a bit contrived, that’s
because you’re perfectly right, it’s artificial in order to be small.)

16

REDO FROM START
• We can quickly take the regex b*ab*a through the

motions we’ve already covered:
b* and a become these,

concatenate them into this,

merge ε-closures, transitions between subsets,

and concatenate 2 copies:

b a
ε

ε εε

b a
ε

ε
εε

b

a

b

a

b

a

17

Carelessly, by hand
b*ab*a must start with either b or a:

Next, there might be any number of b-s, before the mandatory a:

Concatenate 2 of those:

a
b

a
b

b
a

a
b

b
a

a
b

b
a Surely worth

minimizing...

18

Systematic minimization

We’ll be grouping states together, so start with an initial grouping of non-
final and final states

– A pair of states in group Gx are equivalent if and only if their transitions
on any given symbol takes them to a state in the same group Gy

– Mind that it’s perfectly fine if Gx = Gy, the shared destination for a symbol
can be the group our pair of states is already in, or a different one

a
b

b
a

a
b

b
a

Gx
Gy

19

Check a pair for equivalence

This pair is not equivalent:

– Both have transitions on b that go from Gx to Gx itself, that’s fine

– The leftmost state transitions from Gx to Gx itself on a

– The rightmost transitions from Gx to Gy on a, so we’ll need to
distinguish between them

a
b

b
a

a
b

b
a

GyGx

20

Check another pair for equivalence

This pair is equivalent:

– Both states have transitions on b that go from Gx to Gx itself

– Both states have transitions on a that also go from Gx to Gx itself

a
b

b
a

a
b

b
a

GyGx

21

Check every pair for equivalence
(at least until you’ve found one)

This pair is equivalent as well:

– Both states have transitions on b that go from Gx to Gx itself

– Both states have transitions on a that go from Gx to Gy

– There are three more pairs in Gx, but we can see where this is
going without drawing them all…

a
b

b
a

a
b

b
a

GyGx

22

Divide and conquer

• These are the new groups of equivalent pairs:

• Split those into new groups, lather, rinse and repeat

a
b

b
a

a
b

b
a

GyGx

a
b

b
a

a
b

b
a

Gy
Gw

Gz

23

In the end

– The pair in Gw is equivalent: a-s take us to Gz, b-s remain in Gw

– The pair in Gz is equivalent: a-s take us to Gy, b-s remain in Gz

– It makes no difference to the rest of the automaton which distinct state
within a group we’re going to or leaving

– Thus, we might as well make them single states:

– Hooray!

a
b

b
a

a
b

b
a

Gy
Gw

Gz

z y

b

aw

b

a

24

Back where we were

– If you try the same thing with this one, you’ll find that the initial
grouping into final and non-final states already captures the
equivalence of the {4,9} and {8,9} states

– That creates what we want, but trivial examples are less meaningful

{0,1,5} {2,6}
{3}

{7}

{4,9}

{8,9}

a
l l

n
d

a l l

n d

25

Optimized language acceptors

• We have now seen that this can be done:

NFA

DFA

Smaller DFA

Simulation

Regex

Source
code text Tokens and

lexemes

Scanner generator
handles this

Generated scanner
(lexical analyzer)
goes into compiler

26

The roads not taken

• This is not necessarily exactly what happens in a given scanner
generator
– DFA can be made directly from reg.ex.
– NFA can be simulated on the fly
– Lookup tables of transitions can be stored more compactly

• My goal is to convince you that there is at least one principled
approach to the problem
– Formal languages and automata theory can be an entire subject
– Scanning and parsing methods can be one, too
– We’re just borrowing a necessary minimum to Get Things DoneTM

• I’ll round up the loose ends from Chapter 3 next time

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

