

Lexical analysis roundup

What we have done

- Described regex
- Converted regex → NFA
- Converted NFA \rightarrow DFA
- Minimized DFA
- Simulated DFA
- Suggested that creating the simulator can be left to a scanner-generator program

The original

. . .

- In the beginning, there was one called *Lex* which wrote scanners in C
- Its format and idea is sort of a template for a whole family tree of successors

flex (still targets C, companion to GCC, we'll take it) JFlex (Java) PLY (Python) C# Flex (take a guess) Alex (Haskell) gelex (Eiffel)

Specification format

Lex files are suffixed *.I , and contain 3 sections

<declarations>

%%

<translation rules>

%%

<functions>

- Declaration and function sections can contain regular C code that makes its way into the final product
- Translation rules are compiled into a function called yylex()
- The output is a C file you can read if you like

Declarations

- The declaration section also admits some directives to Lex itself, so any C you wish to include is contained between %{ and %}
- The auxiliary functions section is just plain ol' source code
- The translation rules are regular expressions paired with basic blocks (actions)

As an example

 We can define some regex without attaching much of a language

[\n\t\v\]

if

then

endif

end

[0-9]+

Reacting to matched text

- We can attach actions to take on match
 - [\n\t\v\] { /* Do nothing, this is whitespace */ }
 - if { return IF; }
 - then { return THEN; }
 - endif { return ENDIF; }
 - end { return END; }
 - [0-9]+ { return INT; }

That needs token definitions

It won't run without a main function

Lex can stand alone

- If you have a simple program that just needs a scanner, and you miss regex, it can fit in a Lex specification
- I've put the examples online, we can run them

Lex can talk about states

- Some things are easier if you can name a subautomaton and treat it separately
- Strings come to mind, all the things you can put between " and " make a foofy regex
 - Putting
 - %state STRING
 - in the declarations section let you talk about a state called that
 - Specifying

\<character> let you anticipate one symbol ahead without matching it
away from the input (lookahead)

Talking about states

• Using those mechanisms, named states can appear in the translation rules

<INITIAL>if { printf ("Found 'if'\n"); }
Set state
<INITIAL>end { printf ("Found 'end'\n"); return 0; }
<INITIAL>\" { printf ("Found string: "); BEGIN(STRING); }
before -><STRING>\" { printf ("\n"); BEGIN(INITIAL); }
next " <STRING>. { printf ("%c,", yytext[0]); }

Match any character (regex. extension '.' matches anything)

This introduces a sub-automaton

• Something along these lines:

Lex can interface with other code

- Specifically, it pairs well with YACC (Yet Another Compiler-Compiler)
- YACC generates syntax analyzers (our next topic)
 - It can define tokens for Lex specifications to use
 - It knows to call yylex for the next token
- That is how we will make use of the two together

Bits and bobs we skipped in chapter 3: Longest match

- When there are multiple accepting states, the DFA simulation can't guess whether to take the first match, or continue in the hope of finding another
- Common rule is that the longest match wins, and the input-recording buffer rolls back if input leads the DFA astray

Bits and bobs we skipped in chapter 3: Dead states

- Technically, every DFA state goes somewhere on every symbol
- You can trap it in a state that doesn't accept, and transitions to itself on every symbol
- It messes up the drawings (which we want because they're clear):

It's a detail that matters more to scanner generator *authors* than to users, but you can read about it.

Bits and bobs we skipped in chapter 3: Direct regex \rightarrow DFA translation (3.9.1-3.9.5)

- This method has a touch of syntax analysis to it
- We're going to spend quite enough time on syntax analysis, and I think the relevant principle comes through more clearly there
- You can look at it for continuity, and even return to it after we've done LL(1) parsers
 - I'm not going to bug you about the details of this algorithm
 - You should know that it exists, and converts regex to DFA

That's a wrap

• Onward, to the charms of syntactic analysis!

