

1

Lexical analysis roundup

TDT4205 – Lecture #5

2

What we have done

• Described regex
• Converted regex → NFA
• Converted NFA → DFA
• Minimized DFA
• Simulated DFA
• Suggested that creating the simulator can be left to a

scanner-generator program

3

The original

• In the beginning, there was one called Lex which wrote
scanners in C

• Its format and idea is sort of a template for a whole family
tree of successors

flex (still targets C, companion to GCC, we’ll take it)
JFlex (Java)
PLY (Python)
C# Flex (take a guess)
Alex (Haskell)
gelex (Eiffel)
...

4

Specification format

• Lex files are suffixed *.l , and contain 3 sections
<declarations>
%%
<translation rules>
%%
<functions>

• Declaration and function sections can contain regular C code
that makes its way into the final product

• Translation rules are compiled into a function called yylex()
• The output is a C file you can read if you like

5

Declarations

• The declaration section also admits some directives
to Lex itself, so any C you wish to include is
contained between %{ and %}

• The auxiliary functions section is just plain ol’ source
code

• The translation rules are regular expressions paired
with basic blocks (actions)

6

As an example

• We can define some regex without attaching much of
a language

[\n\t\v\]
if
then
endif
end
[0-9]+

7

Reacting to matched text

• We can attach actions to take on match
[\n\t\v\] { /* Do nothing, this is whitespace */ }
if { return IF; }
then { return THEN; }
endif { return ENDIF; }
end { return END; }
[0-9]+ { return INT; }

8

That needs token definitions

%{
 #include <stdio.h>
 enum { IF, THEN, ENDIF, INT, END };
%}
%%
[\n\t\v\] { /* Do nothing, this is whitespace */ }
if { return IF; }
then { return THEN; }
endif { return ENDIF; }
end { return END; }
[0-9]+ { return INT; }

This is plain C

9

It won’t run without a main function

(defs)
%%
(rules)
%%
int main () {
 int token = 0;
 while (token != END) {
 token = yylex();
 switch (token) {
 case IF: printf ("Found if\n"); break;
 case THEN: printf ("Found then\n"); break;
 case ENDIF: printf ("Found endif\n"); break;
 case INT: printf ("Found integer %s\n", yytext); break;
 case END: printf ("Hanging up... bye\n"); break;
 }
 }
}

Call the generated scan function

Do something with each token

10

Lex can stand alone

• If you have a simple program that just needs a
scanner, and you miss regex, it can fit in a Lex
specification

• I’ve put the examples online, we can run them

11

Lex can talk about states

• Some things are easier if you can name a sub-
automaton and treat it separately

• Strings come to mind, all the things you can put
between “ and ” make a foofy regex
– Putting

%state STRING
in the declarations section let you talk about a state called that

– Specifying
\<character> let you anticipate one symbol ahead without matching it
away from the input (lookahead)

12

Talking about states

• Using those mechanisms, named states can appear
in the translation rules

<INITIAL>if { printf ("Found 'if'\n"); }
<INITIAL>end { printf ("Found 'end'\n"); return 0; }
<INITIAL>\" { printf ("Found string: "); BEGIN(STRING); }
<STRING>\" { printf ("\n"); BEGIN(INITIAL); }
<STRING>. { printf ("%c,", yytext[0]); }

Set state

Match any character (regex. extension ‘.’ matches anything)

Stop
before
next “

13

This introduces a sub-automaton

• Something along these lines:

STRING
“ “

[any character]

[other rules]

14

Lex can interface with other code

• Specifically, it pairs well with YACC
(Yet Another Compiler-Compiler)

• YACC generates syntax analyzers (our next topic)
– It can define tokens for Lex specifications to use
– It knows to call yylex for the next token

• That is how we will make use of the two together

15

Bits and bobs we skipped in chapter 3:
Longest match

• When there are multiple accepting states, the DFA
simulation can’t guess whether to take the first
match, or continue in the hope of finding another

• Common rule is that the longest match wins, and the
input-recording buffer rolls back if input leads the
DFA astray

16

Bits and bobs we skipped in chapter 3:
Dead states

– Technically, every DFA state goes somewhere on every symbol
– You can trap it in a state that doesn’t accept, and transitions to itself

on every symbol
– It messes up the drawings (which we want because they’re clear):

– It’s a detail that matters more to scanner generator authors than to
users, but you can read about it.

a b

[^a]
[^b]

[^c]

a b vs.

17

Bits and bobs we skipped in chapter 3:
Direct regex → DFA translation (3.9.1-3.9.5)

• This method has a touch of syntax analysis to it
• We’re going to spend quite enough time on syntax

analysis, and I think the relevant principle comes
through more clearly there

• You can look at it for continuity, and even return to it
after we’ve done LL(1) parsers
– I’m not going to bug you about the details of this algorithm
– You should know that it exists, and converts regex to DFA

18

That’s a wrap

• Onward, to the charms of syntactic analysis!

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

