

1

Context-Free Grammars

TDT4205 – Lecture #6

2

We’ve recognized the words

Scanner
Generator

Scanner Pairs of
(token, lexeme)

Regular
expressions

Source
code

Inside of compiler

3

Next comes statements

• That is, syntactic analysis
– Are words of the right kinds appearing in correct order?

Scanner
Generator
Scanner

Parser
Generator

regex

Source
code

Inside of compiler

Parser

Syntax
(grammar)

(token, lexeme)
(class, word)

4

Grammar, in writing

• In order to pull the same trick again, we need to write
down syntax rules in a format that a generator can
work with

• That is, we need a specification of what kinds of words
can follow each other in a number of different orders

• Plain automata have trouble with the whole “a number
of different orders” thing
– They only remember what state they are in, and only implicitly

represent what they have seen so far

5

That’s correct!

• Verifying what a “correct statement” is can be subject
to a lot of different constraints
– “I came to work this morning, and sat down” is an instance of

pronoun verb preposition noun pronoun noun conjunction verb preposition
– “I came to work this morning, or sit into” is the exact same

pattern, but it is wrong because the verbs switch from past to
infinitive, and the final preposition isn’t connected to a place

– “Colorless green ideas sleep furiously” is a classic example that
a syntactically correct statement can be without semantic meaning

6

How far we can take it
• This is the Chomsky hierarchy, which relates types of

grammars to each other
– Each successive type adds restrictions, making it a more specific

sub-type

Type 0

Type 1

Type 2

Type 3

7

The most specific type
• Type 3 are the regular languages, recognizable by

finite state automata

Type 0

Type 1

Type 2

RegularWe are here

8

Slightly less specific
• Type 2 are the Context-Free grammars, recognizable

by stack machines

Type 0

Type 1

Context-Free

RegularWe are
going here

9

All the way
• Curriculum-wise, we stop there and fix up contextual

information later
– I hope to say something about Type 0 on a rainy day, but it’s not

needed in order to make compilers

Recursively Enumerable

Context-Sensitive

Context-Free

Regular

10

Production rules

• A production rule is an intermediate form of a statement,
containing placeholders that must be substituted with
words

• The rules
1) A → w B z
2) B → x
3) B → y

describe the language of strings {“wxz”, “wyz”}
A → w B z → w x z (Rule 1, then rule 2)
A → w B z → w y z (Rule 1, then rule 3)

11

Terminals, non-terminals and derivations
• The placeholders are non-terminals

– If there are any left in an intermediate statement, it’s not yet a statement
– They’re usually capitalized

• The words are terminals
– A source code can contain any string of terminals, whether or not they

are a syntactically correct program
– They’re usually in lowercase

• The process of starting from grammar rules and
constructing a string of terminals is a derivation
– If there is a derivation that leads to a string of terminals matching the

token stream from a source code, the program adheres to the grammar
that derived it

– That’s how we do syntax analysis

12

More formally

• Terminals are the basic symbols that form strings
– cf. “alphabet” from regex

• Nonterminals are syntactic variables that represent sets of strings
• One nonterminal is the start symbol

– Derivations begin with it
– If nothing else is stated, we take the first nonterminal listed

• Productions specify combinations of substitutions, and contain
– A head nonterminal on the left hand side
– An arrow ‘→’ (or some other symbol to separate left from right)
– A body of terminals and/or nonterminals that describe how the head can be

constructed

13

For brevity
• Beyond tiny and trivial ones, most grammars contain a great(-ish)

number of productions
Statement → If-Statement
Statement → For-Statement
Statement → Switch-Statement
Statement → While-Statement
Statement → Assignment-statement
Statement → FunctionCall-Statement
etc. etc.

• To save some ink,
A → a
A → b
A → c
abbreviates to
A → a | b | c

(but they are still 3 distinct productions)

14

Representative grammars

• Fragments of grammars can be used to study particular
aspects of a language without recognizing the whole thing

• For this purpose, it’s nice to mock up tiny grammars
where the nonterminals we’re not interested in just
become a simple terminal that represent ‘something goes
here, but we don’t care now’

• It’s easier to manipulate grammars when you can prune
away some of the many, many combinations of things
they usually admit

15

E.g.: nested while statements

• For instance, somewhat realistic rules might say
Statement → Assignment | Function | If-Statement | …
Condition → Boolean-Expression
Boolean-Expression → true | false | Expr BoolOperator Expr
Statement → while Condition do Statement endwhile

• If we only care about the nesting of while statements, it’s shorter
to read

S → w C d S e | s
C → s
so we can derive
S → w C d S e → w C d w C d S e e → w c d w C d S e e → w c d w c d S e e
→ w c d w c d s e e
for a once-nested construct, never mind what ‘c’ and ‘s’ represent.

16

Shortening derivations

• These steps don’t add much to the discussion either:
S → w C d S e → w C d w C d S e e → w c d w C d S e e →
w c d w c d S e e → w c d w c d s e e

so we can write
S → w C d S e →* w c d w c d S e e

to get rid of the C-s in one go, and read
– “w C d S e derives w c d w c d S e e in some number of steps”

• We could also assert
S →* w c d w c d s e e
to say that the statement is part of the language, but then we have
omitted the whole derivation which proves it is really so

17

Syntax trees

• Nonterminals can be substituted in any order
– The language contains all variations, except that we have to start

from the start symbol

• The order we choose to substitute them in implies an
ordered hierarchy of which ones we prioritize
– Things that have an ordering can be drawn as graphs

• Taking the nested while grammar fragment,
S → w C d S e
means S is substituted first, so we get a tree like this

S

w C d S e

18

Moving on
• Next, we can substitute the new S...

S → w C d S e → w C d w C d S e e

and get rid of the c-s
w C d w C d S e e →* w c d w c d S e e

S

w C d S e

w C d S e

S

w C d S e

w C d S e
c

c

19

and finally, the last S → s
• That derivation gave us this syntax tree

• Graphs derived in this manner will always become trees,
because every substitution only introduces nodes on the
next level of the hierarchy

S

w C d S e

w C d S e

c

c s

20

Notice how the leaves spell
out the statement
• w c d w c d s e e

• It’s an observation we will make again
Just sayin’

S

w C d S e

w C d S e

c

c s

21

Does the order really matter?

• Yup. Consider this grammar for if-statements:
S → ictS | ictSeS | s
Read right hand sides as

“if condition then statement”,
“if condition then statement else statement”,
“statement”

and derive
S → ict S eS → ict ictS eS →* ict icts es (“ictictses” is ok)
S → ictS → ict ictSeS → ict ictses (“ictictses” is ok)

22

Syntax tree for derivation #1

S → ict S eS → ict ictS eS →* ict icts es
gives us

S

i c t S e S

i c t S
s

s

23

Syntax tree for derivation #2

S → ictS → ict ictSeS → ict ictses
gives us

S

i c t S

e Si c t S

ss

24

Who cares?

• if (x<10) then if (x>4) then “5-9” else “0-4”

can read

if (x<10) then
if (x>4) then “5-9”
else “0-4” /* Run when x is smaller than ten and not greater than 4 */

alternatively,

if (x<10) then
if (x>4) then “5-9”

else “0-4” /* Run when x is not smaller than ten */

• Tree/derivation #1 is “wrong”, but syntactically, these are equally
good

Tree #2

Tree
#1

25

Ambiguous grammars

• A grammar is ambiguous when it admits several syntax trees
for the same statement

• This was the “dangling-else ambiguity”
– famous because if statements are such a basic part of a language

• These are of no use to us, they must be fixed
– One way is to creatively re-write the grammar so that the problem disappears

without altering the language
– Another way is to assign priorities to the productions

(For the dangling else, and all its dangling head-reappears-at-the-end friends
among productions, I personally like to introduce an “endif” delimiter)

26

Parsing

• There are two very intuitive ways to systematically
select nonterminals for substitution
– Take the leftmost one
– Take the rightmost one

• Systematically deriving a statement (if it’s valid) is
what a syntax analyzer (parser) does
– It’s easiest to make one if you have simple rules like this to follow
– Choosing a rule gives you only one syntax tree for any given

statement
– If we’re going to say that the parser recognizes the language of the

grammar, the one tree we get has to be the only tree

27

Left factoring

• Parsers, like scanners, can only see so far ahead
• If we have productions

A → abcdef X gh | abcdef Y gh

and the parser only has space to buffer one token, it can’t
choose between these two productions

• As with NFA→DFA conversion, if we can postpone the
decision until it makes a difference, that works

Rewriting the grammar as
A → abcdef A’
A’ → X gh | Y gh
preserves the language by adding 1 production to collect a common prefix
shared by several other productions

28

Left recursion

• This could be a convenient grammar for a list of items
A → A a | a
it derives
A → a
A → A a → a a
A → A a → A a a → a a a
...and so on…

• The production A → A a is left recursive, the head
reappears on the left side of the body

29

Equivalently

• Another way to get lists of a-s could be
A → a A’
A’ → a A’ | ε
it derives
A → a
A → a A’ → a a A’ → a a
A → a A’ → a a A’ → a a a A’ → a a a
...and so on...

(the empty
string returns!)

30

Elimination of left recursion

• If a nonterminal has m productions that are left recursive and n
productions that aren’t

A → A α1 | A α2 | A α3 | … | A αm

A → β1 | β2 | β3 | … | βn

(Greek letters symbolize any ol’ combination of other [non-]terminals)

introducing A’ and rewriting it as
A → β1A’ | β2A’ | β3A’ | … | βnA’

A’ → α1A’ | α2A’ | α3A’ | … | αmA’ | ε

preserves the language, and removes (immediate) left recursion
“Immediate” because l.r. can also happen in several steps, like when productions
A → B x and B → A y
gives A → B x → A y x
so that A returns on the left of a derivation from A

31

In summary

• At this point, we’ve met
– Context-Free Grammars, their derivations and syntax trees
– Ambiguous grammars, and mentioned that there’s no single, true

way to disambiguate them (it depends on what we want them to
represent)

– Left factoring, which always shortens the distance to the next
nonterminal

– Left recursion elimination, which always shifts a nonterminal to the
right

32

What lies ahead

• Left factoring and treating left recursion may not be
obviously useful, but you might as well commit them
to memory right away

• We will make use of these grammar-fixing rules next
time, when we look at how to make parsers that
derive by always picking nonterminals from the left

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

