

Top-down parsing and LL(1) parser construction

Parsing by recursive descent

- Take this grammar, it models ifs and whiles:
 - $\mathsf{P} \ \rightarrow \ iCtSz \ | \ iCtSeSz \ | \ wCdSz$
 - $C \ \rightarrow \ c$
 - $S \ \rightarrow \ S$
- Let's parse the statement 'ictsesz'
- In top-down parsing, our starting point is the start symbol, we need to choose a production

Ρ

- LL(1) parsing means
 - L eft-to-right scan
 - L eftmost derivation (*i.e. always expand leftmost nonterminal*)
 - 1 symbol of lookahead (this must be enough to select a production)

We can't choose

- If we look ahead 1 token and find 'i', we get two productions to choose from
 - $\mathsf{P} \ \rightarrow \ iCtSz$
 - $\mathsf{P} \ \rightarrow \ iCtSeSz$
- There is no way to make this choice before seeing more of the token stream
- Left factoring (previous lecture) to the rescue!
- The grammar becomes
 - $\mathsf{P} \ \rightarrow \ iCtSP' \ | \ wCdSz$
 - $\mathsf{P'} \ \rightarrow \ z \ | \ eSz$
 - $C \ \rightarrow \ c$
 - $S \ \rightarrow \ s$

One step ahead

 Now that there's only one production which expands P on 'i', we can take it when we see 'i'

 $P \rightarrow iCtSP'$

• ...and expand the parse tree according to the derivation

Moving along

- Recursive descent means we follow the children of a tree node through to the bottom, where there must be a terminal.
 - The step we chose predicted that iCtSP' is coming up, we're looking at the 'i' in 'ictsesz'
 - Following through to the first child...

...it's an 'i'! That matches, throw it away, we now have 'ctsesz' left to parse.

Backtrack, and repeat

- Leaving that behind, the next child in the tree is a nonterminal
 - That can't match any input, so we need to pick a production again

Pick the next production

- There's not a lot of choice on how to expand C, so it could be clear already
 - Nevertheless, look at the input 'ctsesz', lookahead is now 'c'
 - Pick production C \rightarrow c, and expand the tree accordingly

Verify another terminal

- We need to go all the way to the bottom before backtracking...
 - ...but we find the 'c' that was expected there
 - Away it goes, remaining input is 'tsesz'

't' disappears as well

- It was already predicted by the first production:
 - Toss it out, 'sesz' remains

The next nonterminal is S

• Lookahead character 's' drives the choice of $S \rightarrow s$

- Verify 's', leave 'esz' and proceed to P'

There is a choice here

- P' expands in two ways
 - $P' \rightarrow Z$
 - $P' \rightarrow eSz$
 - This is our postponed selection, we can choose now because the lookahead symbol ('e' from remaining 'esz') tells us we need alternative #2:

Continue in the same way

• You'll have to

- Verify 'e', and backtrack (leaving 'sz' on input)

Continue in the same way

- You'll have to
 - Verify 'e', and backtrack (and leave 'sz' on input)
 - Expand another S \rightarrow s, verify the terminal (leaving 'z' on input)

The statement is valid

• You'll have to

- Verify 'e', and backtrack (and leave 'sz' on input)
- Expand another S \rightarrow s, verify the terminal (leaving 'z' on input)
- Verify the final 'z', and backtrack to find no further children
- The parse tree is finished, and since that was all the input, it's ok.

That is how it works

- Predictive parsing by recursive descent
 - Starts from the start symbol (top)
 - Verifies terminals
 - Picks a unique production for nonterminals based on the lookahead
 - Expands the syntax tree by productions, and recursively treats the new subtree in the same way
- This requires that the grammar is suitable, but we can adapt them somewhat
 - Left factor where a common lookahead prevents picking the right production
 - Eliminate left-recursive productions
 - We only saw left factoring in action so far, but let's examine another grammar

We're aiming for a table

- As with DFA, an algorithm needs a table where it can make decisions based on indexing (nonterminal, terminal) pairs and find a single production
- To make that table, it's a good idea to determine
 - What can the strings derived from a nonterminal begin with?
 - Which nonterminals can vanish, so that the lookahead symbol is actually part of the next production to choose?
 - What can come directly after a nonterminal that can vanish?

(where 'vanish' means that there's a production $X \rightarrow \varepsilon$, so that nonterminal X disappears from the intermediate form in the derivation without consuming any characters from the input token stream)

Here's another grammar

- $S \ \rightarrow \ u \ B \ D \ z$
- $B \rightarrow B v | w$
- $\mathsf{D} \ \rightarrow \ \mathsf{E} \ \mathsf{F}$
- $E \rightarrow y \mid \epsilon$
- $\mathsf{F} \ \rightarrow \ \mathsf{X} \ \big| \ \epsilon$
- It doesn't model anything in particular, it's here to be short and sweet

FIRST

- The set FIRST(α) is the set of terminals that can appear to the left in α α is really any ol' combination of terminals and nonterminals
- If we tabulate FIRST for all the heads in the grammar,

```
\label{eq:FIRST(S) = {u} (u begins the only production) \\ FIRST(B) = {w} (however many times B \rightarrow Bv is taken, w appears on the left in the end) \\ FIRST(E) = {y} (only production that derives any terminal) \\ FIRST(F) = {x} (ditto) \\ and finally, \\ FIRST(D) = {y,x} \\ y because D \rightarrow E F \rightarrow y F \\ x because D \rightarrow E F \rightarrow F \rightarrow x (E can disappear by E \rightarrow \epsilon) \\ \end{array}
```


nullablility

- A nonterminal is *nullable* if it can produce the empty string (in any number of steps)
 - The Dragon book denotes this by putting ϵ in the FIRST set
 - I denote it by keeping a separate record, because I like to
 - You can choose for yourself, we can read both notations

• In short order,

- nullable (S) = no (there are terminals in the only production)
- nullable (B) = no (there are terminals in both productions)
- nullable (E) = yes (it produces $E \rightarrow \epsilon$)
- nullable (F) = yes (it produces $F \rightarrow \epsilon$)

nullable (D) = yes (D \rightarrow E F \rightarrow F \rightarrow ϵ)

FOLLOW

- FOLLOW (N) for nonterm. N is the set of terminals that can appear directly to its right
 - In order to find these, you have to examine all the places N appears in production bodies, and find the terminals directly to its right
 - If it has a nonterminal on its right, you have to follow all its productions too, and find out what can come up instead of it
 - · That will be its FIRST set
 - If it has a nonterminal that can vanish to its right, you have to look at what comes afterwards...
 - ...and in general, collect all the terminals that can appear to the right in one way or another
- This is a little trickier than FIRST, but it can be done if you concentrate
- If you don't like to concentrate, you can also slavishly follow the rules beginning at the bottom of p. 221 in the book

For our grammar

- FOLLOW(S) = $\{\$\}$ (the end of input)

- FOLLOW(B) = $\{v,x,y,z\}$ taken from the derivations

 $S \rightarrow uBDz \rightarrow uBvDz$

 $S \rightarrow uBDz \rightarrow uBEFz \rightarrow uBFz \rightarrow uBxz$

 $S \rightarrow uBDz \rightarrow uBEFz \rightarrow uByFz$

 $S \rightarrow uBDz \rightarrow uBEFz \rightarrow uBFz \rightarrow u\textbf{Bz}$

- FOLLOW(D) = {z} (from $S \rightarrow uBDz$)
- FOLLOW(E) = $\{x,z\}$ taken from the derivations

 $S \ \rightarrow \ uBDz \ \rightarrow \ uBEFz \ \rightarrow \ uBEFz$

 $S \rightarrow uBDz \rightarrow uBEFz \rightarrow uB\textbf{Ez}$

- FOLLOW(F) = {z} (from S \rightarrow uBDz \rightarrow uBE**Fz**)

Two rules

- Armed with the FIRST, FOLLOW and nullable information, consider every production $X \rightarrow \alpha$ in the grammar, and apply two rules:
 - Enter the production $X \rightarrow \alpha$ at (X,t) where t is in FIRST(α)
 - − When $\alpha \rightarrow * \epsilon$, enter the production X → α at (X,t) where t is in FOLLOW(X)

Trying out rule #1

 With the grammar that we have, the first rule gives the table

	u	W	V	х	У	Z
S	$S \rightarrow uBDz$					
В		$\begin{array}{l} B \rightarrow \ W \\ B \rightarrow \ BV \end{array}$				
D				D→ EF	$D \rightarrow EF$	
E					E → y	
F				F → X		

Houston, we have a... left recursion

• <u>This</u> will not do, expanding B on lookahead 'w' requires a choice we can't make

	u	W	V	х	У	Z
S	S → uBDz	•				
В		B→ W B→ Bv				
D				D→ EF	$D \to EF$	
E					E → y	
F				F → X		

Fix the grammar

- Eliminating left recursion gives us
 - $S \ \rightarrow \ uBDz$
 - $B \rightarrow W B'$
 - $B' \ \rightarrow \ V \ B' \ | \ \epsilon$
 - $\mathsf{D}\,\to\,\mathsf{E}\,\mathsf{F}$
 - $\mathsf{E} \ \rightarrow \ y \ | \ \epsilon$
 - $\mathsf{F} \ {}_{\rightarrow} \ x \mid \epsilon$

• Update the FIRST, FOLLOW, nullable sets after the change:

FIRST(B) = {w}, FOLLOW(B) = {x,y,z}, nullable(B) = no FIRST(B') = {v}, FOLLOW(B') = {x,y,z}, nullable(B') = yes

Try rule #1 again

• This looks better:

	u	W	V	x	У	Z
S	$S \rightarrow uBDz$					
В		$B \rightarrow WB'$				
Β'			$B' \rightarrow VB'$			
D				D → EF	D→ EF	
E					E → y	
F				F → X		

Adding rule #2

Where nonterms are nullable, insert at FOLLOW

	u	W	V	Х	У	Z
S	$S \rightarrow uBDz$					
В		$B \rightarrow WB'$				
Β'			$B' \rightarrow VB'$	B' → ε	B' → ٤	$B' \ \rightarrow \ \epsilon$
D				$D \rightarrow EF$	$D \rightarrow EF$	D→ EF
E				E → 8	E → y	E → 8
F				F → X		F → 8

Now we have an LL(1) parsing table

- There is only one rule to choose from any pair of (nonterminal, terminal), so the tree can be built deterministically by following the method from the first example
 - Pick productions for nonterminals by looking them up in the table
- Parse a sample statement like uwvvxz if you like
- Try to think of how you would structure a program that works the same way

Why we cover this

- Bottom-up parsers are a handful to construct, it's a job best left for an automatic generator
- Top-down parsers work on a simple principle, those are doable by hand
 - At least as long as we stick to LL(1), longer lookaheads like LL(2) make for tables that have a column for every pair of terminals
- We'll use a bottom-up generator in the practical work
- You should also know how to make a top-down one in the theoretical work
 - So as to make an informed choice if you need to parse things

