

Bottom-up parsing

www.ntnu.edu \tag{TDT4205 - Lecture 08}

Where we are (again)

 Introducing C.F.Grammars, we said that they include regular languages, and then some more

Memories of past states

- These classes of languages are recognizable by (abstract) machines of differing power
 - We know the finite automata
 - Stack machines (or pushdown automata) are like F. A., but with added push and pop operations that let them trace the path they took to a state (and revert to where they've been)

What does a top-down parser look like?

- We looked at how to make an LL(1) parsing table, but not at how to turn it into a program
- Here's a grammar that's simple enough to just knock out the parsing table by looking at the grammar:

$$A \rightarrow xB \mid yC$$

 $B \rightarrow xB \mid \epsilon$
 $C \rightarrow yC \mid \epsilon$

	X	у	\$
А	A → xB	A → yC	
В	$B \rightarrow xB$		$B \to \epsilon$
С		$C \rightarrow yC$	$C \to \epsilon$

In code

	X	У	\$
A	$A \rightarrow xB$	$A \rightarrow yC$	
В	$B \rightarrow xB$		$B \to \epsilon$
С		$C \rightarrow yC$	$C \to \epsilon$

 One way to implement this is to write a function for each nonterminal, and make them mutually recursive according to the table

```
parse_A ():
    switch(symbol):
    case x:
        add_tree( x, B )
        match ( x )
        parse_B ()
    case y:
        add_tree( y, C )
        match ( y )
        parse_C ( )
    case $:
        error()
    return
```

```
parse_B():
    switch(symbol):
    case x:
        add_tree(x,B)
        match(x)
        parse_B()
    case y:
        error()
    case $:
        return
    return
```

```
parse_C():
    switch(symbol):
    case x:
        error()
    case y:
        add_tree(y,C)
        match(y)
        parse_C ()
    case $:
        return
    return
```


Function calls stack up

- Parsing 'y y y', we get
 - The derivation $A \rightarrow y C \rightarrow y y C \rightarrow y y y C \rightarrow y y y$

and the function call stack

Unwind: Tim e

Return!

Recursive descent vs. stack

- Recursive descent parsing uses the function call mechanism to implement its stack machine
 - It's hidden in the programming language, but it is there
- LL(1) can also be done with iterations
 - Provided that you're prepared to implement your own stack
- Generally, the need for a stack comes out of the need to match up beginnings and ends
 - Any construct of the sort <start> <thing> <end> where the <thing> can contain further <start> and <end>s, as in

```
Expression → ( expression )

Statement → { statement }

Comment → (* Comment *)

(/* ML does this, C comments can't be nested */)
```


Another way to parse

- The "LL" in LL(1) is
 - Left-to-right scan
 - Leftmost Derivation (always expand the leftmost nonterminal)
- How can we go at it from the right?
 - i.e. get LR parsing, to obtain a Rightmost derivation?
- It will require looking deeper into the token stream before deciding on productions...

General operation

- Take the same, silly grammar again
- Instead of making a decision as soon as a terminal comes along, stack them up

We might be making an A or a C here, hold on...

Keep stacking

 As the state of the internal stack grows, it identifies more and more of a single production rule

We're definitely working towards some C-s here, how many?

 $\begin{array}{c} A \rightarrow xB \mid yC \\ B \rightarrow xB \mid \epsilon \\ C \rightarrow yC \mid \epsilon \end{array}$

Keep stacking

 As the state of the internal stack grows, it identifies more and more of a single production rule

We're definitely working towards some C-s here, how many?

 $\begin{array}{c} A \rightarrow xB \mid yC \\ B \rightarrow xB \mid \epsilon \\ C \rightarrow yC \mid \epsilon \end{array}$

Enough is enough

For this grammar, the sequence ends when the input does

 $\begin{array}{c} A \rightarrow xB \mid yC \\ B \rightarrow xB \mid \epsilon \\ C \rightarrow yC \mid \epsilon \end{array}$

Bring out your states

- The stack extension is for memory, the production rules can be represented by a finite automaton
- It has been watching while we were stacking symbols, so it knows that we've taken a direction where there are no x-s or B-s

Reduce body to head

- We're at the end of the stream, so we're putting in the last (rightmost) C nonterminal
 - This works out the derivation in reverse order

 $\begin{array}{ccc} A \ \rightarrow \ xB \ | \ yC \\ B \ \rightarrow \ xB \ | \ \epsilon \end{array}$

 $C \rightarrow yC \mid \epsilon$

Next move

 $A \rightarrow XB \mid yC$

...and it repeats...

 $\begin{array}{c} A \rightarrow XB \mid yC \\ B \rightarrow XB \mid \epsilon \\ C \rightarrow yC \mid \epsilon \end{array}$

...until...

- The automaton built the stack
- The stack says how deeply into the grammar we've gone
- When the final body appears, we reduce the start symbol

We're finished!

 Only the start symbol is left on stack, this says that the statement was syntactically correct

If you look for the derivation

 Bending notation, space, and time a bit, we can illustrate it like this

Stack	Input	Action
-	у,у,у	Shift
У	у,у	Shift
у,у	у	Shift
у,у,у	-	Reduce $C \rightarrow \epsilon$ (push C)
y,y,y,C	-	Reduce $C \rightarrow yC$ (pop y,C + push C)
y,y,C	-	Reduce $C \rightarrow yC$ (pop y,C + push C)
y,C	-	Reduce $A \rightarrow yC$ (pop y,C + push A)
Α	-	Well done, cookies for everyone
A		

Here is our rightmost derivation, in reverse

Things the example didn't show

- Recognizing the body of a production doesn't have to wait until the very end
 - Only until it is uniquely determined

 Top-down parsing matches input to productions from above in the syntax tree

Already saw this

i, n, p, u, t

Scanning left to right...

Things the example didn't show

 Bottom-up parsing buffers input until it can build productions on top of productions

That's the principle of it

- Key ingredients:
 - A stack to shift and reduce symbols on
 - An automaton that can use stacked history to backtrack its footsteps
 - A grammar with one and only one initial production
- The last point is easy, if you have a grammar like
 - S → iCtSz | iCtSeSz
 - it can (somewhat obviously) be augmented like so
 - $S' \rightarrow S$
 - $S \rightarrow iCtSz \mid iCtSeSz$
 - without changing the language.
 - We'll see the purpose of that shortly

Various schemes

- The LR(k) family of languages can all be parsed with some kind of shift-reduce parser like this
- The more elaborate your automaton, the more grammars it can handle
 - We're going to study a few variations of this theme:
 SLR, LALR, LR(1)
 - They're easier to understand if we start with one which is actually blooming useless somewhat restrictive, but demonstrates a lot of general principles
 - That is LR(0) automaton construction, up next.

