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LR(0) parser construction

TDT4205 – Lecture 09
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Bottom-up parsing

• Recapping the last lecture, what we need for a 
bottom-up parsing scheme is
– An internal stack to shift and reduce symbols on
– An automaton that tell us what to do when, and uses the stacked 

history to backtrack its footsteps
– A grammar with one and only one initial production
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The LR(0) automaton
• The overall construction is similar to the NFA→DFA idea, in 

that
– We’re tracking all the different things that can happen throughout a derivation 

(there will be closures of related things)
– We’re introducing states whenever it is necessary to cover something new
– The states represent all the different paths that may have led to them
– Some states are reducing, that means

• Pop body, push head
(but we won’t draw the stack in, just remember that this happens)

• Revert to where we started recognizing the present production
...and the production which led to that one, if it is now finished...

… and the production which led to that other one…
… until the start symbol is all that’s left

– Transitions shift symbols
• They are what moves us ahead while working toward a reduction
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LR(0) items
• Since we have to track how far we have come along in a 

production’s body, the notation for productions extends to a 
bunch of LR(0) items
– All this means is that we add a marker (‘.’) to denote it
– It’s not punctuation in the language, just a position-tracking dot
– The production

S → aBc
gives us the four items

S → . a B c (I’m just starting on an S)
S → a . B c (I’m working on S, already saw an a)
S → a B . c (I’m working on S, have found a and B)
S → a B c . (We have seen a whole S at this point, toss its history and put S)

– We won’t need every item all the time, but they are the things we will combine 
into states, so this is what they mean
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(Augmenting the grammar with)
A Place to Begin
• The point of rewriting the grammar

S → iCtSz | iCtSeSz
into
S’ → S
S → iCtSz | iCtSeSz

is that when we’re looking at items,
S’ → . S
uniquely says that we’re just starting out, and
S’ → S .
uniquely says that we’re finished.

• It’s just a convenience, to avoid the corner cases of
“Begin the construction with every item from the start symbol”, and
“Accept if any of the start symbol’s productions reduce”

– This way, the rule can just be “start at the beginning, stop at the end”, so to speak
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Closures of items

• Closures of items are the sets of all items that can be 
obtained from the grammar without moving the 
position-marker
– Consider this grammar

D → E F
E → y | F
F → x

and start from the item D → . E F

D → E F
E → y | F
F → x

(Let’s keep the grammar handy, for reference)



  

7

What can happen here?

• Without moving the marker, applying productions can give us
D → . E F
E → . y
E → . F

(those were the E-productions, we’ve made an F in the process)
F → . x

(this comes from repeating the procedure with the new items we found)

• What this closure represents, is that derivations from D can begin as
D → . E F
D → . E F → . y F
D → . E F → . F F → . x F

without moving the marker past any symbols.
• The notation implies all this (transitively)

D → E F
E → y | F
F → x
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Closures are states

– The closure gives us an automaton state, labeled with what it 
represents

– The transitions out of this state represent all the different ways we 
can advance the input marker:

D → E F
E → y | F
F → x

D → . E F
E → . y
E → . F
F → . x

D → . E F
E → . y
E → . F
F → . x

E What happens at
D → E . F

What happens at
E → y .

y

F

What happens at
D → E . F

What happens at
F → x .
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Advancing input
(Shift actions)

• Selecting one of these transitions gives us a new item 
to find the closure of, and hence, the destination state

D → . E F
E → . y
E → . F
F → . x

E D → E . F
F → . x

D → E F
E → y | F
F → x
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Matching productions
(Reduce actions)

• When we reach an item that has the marker at the end, we’ve 
gone through states that encode a sequence which can appear 
in a derivation

• D → . E F (is) E . F → E . x (is) E x .
– As far as the grammar is concerned, D → E F → E x
– We just decorated it with a position in our stack-based reasoning

D → E F
E → y | F
F → x

D → . E F
E → . y
E → . F
F → . x

E D → E . F
F → . x

x
F → x.
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This is where we backtrack

• Reducing at state F → x . means
– we have a stack with an x on top of it
– Remove it, and replace it with an F

• That returns us to the stage where we were about to 
shift x

– Next thing on stack is the F we just created a moment ago

D → E F
E → y | F
F → x

D → . E F
E → . y
E → . F
F → . x

E D → E . F
F → . x

x
F → x.

(We’ve gone here and back again)
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...and again

• Below the F is the E that brought us here…

• D → E F . is another reducing state, take the E and F off 
stack, put in a D instead, and return to before the E was 
shifted...

D → E F
E → y | F
F → x

D → . E F
E → . y
E → . F
F → . x

E D → E . F
F → . x F → x.

F

D → E F .
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That was one traversal

• We’ve been through D → E F → E x

• We started by shifting an E
– that one must have been produced by a similar traversal elsewhere in the 

automaton, which shifted y, reduced E → y, and thus gave us an E to shift

D → E F
E → y | F
F → x

D → . E F
E → . y
E → . F
F → . x

E D → E . F
F → . x F → x.

F

D → E F .
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Making the LR(0) automaton

Start with the designated start item
– The one that looks like X’ → . X

1) Find its closure, make a state
2) Follow all the transitions
3) Repeat from 1

until you reach the reduction X’ → X at the other end.

(and don’t duplicate states when you get an item you’ve 
already made a state from)
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(Going by hand)

• If you don’t respect some strict depth-first traversal 
ordering, the final reduction can be the first thing you find
– It gets hard to remember where you were after a few branches and 

backtracks

• In this case, it is necessary to stare at the automaton for a 
bit, to convince yourself that you’ve visited it everywhere
– That’s not so mathematically rigorous, but it’s OK for what we’re after

• We’re doing this to understand how it works
– Homespun LR(0) parsing is a waste of time, there are splendid generator 

programs
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A simple grammar to try it on

This one models nested*, comma-separated lists:
S → (L) | x
L → S | L, S
i.e. statements like
(x,x,(x,x))

S → (L) → (L,S) → (L,S,S) → (S,S,S) →* (x,x,S) → (x,x,(L)) → (x,x,(L,S))
→* (x,x,(x,x))

or
(x,(x,x),x,(x,x))
and similar

*(Confer w. regex versus nested parentheses - Context-Free Grammars are more powerful...)
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Blackboard time

• There’s a summary of the whole development on the 
next few slides, but I think it’s worth going through at 
a more leisurely pace, so I’ll draw it step by step.

• Follow as it fits yourself, you can review the slides
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From the beginning

• Augmenting the grammar with a production that has 
a single rule, we get somewhere to start:

S’ → S

• Taking that as the basis for a first state, its closure is
S’ → .S
S → .(L)
S → .x
so we make an automaton state out of that

S’→ .S
S → .(L)
S → .x
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From the end

• The last thing that will happen is that we have parsed 
an S, and can shift it to complete parsing

• That sends us to a state where we can reduce our 
artificial start symbol, and declare victory

S’→ .S
S → .(L)
S → .x

S’ → S. S

S’ → S
S → (L)
S → x
L → S
L → L , S
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Another thing can happen

• We might shift an ‘x’ terminal

• This completes another production (. is at the end), 
so it is also a state where we have found a reduction

S’→ .S
S → .(L)
S → .x

S’ → S. S
S → x.

x

S’ → S
S → (L)
S → x
L → S
L → L , S
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The final thing that can happen

• We might shift a ‘(‘ terminal

• This doesn’t complete any productions, so we’ll have 
to build more states

• Start over, with the closure at the destination state

S’→ .S
S → .(L)
S → .x

S’ → S. S
S → x.

x

(
S → (.L)

S’ → S
S → (L)
S → x
L → S
L → L , S
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The closure at S→(.L)

• A non-terminal follows the position marker
– That can expand into

L → S
L → L, S

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S

S’ → S
S → (L)
S → x
L → S
L → L , S

S x
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We’re not done yet

• The expansion put the position marker ahead of 
another nonterminal (that is, S)
– S can expand into

S → (L)
S → x

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → -x

S’ → S
S → (L)
S → x
L → S
L → L , S

S x
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Time to shift more symbols

• Reducing states are easy to find, shifting S or x 
completes a production
– We already have a state for S → x.
– L → S. is the other reducing state we can reach in one shift

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S’ → S
S → (L)
S → x
L → S
L → L , S

S x

x

L → S. S
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More states, same work

• The remaining two items both suggest shifting an L
• That’s one transition, but both items can be a reason to 

take it

• The position marker doesn’t precede any nonterminals, 
 so this is all the closure we need

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S x

x

L → S.
S

S’ → S
S → (L)
S → x
L → S
L → L , S

L
S → (L . )
L → L . ,S
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The nested parentheses

• Shifting for the item S → .(L) leads to S → (.L)
– That’s the item we created this state from
– Thus, the transition must lead to the same state

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S x

x

L → S.
S

S’ → S
S → (L)
S → x
L → S
L → L , S

L
S → (L . )
L → L . ,S

(
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Two alternatives

• Shift a ‘)’ terminal, or a ‘,’ terminal
– The ‘)’ leads to a reducing state
– ‘,’ leads to an item we haven’t treated yet, so make a state, and find 

the closure it represents

S’ → S
S → (L)
S → x
L → S
L → L , S

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .S
S → .x

,

(
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There’s one more state

• The only new thing here is that we can finalize 
parsing of the production L → L , S
– ‘x’ and ‘(‘ lead to states we have already created

S’ → S
S → (L)
S → x
L → S
L → L , S

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.
Sx

(
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That’s our LR(0) automaton

• There is a bit of window-dressing to transform it into a 
table, we can look at that next time

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.
Sx

(
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Just a final footnote

• As you may have noticed
– Wrt. the Kleene closure of regex (r*), we saw that it’s an infinite set
– The epsilon closures have the added constraint that no character 

should be matched, so they become finite sets of states
– Today’s closures of items have the same constraint, for much the 

same reason

• There is a pattern here
– The way we find FOLLOW sets in top-down parsing is the exact 

same principle at work too, I just didn’t say it out loud at the time
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The General Approach
(in a very pseudo-code way)

1) Initialize some number of sets
2) Update them so that they satisfy all constraints
3) Record whether any of them changed because of step 2
4) If any did, repeat from step 2
5) If none did, declare victory

● This is “iteration to a fixed point” (victory is the “fixed point”)
● Calling it by that name foreshadows something deeper, every program can 

be rewritten as a constraint problem
● We’re moving outside compiler construction here, so never mind

● I mention it still
...because recognizing this pattern on sight might make it easier to 
remember all our different variants.
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