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LR(0) parsing tables (and their application)

TDT4205 – Lecture 10
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Where we are

• Last time, we looked at how stack machines remember 
the history of CFG productions they have taken, either
– implicitly (via the function call stack), or
– explicitly (automata with internal stacks)

• We constructed a pseudo-code LL(1) parser, based on its 
parsing table
– Nice, because it is simple to do by hand

• We constructed an LR(0) automaton from a simple 
grammar
– Nice to know (roughly) how parser generator output works
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This is the LR(0) automaton 
we got out

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.
Sx

(
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Number Everything

• Since we want a table, it must have some indices

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.
Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

(Number the productions)

(Number the states)

1 2

3

4

5

6

7

8 9
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Tabulate the transitions

• The rows are our state indices
• The symbols we’re looking at are at the top of the stack, they can 

be terminals or nonterminals
– Terminals appear when you shift them there from the input
– Non-terminals appear when some production is reduced

• Each pair of (state,symbol) identifies an action
– Those are the table entries

• We’ve got three types of actions
– Shift symbol and change to state (written as “s#”, where # is the state)
– Go to state                              (written as “g#”, where # is the state)
– Accept                                             (written as “a”)
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Structure of the table

• Here’s the automaton, and its empty parsing table:

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

1 2

3

4

5

6

7

8 9

( ) x , $ S L

1

2

3

4

5

6

7

8

9

(Terminals) (Non-terms)
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Filling it in

• Going through all the states that aren’t accepting or 
reducing, look at the transitions
– Transitions on terminals get a shift-and-goto action
– Transitions on nonterminals just get the goto part
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State 1

• There is S, x, and (

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

1 2

3

4

5

6

7

8 9

( ) x , $ S L

1 s3 s2 g4

2

3

4

5

6

7

8

9

Here →
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State 3

• There is S, x, (, and L

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

1 2

3

4

5

6

7

8 9

( ) x , $ S L

1 s3 s2 g4

2

3 s3 s2 g7 g5

4

5

6

7

8

9

Here
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State 5

• There is ) and ,

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

1 2

3

4

5

6

7

8 9

( ) x , $ S L

1 s3 s2 g4

2

3 s3 s2 g7 g5

4

5 s6 s5

6

7

8

9
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State 8

• There is x, (, and S

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

1 2

3

4

5

6

7

8 9

( ) x , $ S L

1 s3 s2 g4

2

3 s3 s2 g7 g5

4

5 s6 s5

6

7

8 s3 s2 g9

9
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Halfway there

• Those were the ‘ordinary’ states, we still need to do 
something with reducing states and accept

• For LR(0), a reducing state has no need to know anything 
about the top of the stack
– it’s determined because building a particular sequence at the top of the 

stack is what brought us to the reducing state in the first place

• Thus, reduce actions go in every terminal column for the 
reducing state
– We can write them as “r#” where # is the grammar production being 

reduced
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State 2

• This reduces rule #2, S → x

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

1 2

3

4

5

6

7

8 9

( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4

5 s6 s5

6

7

8 s3 s2 g9

9
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State 6

• This reduces rule #1, S → (L)

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

1 2

3

4

5

6

7

8 9

( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4

5 s6 s5

6 r1 r1 r1 r1 r1

7

8 s3 s2 g9

9
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State 7

• This reduces rule #3, L → S

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

1 2

3

4

5

6

7

8 9

( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4

5 s6 s5

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9
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State 9

• This reduces rule #4, L → L,S

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

1 2

3

4

5

6

7

8 9

( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4

5 s6 s5

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4



  

17

The accepting state

• Accepting states are extremely easy since we started 
by adding an extra grammar rule to represent this 
alone
– That is, S’ → S

• If the input is correct, this reduces precisely when we 
are out of terminals
– So: shift the end-of-input marker, and conclude parsing
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State 4 accepts

• This reduces our whole syntax enchilada

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L . )
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S 

1 2

3

4

5

6

7

8 9

( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s5

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4
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A bottom-up traversal

• Using the table we’ve 
constructed, we can see how it 
plays out when parsing a 
statement like (x,(x,x))

( ) x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s5

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4
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The procedure has 29 steps, so we’ll have to do it in parts...

(History) State Stack Input Action (Backtrack)

1 - (x,(x,x)) s3

1 3 ( x,(x,x)) s2

1,3 2 (x ,(x,x)) r2 Throw 2, rev. to 3

1 3 (S ,(x,x)) g7

1,3 7 (S ,(x,x)) r3 Throw 7, rev. to 3

1 3 (L ,(x,x)) g5

1,3 5 (L ,(x,x)) s8

1,3,5 8 (L, (x,x)) s3

1,3,5,8 3 (L,( x,x)) s2

1,3,5,8,3 2 (L,(x ,x)) r2 Throw 2, rev. to 3

1,3,5,8 3 (L,(S ,x)) g7

1,3,5,8,3 7 (L,(S ,x)) r3 Throw 7, rev. to 3

1,3,5,8 3 (L,(L ,x)) g5

1,3,5,8,3 5 (L,(L ,x)) s8
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(Replicate the last row, pick up where we were)

(History) State Stack Input Action (Backtrack)

1,3,5,8,3 5 (L,(L ,x)) s8

1,3,5,8,3,5 8 (L,(L, x)) s2

1,3,5,8,3,5,8 2 (L,(L,x )) r2 Throw 2, rev. to 8

1,3,5,8,3,5 8 (L,(L,S )) g9

1,3,5,8,3,5,8 9 (L,(L,S )) r4 Throw 9,8,5, rev. to 3

1,3,5,8 3 (L,(L )) g5

1,3,5,8,3 5 (L,(L )) s6

1,3,5,8,3,5 6 (L,(L) ) r4 Throw 6,5,3, rev. to 8

1,3,5 8 (L,S ) g9

1,3,5,8 9 (L,S ) r4 Throw 9,8,5, rev. to 3

1 3 (L ) g5

1,3 5 (L ) s6

1,3,5 6 (L) $ r4 Throw 6,5,3, rev. to 1

- 1 S $ g4
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In state 4...

...that’s all she wrote.
• We have read all the input, and gotten the start 

symbol + the end of input

(History) State Stack Input Action (Backtrack)

- 4 S $ accept
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The ‘0’ in LR(0)

• It can be slightly tricky to see how the machine 
operates
– At least if you’re stuck in the LL(1) mind-set of making decisions 

based on what’s coming next on the input

• The ‘0’ is ‘0 lookahead symbols’
– If there is no transition to take based on the top-of-stack, shift 

another token and then see where it takes you
– The shift-and-goto maneuver could merit 2 rows of derivation steps, 

but then our walkthrough would be almost twice as long
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A cleaner diagram

• If we simplify the machine a little, it looks like this:

14 2

37 5

6

1 8 9
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The beginning of our traversal

• The first few steps went
1,3,2,3,7,3,5,8,3,2,...

14 2

37 5

6

1 8 9

(Trace it out with your finger)
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The matching syntax (sub-)trees

• 1,3,2 walks through

• 3,7 extends what we’ve seen (and remember) to

S

x

S

x

L

(

(

S

x

L(
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The matching syntax (sub-)trees

• 3,5,8,3,2,3,7 passes a ‘,’ 5→8, and a ‘(‘ 8→3, and does 
the same thing over again

S

x

L(

S

x

L( ,

S

x

L

S

x

L(
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The matching syntax (sub-)trees

• 3,5,8,2,8 passes ‘,’ 5->8, reduces S (8→2 and back)...

S

x

L(

S

x

L( ,

S

x

L

S

x

L( , S

x

S

x

1,3,2,3,7 3,5,8,3,2,3,7 3,5,8,2,8 Trace of
all states
visited
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The matching syntax (sub-)trees

• If we strike out the detours/backtracking, 
(1,3,5,8,3,5,8) is where we were before reaching 9

S

x

L(

S

x

L( ,

S

x

L

S

x

L( , S

x

S

x

1,3,2,3,7 3,5,8,3,2,3,7 3,5,8,2,8
What we
leave as
history
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The matching syntax (sub-)trees

• We’re beginning to get right-hand sides which are not 
just trivial 1-symbol reductions

S

x

L(

S

x

L( ,

S

x

L

S

x

L( , S

x

S

x

1,3, 5,8,3, 5,8,
State 9, Eureka!
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The matching syntax (sub-)trees

• State 9 reduces a right-hand side with multiple non-terminals, 
and must revert by 3 stages because it concludes 3 choices of 
direction: the L, the comma, and the S.

S

x

L(

S

x

L( ,

S

x

L

S

x

L

(

, S

x

S

x

1,3, 5,8,

L

Continue from state 3, it’s where we began
from item L → .L,S to reach item L → L,S. 
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...and so it proceeds...

...shifting ), and passing by the reduction in state 6...

S

x

L(

S

x

L( ,

S

x

L

S

x

L

(

, S

x

S

x

L )

S
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...and proceeds...
...visiting state 9 again, to reduce another L...

S

x

L

S

x

L

(

,

S

x

L

S

x

L

(

, S

x

S

x

L )

S

L
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...until the end.

Shift the final ), reduce the 
total to S, and reduce S to S’

S

x

L

S

x

L

(

,

S

x

L

S

x

L

(

, S

x

S

x

L )

S

L )

S
S’

With us
since the
beginning

Last thing seen
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As you can see

• Top-down parsing creates leftmost derivations, by 
taking the leftmost nonterminal and predicting the 
input yet to come

• Bottom-up parsing creates rightmost derivations, by 
working ahead in the input, and stacking up all the 
nonterminals it passed on the way, until they are 
completed
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What’s ahead

• We already know of DFA that they can give conflicting decisions:

• Regular expression matchers commonly buffer, and accept the longest 
match in the end

• LR parsers see these situations as well, they’re called shift/reduce 
conflicts in such a context

• LR(0) isn’t very flexible when it comes to these, so next, we’ll extend it 
with different ways to see what’s coming.

a b a

Expect ‘ba’ here, or accept already?
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