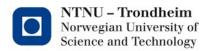


LR(0) parsing tables (and their application)

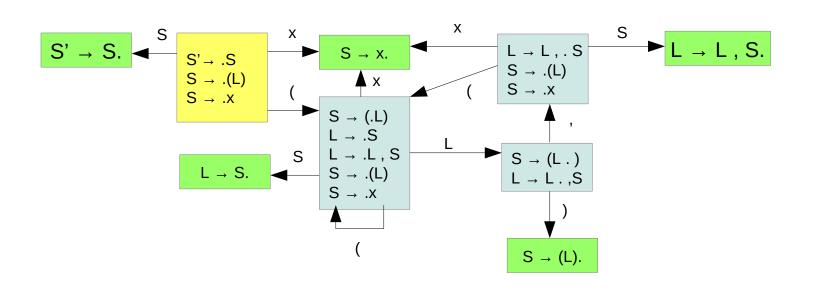
www.ntnu.edu \ TDT4205 – Lecture 10

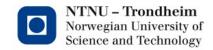
Where we are

- Last time, we looked at how stack machines remember the history of CFG productions they have taken, either
 - implicitly (via the function call stack), or
 - explicitly (automata with internal stacks)
- We constructed a pseudo-code LL(1) parser, based on its parsing table
 - Nice, because it is simple to do by hand
- We constructed an LR(0) automaton from a simple grammar
 - Nice to know (roughly) how parser generator output works



This is the LR(0) automaton we got out





0) S' → S

1) $S \rightarrow (L$

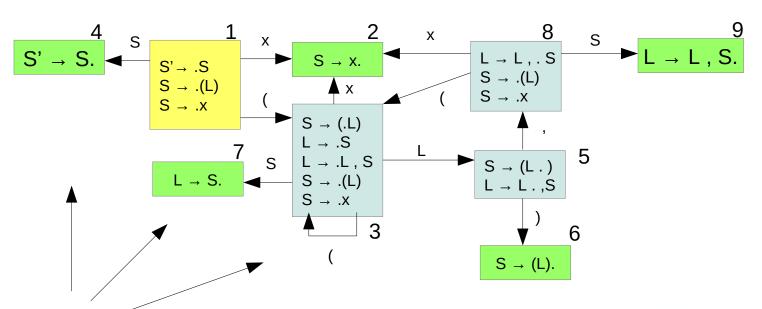
 $2) S \rightarrow X$

3) L → S

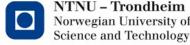
4) L → L, S

Number Everything

Since we want a table, it must have some indices

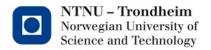


(Number the states)



Tabulate the transitions

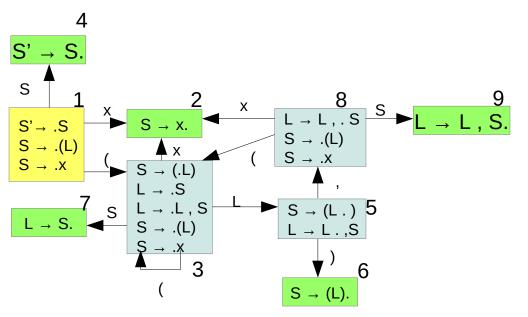
- The rows are our state indices
- The symbols we're looking at are at the top of the stack, they can be terminals or nonterminals
 - Terminals appear when you shift them there from the input
 - Non-terminals appear when some production is reduced
- Each pair of (state, symbol) identifies an action
 - Those are the table entries
- We've got three types of actions
 - Shift symbol and change to state
 Go to state
 Accept
 (written as "s#", where # is the state)
 (written as "g#", where # is the state)
 (written as "a")



0) $S' \rightarrow S$ 1) $S \rightarrow (L)$ 2) $S \rightarrow X$ 3) $L \rightarrow S$ 4) $L \rightarrow L \cdot S$

Structure of the table

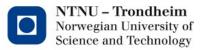
Here's the automaton, and its empty parsing table;



		(Te	Non-	term	S			
	()	X	,	\$	S	L	
1								
2								,
3								
4								
5								
6								
7								
8								
9								

Filling it in

- Going through all the states that aren't accepting or reducing, look at the transitions
 - Transitions on terminals get a shift-and-goto action
 - Transitions on nonterminals just get the goto part

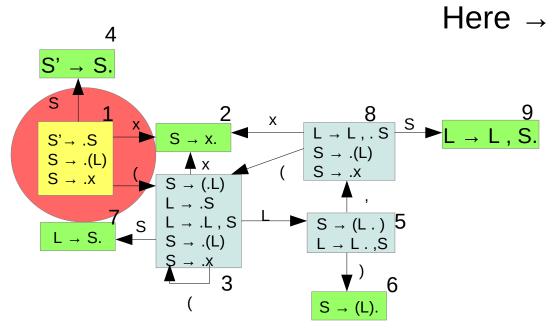


0) $S' \rightarrow S$

1) $S \rightarrow (L)$

2) $S \rightarrow X$ 3) $L \rightarrow S$

There is S, x, and (



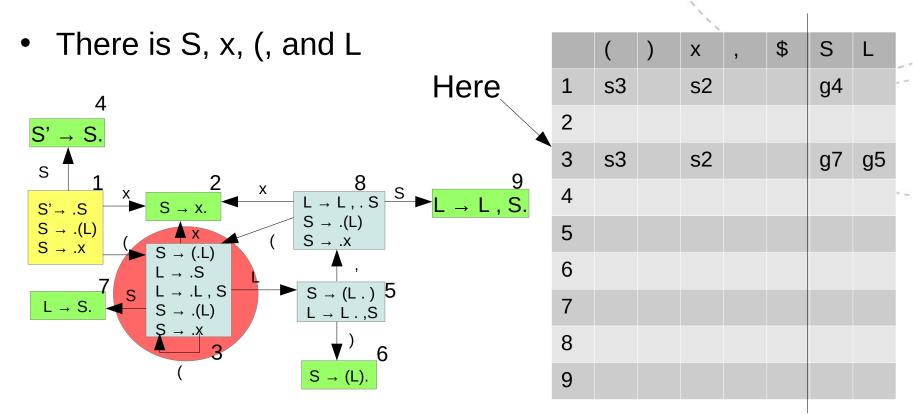
			1				
	()	X	,	\$ S	L	
1	s3		s2		g4		-
2							
3							
4							1
5							
6							
7							
8							
9							



0) $S' \rightarrow S$

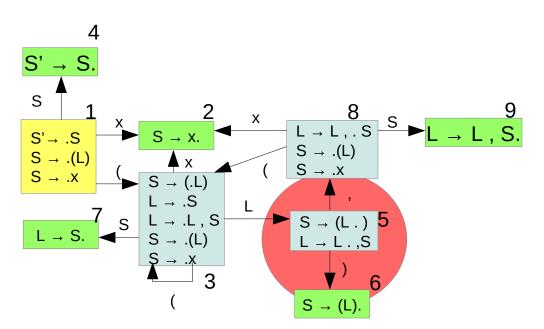
1) $S \rightarrow (L)$

2) S → X 3) L → S

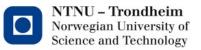


0) $S' \rightarrow S$ $1) S \rightarrow (L)$ 2) $S \rightarrow X$ 3) $L \rightarrow S$

• There is) and ,

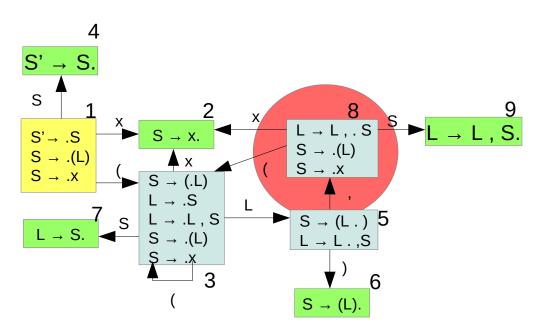


		1				
()	X	,	\$	S	L
s3		s2			g4	-
s3		s2			g7	g5
						-
	s6		s5			
	s3	s3 s3	s3 s2 s3 s2	s3 s2 s3 s2	s3 s2 s3 s2	s3 s2 g4 s3 s2 g7

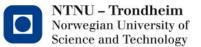


0) $S' \to S$ 1) $S \to (L)$ 2) $S \to X$ 3) $L \to S$

There is x, (, and S

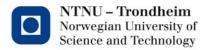


	()	X	,	\$	S	L
1	s3		s2			g4	
2							
3	s3		s2			g7	g5
4							-
5		s6		s5			
6							
7							
8	s3		s2			g9	
9							



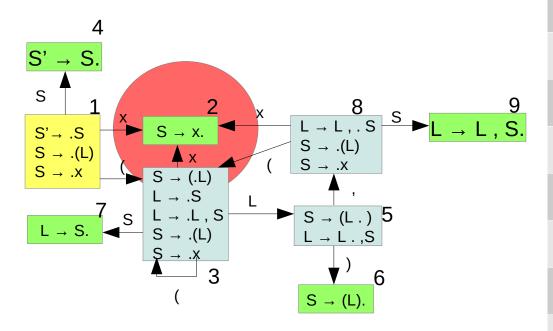
Halfway there

- Those were the 'ordinary' states, we still need to do something with reducing states and accept
- For LR(0), a reducing state has no need to know anything about the top of the stack
 - it's determined because building a particular sequence at the top of the stack is what brought us to the reducing state in the first place
- Thus, reduce actions go in every terminal column for the reducing state
 - We can write them as "r#" where # is the grammar production being reduced



0) $S' \rightarrow S$ 1) $S \rightarrow (L)$ 2) $S \rightarrow X$ 3) $L \rightarrow S$

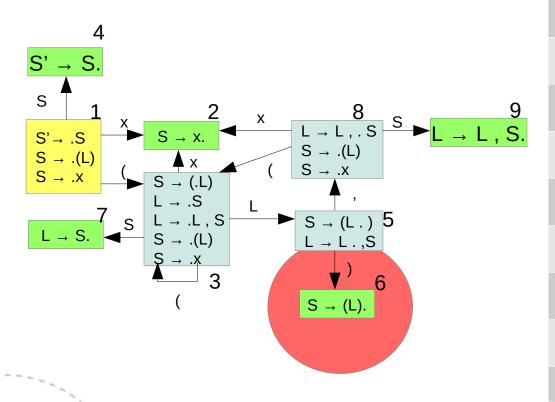
• This reduces rule #2, S → x



			1					
	()	X	,	\$	S	L	
1	s3		s2			g4		
2	r2	r2	r2	r2	r2			
3	s3		s2			g7	g5	
4								
5		s6		s5				
6								
7								
8	s3		s2			g9		
9								

0) $S' \rightarrow S$ 1) $S \rightarrow (L)$ 2) $S \rightarrow X$ 3) $L \rightarrow S$ 4) $L \rightarrow L S$

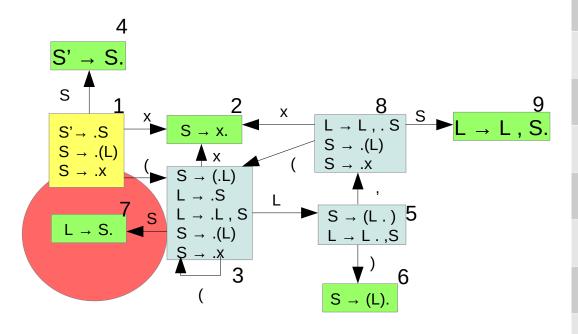
• This reduces rule #1, S → (L)



	()	X	,	\$	S	L	
1	s3		s2			g4		-
2	r2	r2	r2	r2	r2			
3	s3		s2			g7	g5	-
4								
5		s6		s5				
6	r1	r1	r1	r1	r1			
7								
8	s3		s2			g9		
9								

0) $S' \rightarrow S$ 1) $S \rightarrow (L)$ 2) $S \rightarrow X$ 3) $L \rightarrow S$ 4) $L \rightarrow L \cdot S$

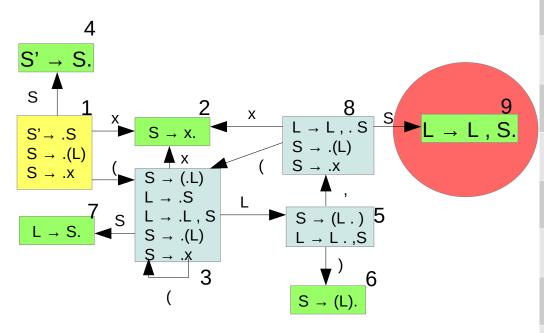
This reduces rule #3, L → S



	()	X	,	\$	S	L	
1	s3		s2			g4		-
2	r2	r2	r2	r2	r2			
3	s3		s2			g7	g5	
4								
5		s6		s5				
6	r1	r1	r1	r1	r1			
7	r3	r3	r3	r3	r3			
8	s3		s2			g9		
9								

0) $S' \rightarrow S$ 1) $S \rightarrow (L)$ 2) $S \rightarrow X$ 3) $L \rightarrow S$

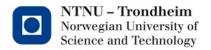
This reduces rule #4, L → L,S



	()	X	,	\$	S	L	
1	s3		s2			g4		
2	r2	r2	r2	r2	r2			
3	s3		s2			g7	g5	
4								
5		s6		s5				
6	r1	r1	r1	r1	r1			
7	r3	r3	r3	r3	r3			
8	s3		s2			g9		
9	r4	r4	r4	r4	r4			

The accepting state

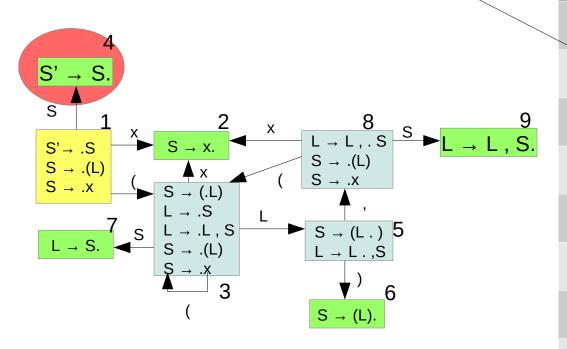
- Accepting states are extremely easy since we started by adding an extra grammar rule to represent this alone
 - That is, S' → S
- If the input is correct, this reduces precisely when we are out of terminals
 - So: shift the end-of-input marker, and conclude parsing



State 4 accepts

0) $S' \rightarrow S$ 1) $S \rightarrow (L)$ 2) $S \rightarrow X$ 3) $L \rightarrow S$

This reduces our whole syntax enchilada



	()	X	,	\$	S	L	
1	s3		s2			g4		-
2	r2	r2	r2	r2	r2			
3	s3		s2			g7	g5	1
4					a			
5		s6		s5				
6	r1	r1	r1	r1	r1			
7	r3	r3	r3	r3	r3			
8	s3		s2			g9		
9	r4	r4	r4	r4	r4			

A bottom-up traversal

 Using the table we've constructed, we can see how it plays out when parsing a statement like (x,(x,x))

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
5		s6		s5			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

The procedure has 29 steps, so we'll have to do it in parts...

(History)	State	Stack	Input	Action	(Backtrack)
	1	-	(x,(x,x))	s3	
1	3	(x,(x,x))	s2	
1,3	2	(x	,(x,x))	r2	Throw 2, rev. to 3
1	3	(S	,(x,x))	g7	
1,3	7	(S	,(x,x))	r3	Throw 7, rev. to 3
1	3	(L	,(x,x))	g5	
1,3	5	(L	,(x,x))	s8	
1,3,5	8	(L,	(x,x))	s3	
1,3,5,8	3	(L,(x,x))	s2	
1,3,5,8,3	2	(L,(x	,x))	r2	Throw 2, rev. to 3
1,3,5,8	3	(L,(S	,x))	g7	
1,3,5,8,3	7	(L,(S	,x))	r3	Throw 7, rev. to 3
1,3,5,8	3	(L,(L	,x))	g5	
1,3,5,8,3	5	(L,(L	,x))	s8	

(Replicate the last row, pick up where we were)

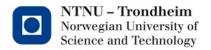
(History)	State	Stack	Input	Action	(Backtrack)
1,3,5,8,3	5	(L,(L	,x))	s8	
1,3,5,8,3,5	8	(L,(L,	x))	s2	
1,3,5,8,3,5,8	2	(L,(L,x))	r2	Throw 2, rev. to 8
1,3,5,8,3,5	8	(L,(L,S))	g9	
1,3,5,8,3,5,8	9	(L,(L,S))	r4	Throw 9,8,5, rev. to 3
1,3,5,8	3	(L,(L))	g5	
1,3,5,8,3	5	(L,(L))	s6	
1,3,5,8,3,5	6	(L,(L))	r4	Throw 6,5,3, rev. to 8
1,3,5	8	(L,S)	g9	
1,3,5,8	9	(L,S)	r4	Throw 9,8,5, rev. to 3
1	3	(L)	g5	
1,3	5	(L)	s6	
1,3,5	6	(L)	\$	r4	Throw 6,5,3, rev. to 1
ntnu edu 💉	1	S	\$	g4	

In state 4...

(History)	State	Stack	Input	Action	(Backtrack)
-	4	S	\$	accept	

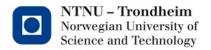
...that's all she wrote.

 We have read all the input, and gotten the start symbol + the end of input



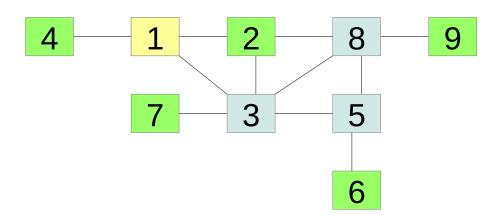
The '0' in LR(0)

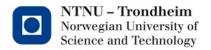
- It can be slightly tricky to see how the machine operates
 - At least if you're stuck in the LL(1) mind-set of making decisions based on what's coming next on the input
- The '0' is '0 lookahead symbols'
 - If there is no transition to take based on the top-of-stack, shift another token and then see where it takes you
 - The shift-and-goto maneuver could merit 2 rows of derivation steps,
 but then our walkthrough would be almost twice as long



A cleaner diagram

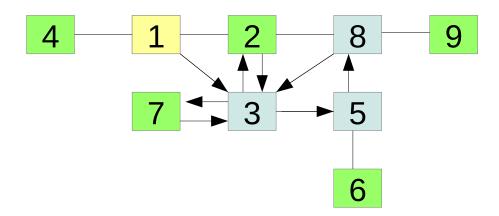
If we simplify the machine a little, it looks like this:



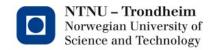


The beginning of our traversal

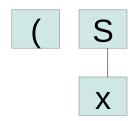
• The first few steps went 1,3,2,3,7,3,5,8,3,2,...



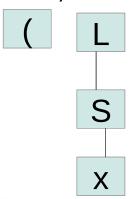
(Trace it out with your finger)

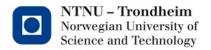


1,3,2 walks through

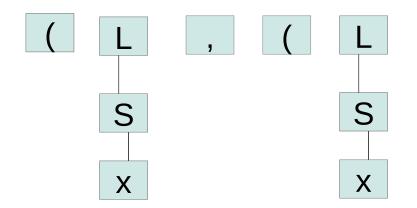


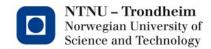
• 3,7 extends what we've seen (and remember) to



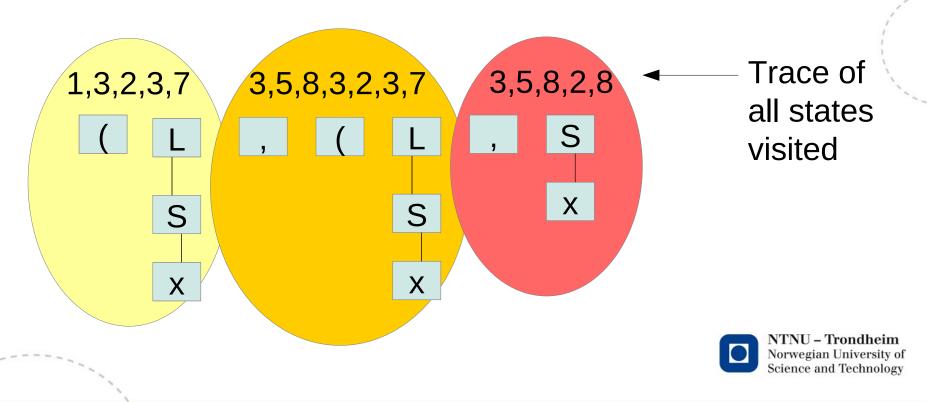


• 3,5,8,3,2,3,7 passes a ',' $_{5\rightarrow8}$, and a '(' $_{8\rightarrow3}$, and does the same thing over again

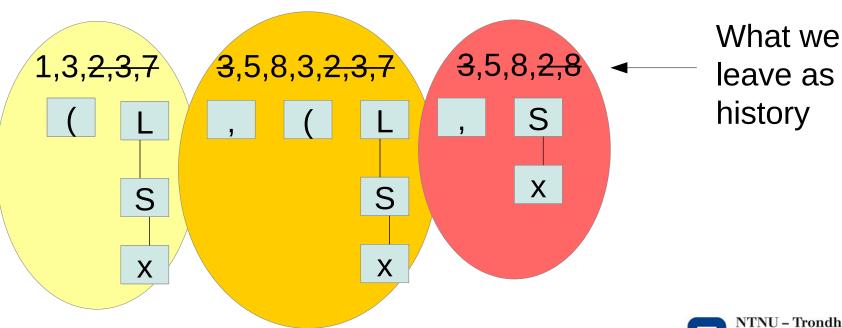




• 3,5,8,2,8 passes ',' 5->8, reduces S (8→2 and back)...

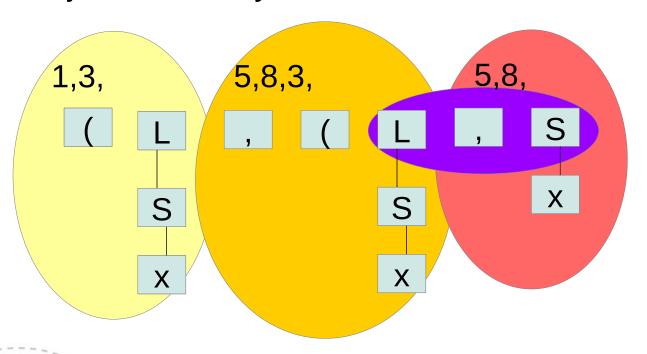


If we strike out the detours/backtracking,
 (1,3,5,8,3,5,8) is where we were before reaching 9

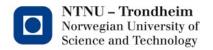




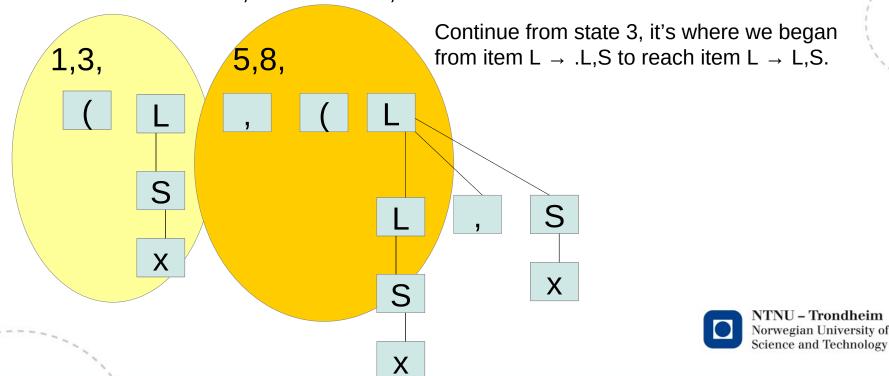
 We're beginning to get right-hand sides which are not just trivial 1-symbol reductions



State 9, Eureka!

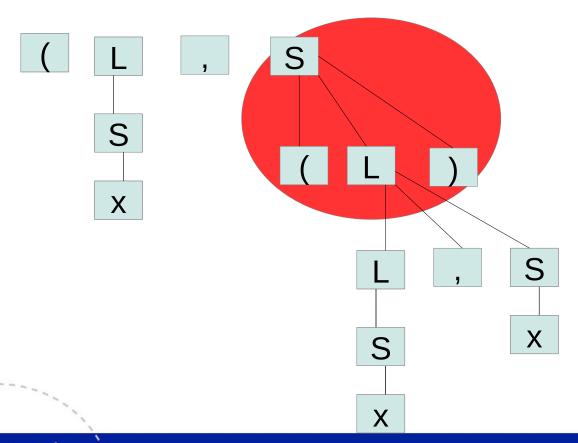


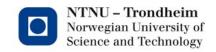
• State 9 reduces a right-hand side with multiple non-terminals, and must revert by 3 stages because it concludes 3 choices of direction: the L, the comma, and the S.



...and so it proceeds...

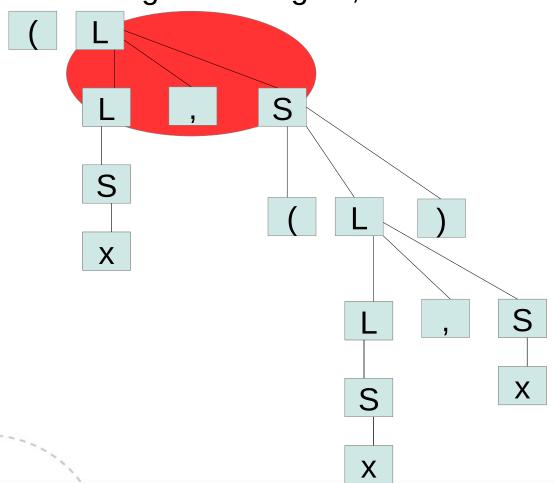
...shifting), and passing by the reduction in state 6...

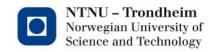




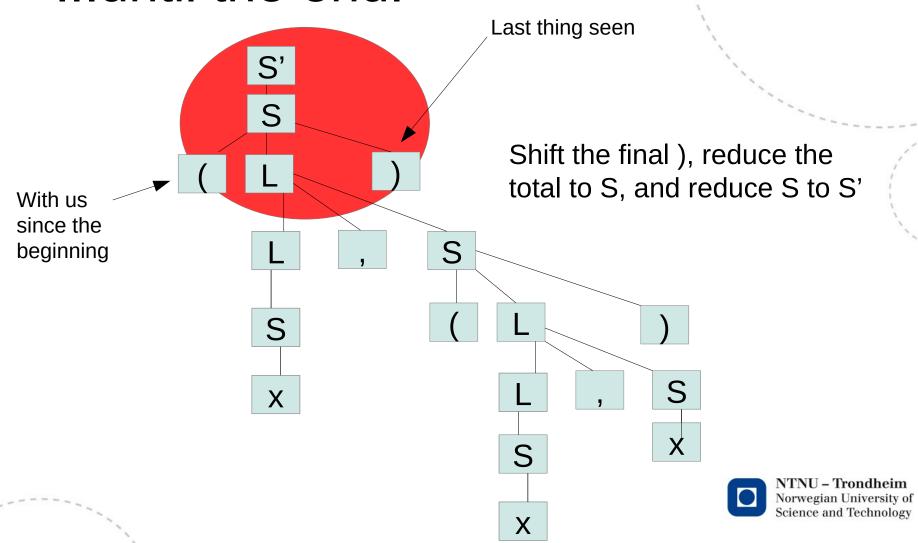
...and proceeds...

...visiting state 9 again, to reduce another L...



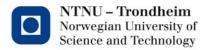


...until the end.



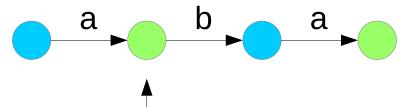
As you can see

- Top-down parsing creates leftmost derivations, by taking the leftmost nonterminal and predicting the input yet to come
- Bottom-up parsing creates rightmost derivations, by working ahead in the input, and stacking up all the nonterminals it passed on the way, until they are completed



What's ahead

We already know of DFA that they can give conflicting decisions:



Expect 'ba' here, or accept already?

- Regular expression matchers commonly buffer, and accept the longest match in the end
- LR parsers see these situations as well, they're called shift/reduce conflicts in such a context
- LR(0) isn't very flexible when it comes to these, so next, we'll extend it
 with different ways to see what's coming.

