

1

LR(0) parsing tables (and their application)

TDT4205 – Lecture 10

2

Where we are

• Last time, we looked at how stack machines remember
the history of CFG productions they have taken, either
– implicitly (via the function call stack), or
– explicitly (automata with internal stacks)

• We constructed a pseudo-code LL(1) parser, based on its
parsing table
– Nice, because it is simple to do by hand

• We constructed an LR(0) automaton from a simple
grammar
– Nice to know (roughly) how parser generator output works

3

This is the LR(0) automaton
we got out

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S x

x

L → S.
S

L
S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.
Sx

(

4

Number Everything

• Since we want a table, it must have some indices

S’→ .S
S → .(L)
S → .x

S’ → S. S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S x

x

L → S.
S

L
S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.
Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

(Number the productions)

(Number the states)

1 2

3

4

5

6

7

8 9

5

Tabulate the transitions

• The rows are our state indices
• The symbols we’re looking at are at the top of the stack, they can

be terminals or nonterminals
– Terminals appear when you shift them there from the input
– Non-terminals appear when some production is reduced

• Each pair of (state,symbol) identifies an action
– Those are the table entries

• We’ve got three types of actions
– Shift symbol and change to state (written as “s#”, where # is the state)
– Go to state (written as “g#”, where # is the state)
– Accept (written as “a”)

6

Structure of the table

• Here’s the automaton, and its empty parsing table:

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

1 2

3

4

5

6

7

8 9

() x , $ S L

1

2

3

4

5

6

7

8

9

(Terminals) (Non-terms)

7

Filling it in

• Going through all the states that aren’t accepting or
reducing, look at the transitions
– Transitions on terminals get a shift-and-goto action
– Transitions on nonterminals just get the goto part

8

State 1

• There is S, x, and (

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

1 2

3

4

5

6

7

8 9

() x , $ S L

1 s3 s2 g4

2

3

4

5

6

7

8

9

Here →

9

State 3

• There is S, x, (, and L

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

1 2

3

4

5

6

7

8 9

() x , $ S L

1 s3 s2 g4

2

3 s3 s2 g7 g5

4

5

6

7

8

9

Here

10

State 5

• There is) and ,

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

1 2

3

4

5

6

7

8 9

() x , $ S L

1 s3 s2 g4

2

3 s3 s2 g7 g5

4

5 s6 s5

6

7

8

9

11

State 8

• There is x, (, and S

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

1 2

3

4

5

6

7

8 9

() x , $ S L

1 s3 s2 g4

2

3 s3 s2 g7 g5

4

5 s6 s5

6

7

8 s3 s2 g9

9

12

Halfway there

• Those were the ‘ordinary’ states, we still need to do
something with reducing states and accept

• For LR(0), a reducing state has no need to know anything
about the top of the stack
– it’s determined because building a particular sequence at the top of the

stack is what brought us to the reducing state in the first place

• Thus, reduce actions go in every terminal column for the
reducing state
– We can write them as “r#” where # is the grammar production being

reduced

13

State 2

• This reduces rule #2, S → x

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

1 2

3

4

5

6

7

8 9

() x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4

5 s6 s5

6

7

8 s3 s2 g9

9

14

State 6

• This reduces rule #1, S → (L)

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

1 2

3

4

5

6

7

8 9

() x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4

5 s6 s5

6 r1 r1 r1 r1 r1

7

8 s3 s2 g9

9

15

State 7

• This reduces rule #3, L → S

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

1 2

3

4

5

6

7

8 9

() x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4

5 s6 s5

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9

16

State 9

• This reduces rule #4, L → L,S

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

1 2

3

4

5

6

7

8 9

() x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4

5 s6 s5

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

17

The accepting state

• Accepting states are extremely easy since we started
by adding an extra grammar rule to represent this
alone
– That is, S’ → S

• If the input is correct, this reduces precisely when we
are out of terminals
– So: shift the end-of-input marker, and conclude parsing

18

State 4 accepts

• This reduces our whole syntax enchilada

S’→ .S
S → .(L)
S → .x

S’ → S.

S → x.

(
S → (.L)
L → .S
L → .L , S
S → .(L)
S → .x

S
x

x

L → S.
S

L
S → (L .)
L → L . ,S

S → (L).

)

L → L , . S
S → .(L)
S → .x

,

(

L → L , S.Sx

(

0) S’ → S
1) S → (L)
2) S → x
3) L → S
4) L → L , S

1 2

3

4

5

6

7

8 9

() x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s5

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

19

A bottom-up traversal

• Using the table we’ve
constructed, we can see how it
plays out when parsing a
statement like (x,(x,x))

() x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

4 a

5 s6 s5

6 r1 r1 r1 r1 r1

7 r3 r3 r3 r3 r3

8 s3 s2 g9

9 r4 r4 r4 r4 r4

20

The procedure has 29 steps, so we’ll have to do it in parts...

(History) State Stack Input Action (Backtrack)

1 - (x,(x,x)) s3

1 3 (x,(x,x)) s2

1,3 2 (x ,(x,x)) r2 Throw 2, rev. to 3

1 3 (S ,(x,x)) g7

1,3 7 (S ,(x,x)) r3 Throw 7, rev. to 3

1 3 (L ,(x,x)) g5

1,3 5 (L ,(x,x)) s8

1,3,5 8 (L, (x,x)) s3

1,3,5,8 3 (L,(x,x)) s2

1,3,5,8,3 2 (L,(x ,x)) r2 Throw 2, rev. to 3

1,3,5,8 3 (L,(S ,x)) g7

1,3,5,8,3 7 (L,(S ,x)) r3 Throw 7, rev. to 3

1,3,5,8 3 (L,(L ,x)) g5

1,3,5,8,3 5 (L,(L ,x)) s8

21

(Replicate the last row, pick up where we were)

(History) State Stack Input Action (Backtrack)

1,3,5,8,3 5 (L,(L ,x)) s8

1,3,5,8,3,5 8 (L,(L, x)) s2

1,3,5,8,3,5,8 2 (L,(L,x)) r2 Throw 2, rev. to 8

1,3,5,8,3,5 8 (L,(L,S)) g9

1,3,5,8,3,5,8 9 (L,(L,S)) r4 Throw 9,8,5, rev. to 3

1,3,5,8 3 (L,(L)) g5

1,3,5,8,3 5 (L,(L)) s6

1,3,5,8,3,5 6 (L,(L)) r4 Throw 6,5,3, rev. to 8

1,3,5 8 (L,S) g9

1,3,5,8 9 (L,S) r4 Throw 9,8,5, rev. to 3

1 3 (L) g5

1,3 5 (L) s6

1,3,5 6 (L) $ r4 Throw 6,5,3, rev. to 1

- 1 S $ g4

22

In state 4...

...that’s all she wrote.
• We have read all the input, and gotten the start

symbol + the end of input

(History) State Stack Input Action (Backtrack)

- 4 S $ accept

23

The ‘0’ in LR(0)

• It can be slightly tricky to see how the machine
operates
– At least if you’re stuck in the LL(1) mind-set of making decisions

based on what’s coming next on the input

• The ‘0’ is ‘0 lookahead symbols’
– If there is no transition to take based on the top-of-stack, shift

another token and then see where it takes you
– The shift-and-goto maneuver could merit 2 rows of derivation steps,

but then our walkthrough would be almost twice as long

24

A cleaner diagram

• If we simplify the machine a little, it looks like this:

14 2

37 5

6

1 8 9

25

The beginning of our traversal

• The first few steps went
1,3,2,3,7,3,5,8,3,2,...

14 2

37 5

6

1 8 9

(Trace it out with your finger)

26

The matching syntax (sub-)trees

• 1,3,2 walks through

• 3,7 extends what we’ve seen (and remember) to

S

x

S

x

L

(

(

S

x

L(

27

The matching syntax (sub-)trees

• 3,5,8,3,2,3,7 passes a ‘,’ 5→8, and a ‘(‘ 8→3, and does
the same thing over again

S

x

L(

S

x

L(,

S

x

L

S

x

L(

28

The matching syntax (sub-)trees

• 3,5,8,2,8 passes ‘,’ 5->8, reduces S (8→2 and back)...

S

x

L(

S

x

L(,

S

x

L

S

x

L(, S

x

S

x

1,3,2,3,7 3,5,8,3,2,3,7 3,5,8,2,8 Trace of
all states
visited

29

The matching syntax (sub-)trees

• If we strike out the detours/backtracking,
(1,3,5,8,3,5,8) is where we were before reaching 9

S

x

L(

S

x

L(,

S

x

L

S

x

L(, S

x

S

x

1,3,2,3,7 3,5,8,3,2,3,7 3,5,8,2,8
What we
leave as
history

30

The matching syntax (sub-)trees

• We’re beginning to get right-hand sides which are not
just trivial 1-symbol reductions

S

x

L(

S

x

L(,

S

x

L

S

x

L(, S

x

S

x

1,3, 5,8,3, 5,8,
State 9, Eureka!

31

The matching syntax (sub-)trees

• State 9 reduces a right-hand side with multiple non-terminals,
and must revert by 3 stages because it concludes 3 choices of
direction: the L, the comma, and the S.

S

x

L(

S

x

L(,

S

x

L

S

x

L

(

, S

x

S

x

1,3, 5,8,

L

Continue from state 3, it’s where we began
from item L → .L,S to reach item L → L,S.

32

...and so it proceeds...

...shifting), and passing by the reduction in state 6...

S

x

L(

S

x

L(,

S

x

L

S

x

L

(

, S

x

S

x

L)

S

33

...and proceeds...
...visiting state 9 again, to reduce another L...

S

x

L

S

x

L

(

,

S

x

L

S

x

L

(

, S

x

S

x

L)

S

L

34

...until the end.

Shift the final), reduce the
total to S, and reduce S to S’

S

x

L

S

x

L

(

,

S

x

L

S

x

L

(

, S

x

S

x

L)

S

L)

S
S’

With us
since the
beginning

Last thing seen

35

As you can see

• Top-down parsing creates leftmost derivations, by
taking the leftmost nonterminal and predicting the
input yet to come

• Bottom-up parsing creates rightmost derivations, by
working ahead in the input, and stacking up all the
nonterminals it passed on the way, until they are
completed

36

What’s ahead

• We already know of DFA that they can give conflicting decisions:

• Regular expression matchers commonly buffer, and accept the longest
match in the end

• LR parsers see these situations as well, they’re called shift/reduce
conflicts in such a context

• LR(0) isn’t very flexible when it comes to these, so next, we’ll extend it
with different ways to see what’s coming.

a b a

Expect ‘ba’ here, or accept already?

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

