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SLR, LALR and LR(1) parsing tables

TDT4205 – Lecture 11
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Limitations of LR(0)

• We have seen how LR parsing operates in terms of 
an automaton + a stack
– States are created from closures of items
– Transitions are actions based on the top of the stack, either before 

or after the next token is shifted

• The grammars that fit LR(0) are a bit more restrictive 
than they need to be
– Specifically, they can stall on decisions which can easily be 

resolved by looking ahead in the token stream
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To shift, or to reduce?

• Consider this grammar (which models arbitrarily long sums of terms)

S → E (A statement is an expression)
E → T + E (An expr. can be a sum of a term and an expr.)
E → T (An expr. can be a term)
T → x (A term can be a number, variable, whatever)

• The start symbol has just one production, we won’t 
need to augment the grammar with any placeholder
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In short order

• Closure of S → .E is a state

• Transitions on E, T, x, find closures at destination:

S → .E
E → .T + E
E → .T
T→ .x

S → E
E → T + E
E → T
T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

E

T

x

Whoops, there is a reduction here
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In short order

• Transition on +, find closure at destination

S → E
E → T + E
E → T
T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+
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In short order

• Transitions on T, E, x, closures, and we’re done

S → E
E → T + E
E → T
T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.
E
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Numbers everywhere

• In the grammar, and on the states

0) S → E
1) E → T + E
2) E → T
3) T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.

1 2

3

45 4 6
E
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Most of the LR(0) table

• Here’s what we get for the unproblematic states:

0) S → E
1) E → T + E
2) E → T
3) T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.

1 2

3

45 4 6

x + $ E T

1 s5 g2 g3

2 a

3

4 s5 g6 g3

5 r3 r3 r3

6 r1 r1 r1

E
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Shift/reduce conflict

• State 3 could shift and go to 4 on ‘+’

0) S → E
1) E → T + E
2) E → T
3) T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.

1 2

3

45 4 6

x + $ E T

1 s5 g2 g3

2 a

3 s4

4 s5 g6 g3

5 r3 r3 r3

6 r1 r1 r1

E
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Shift/reduce conflict

• State 3 could also reduce production 2
• Parser can’t decide here

0) S → E
1) E → T + E
2) E → T
3) T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.

1 2

3

45 4 6

x + $ E T

1 s5 g2 g3

2 a

3 r2 r2,s4 r2

4 s5 g6 g3

5 r3 r3 r3

6 r1 r1 r1

E



  

11

The immediate solution

• Wait with reductions until there are no more + tokens to shift
– Like the longest match rule for regex

• All we need to know is what the next token will be
– Buffer it, to look at what’s coming

• When are we interested?
– When the next token belongs to a construct that only comes after the 

nonterminal we are working through a production for

• We did that already
– For a production A → α, any expected token which isn’t in α goes into the set of 

tokens FOLLOW(A)
– That is its definition
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Reworking the reductions

• With 1 token lookahead, reducing states no longer 
need to reduce regardless of what comes next

• We can insert reduce actions a little more selectively, 
that is

When an item A→α. suggests that a state is reducing,
put the reducing action in the table only at tokens in 
FOLLOW(A)
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Reworking the reductions

• E → T. is our problem item here
– FOLLOW(E) = {$} , by prod. 0; E always remains on the far right in 

derivations

• E → T + E. is a reduction, too
– We already found FOLLOW(E)

• T → x.
FOLLOW(T) = {+,$}          (+ because of prd. 1, $ because of prd. 2)

• S → E.
FOLLOW(S) = {$}           (S is never on a r.h.s of anything)

0) S → E
1) E → T + E
2) E → T
3) T → x
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An updated table

• Taking this into account, state 3 is no longer difficult
• Changes affect these rows

0) S → E
1) E → T + E
2) E → T
3) T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.

1 2

3

45 4 6

x + $ E T
1 s5 g2 g3
2 a
3 s4 r2
4 s5 g6 g3
5 r3 r3
6 r1E
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That was the SLR table

aka. “Simple LR”
• So named because it is just a tiny adjustment of the 

LR(0) scheme
• It does not, however, take all the information that it 

can out of having a lookahead symbol
• That’s what the full-blown LR(1) scheme does
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A grammar that needs more

• To revamp the whole scheme with lookahead symbols, the 
idea of an item can be extended

• Take this (sub-)grammar of expressions, variables, and pointer 
dereference a la C:

S’ → S     (Unique production to start with)
S → V = E    (Expr. can be assigned to variables)
S → E     (Expressions are statements)
E → V     (Variables are expressions)
V → x     (Variables can be identifiers)
V → * E     (Variables can be dereferenced pointer expressions)

(...and pointer expressions can have variables in them…)

• This is not SLR      (can you figure out why not?)

S’ → S
S → V = E
S → E
E → V
V → x
V → *E
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Revisit the items

• LR(1) items include a lookahead symbol
A → α . X β says we’re ahead of X between α and β
A → α. X β   t says the same, but t is the next token

• Take an item like [A → . X &   %]
‘%’ might be found in some expansion of X, so we need 
X → . <something>  %
X → . <somethingelse> %
and all variants of X while foreseeing ‘%’.

• It can also be that X will reduce without shifting more stuff
The production says that we might see ‘&’ as lookahead at this point, so
X → . <something>  &
X → . <somethingelse> &
are also possibilities we must include in the closure.
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For our grammar

• Starting out as before, we get that
S’ → .S ?
has no sensible lookahead, because you can’t look beyond the end

• After S comes $, carry that through all nonterminal 
expansions

S → .V = E    $
S → .E      $
E → .V      $
V → .x      $
V → .*E      $

S’ → S
S → V = E
S → E
E → V
V → x
V → *E
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Are there other relevant 
lookaheads?
• Looking at

S → .V = E
it is possible that we’re about to go to work on a V, and there is an ‘=’ token coming up 
after it

• Taking it into account
S → .V = E
gives that
V → .x =
V → .*E =
also belong in the closure of LR(1) items

(In excessive notation, include the item [X → α, ω] for ω in FIRST(βz) where the item you’re working out 
the closure for can be written [A → α.Xβ, z]…) 

S’ → S
S → V = E
S → E
E → V
V → x
V → *E
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For short

• The first state of our LR(1) automaton thus becomes

and we might as well write

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $
V → .*E $
V → .x =
V → .*E =

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =
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Building the automaton

• The procedure remains the same, just with more 
elaborate closures

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
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Building the automaton

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*

E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

E

V
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Building the automaton

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*

E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

S → V = E.      $

E

V → *.E $
E → .V $
V → .x $
V → .*E $

*

V → *E.           $

E

E

V
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This is it

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*

E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

S → V = E.      $

E

V → *.E $
E → .V $
V → .x $
V → .*E $

*

V → *E.           $

E

E → V. $

V → x. $

x

V

x

*

E

V V
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Number states & productions

0) S’ → S
1) S → V = E
2) S → E
3) E → V
4) V → x
5) V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*

E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

S → V = E.      $

E

V → *.E $
E → .V $
V → .x $
V → .*E $

*

V → *E.           $

E

E → V. $

V → x. $

x

V

x

*

E

V

1

2 3

4

3

5

6

8

7

V

9

13

14
10

12

11
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Where to put reduce actions

• When an item reduces, its lookahead symbol decides 
where to tabulate the reduction

• That’s the reason why we wanted to track lookahead 
symbols in the first place
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LR(1) parsing table

0) S’ → S
1) S → V = E
2) S → E
3) E → V
4) V → x
5) V → *E

x * = $ S E V

1 s8 s6 g2 g5 g3

2 a

3 s4 r3

4 s11 s13 g9 g7

5 r2

6 s8 s6 g10 g12

7 r3

8 r4 r4

9 r1

10 r5 r5

11 r4

12 r3 r3

13 s11 s13 g14 g7

14 r5
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As you may notice
0) S’ → S
1) S → V = E
2) S → E
3) E → V
4) V → x
5) V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*

E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

S → V = E.      $

E

V → *.E $
E → .V $
V → .x $
V → .*E $

*

V → *E.           $

E

E → V. $

V → x. $

x

V

x

*

E

V

1

2 3

4

3

5

6

8

7

V

9

13

14
10

12

11

Some of these states are pretty similar...
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What if we merge them?
0) S’ → S
1) S → V = E
2) S → E
3) E → V
4) V → x
5) V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*
E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

S → V = E.      $

E*

x

V

*

E

V

1

2 3

4

3

5

6

8

7

9

10

i.e. those which are similar except for the lookahead
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LALR parsing table

0) S’ → S
1) S → V = E
2) S → E
3) E → V
4) V → x
5) V → *E

x * = $ S E V

1 s8 s6 g2 g5 g3

2 a

3 s4 r3

4 s8 s6 g9 g7

5 r2

6 s8 s6 g10 g7

7 r3 r3

8 r4 r4

9 r1

10 r5 r5

LR parsing + this state reduction is Look-Ahead LR (LALR)
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