

SLR, LALR and LR(1) parsing tables

Limitations of LR(0)

- We have seen how LR parsing operates in terms of an automaton + a stack
	- States are created from closures of items
	- Transitions are actions based on the top of the stack, either before or after the next token is shifted
- The grammars that fit LR(0) are a bit more restrictive than they need to be
	- Specifically, they can stall on decisions which can easily be resolved by looking ahead in the token stream

To shift, or to reduce?

- Consider this grammar (which models arbitrarily long sums of terms)
	- $S \rightarrow E$ (A statement is an expression)
	- $E \rightarrow T + E$ (An expr. can be a sum of a term and an expr.)
	- $E \rightarrow T$ (An expr. can be a term)
	- $T \rightarrow x$ (A term can be a number, variable, whatever)
- The start symbol has just one production, we won't need to augment the grammar with any placeholder

In short order

 $E \rightarrow T + E$ $E \rightarrow T$ $T \rightarrow X$

 $S \rightarrow E$

Closure of S \rightarrow . E is a state

$$
S \rightarrow .E
$$

\n
$$
E \rightarrow .T + E
$$

\n
$$
E \rightarrow .T
$$

\n
$$
T \rightarrow .x
$$

• Transitions on E, T, x, find closures at destination:

In short order

• Transition on +, find closure at destination

 $S \rightarrow E$

 $E \rightarrow T$

 $T \rightarrow X$

 $E \rightarrow T + E$

$S \rightarrow E$ $E \rightarrow T + E$ $E \rightarrow T$ $T \rightarrow X$

In short order

• Transitions on T, E, x, closures, and we're done

Numbers everywhere

In the grammar, and on the states

Science and Technology

0) $S \rightarrow E$

 $2) E \rightarrow T$ 3) T \rightarrow X

1) $E \rightarrow T + E$

7

Most of the LR(0) table

• Here's what we get for the unproblematic states:

0) S \rightarrow E 1) $E \rightarrow T + E$ 2) $E \rightarrow T$ 3) T \rightarrow X

Shift/reduce conflict

• State 3 could shift and go to 4 on '+'

2

3

E

 $S \rightarrow E$.

 $E \rightarrow T.$

T! +

 $E \rightarrow$

5 \top \uparrow \downarrow + 4

 $E \rightarrow T + F$

 $E \rightarrow T + E$

 $E \rightarrow T + E$.

6

 $E \rightarrow .T$ $T \rightarrow .X$

 $S \rightarrow .E$

 $E \rightarrow .T$ $T \rightarrow .X$

 $T \rightarrow X$.

 $E \rightarrow .T + E$

1

x

T

x

E

0) S \rightarrow E 1) $E \rightarrow T + E$ $2) E \rightarrow T$ 3) $T \rightarrow x$

Shift/reduce conflict

 $E \rightarrow$

x

 $E \rightarrow T + E$

E

 $E \rightarrow .T$ $T \rightarrow .X$

- State 3 could also reduce production 2
- Parser can't decide here. $S \rightarrow .E$ $E \rightarrow T + E$ $E \rightarrow .T$ $T \rightarrow .X$ $S \rightarrow E$. $E \rightarrow T + E$ E→ T. T E x T! + 1 2 3 5 \top $+$ 4 6 x + \$ E T 1 s5 g2 g3 2 a 3 r2 r2,s4 r2 4 s5 g6 g3 5 r3 r3 r3 6 r1 r1 r1

 $E \rightarrow T + E$.

 $T \rightarrow X$.

The immediate solution

- Wait with reductions until there are no more + tokens to shift
	- Like the longest match rule for regex
- All we need to know is what the next token will be
	- Buffer it, to look at what's coming
- When are we interested?
	- When the next token belongs to a construct that only comes after the nonterminal we are working through a production for
- We did that already
	- For a production A → α, any expected token which isn't in α goes into the set of tokens FOLLOW(A)
	- That is its definition

Reworking the reductions

- With 1 token lookahead, reducing states no longer need to reduce regardless of what comes next
- We can insert reduce actions a little more selectively, that is

When an item A→α. suggests that a state is reducing, put the reducing action in the table only at tokens in FOLLOW(A)

Reworking the reductions

- $E \rightarrow T$. is our problem item here
	- $-$ FOLLOW(E) = {\$}, by prod. 0; E always remains on the far right in derivations
- $E \rightarrow T + E$, is a reduction, too
	- We already found FOLLOW(E)
- $T \rightarrow X$.

FOLLOW(T) = $\{+, \$ \}$ (+ because of prd. 1, $\$$ because of prd. 2)

• $S \rightarrow E$. $FOLLOW(S) = \{\$\}$ (S is never on a r.h.s of anything)

0) $S \rightarrow E$ 1) $E \rightarrow T + E$ 2) $E \rightarrow T$ 3) T \rightarrow X

An updated table

• Taking this into account, state 3 is no longer difficult

That was the SLR table

aka. "Simple LR"

- So named because it is just a tiny adjustment of the LR(0) scheme
- It does not, however, take all the information that it can out of having a lookahead symbol
- That's what the full-blown LR(1) scheme does

A grammar that needs more

- $S' \rightarrow S$ $S \rightarrow V = E$ $S \rightarrow E$ $E \rightarrow V$ $V \rightarrow X$ $V \rightarrow *E$
- To revamp the whole scheme with lookahead symbols, the idea of an *item* can be extended
- Take this (sub-)grammar of expressions, variables, and pointer dereference a la C:
	- $S' \rightarrow S$ (Unique production to start with)
	- $S \rightarrow V = E$ (Expr. can be assigned to variables)
	- $S \rightarrow E$ (Expressions are statements)
	- $E \rightarrow V$ (Variables are expressions)
	- $V \rightarrow x$ (Variables can be identifiers)
	- $V \rightarrow *E$ (Variables can be dereferenced pointer expressions)
		- *(...and pointer expressions can have variables in them…)*
- This is not SLR *(can you figure out why not?)*

Revisit the items

- LR(1) items include a lookahead symbol
	- $A \rightarrow \alpha$. X β says we're ahead of X between α and β
	- $A \rightarrow \alpha$. X β *t* says the same, but t is the next token
- Take an item like $[A \rightarrow X \& \%]$

'%' might be found in some expansion of X, so we need

X → . *<something>* %

X → . *<somethingelse>* %

and all variants of X while foreseeing '%'.

It can also be that X will reduce without shifting more stuff

The production says that we might see '&' as lookahead at this point, so

- X → . *<something>* &
- X → . <*somethingelse>* &

are also possibilities we must include in the closure.

For our grammar

Starting out as before, we get that

S' → .S *?*

has no sensible lookahead, because you can't look beyond the end

• After S comes \$, carry that through all nonterminal expansions

$$
S \rightarrow V = E \quad \$
$$
\n
$$
S \rightarrow E \quad \$
$$
\n
$$
E \rightarrow V \quad \$
$$
\n
$$
V \rightarrow X \quad \$
$$
\n
$$
V \rightarrow .*E \quad \$
$$

 $S' \rightarrow S$

 $S \rightarrow E$ $E \rightarrow V$ $V \rightarrow X$ $V \rightarrow *E$

 $S \rightarrow V = E$

Are there other relevant lookaheads?

• Looking at

 $S \rightarrow V = E$

it is possible that we're about to go to work on a V, and there is an $=$ ' token coming up after it

• Taking it into account

 $S \rightarrow V = E$ gives that $V \rightarrow X =$ $V \rightarrow$.*E =

also belong in the closure of LR(1) items

(In excessive notation, include the item $[X \to \alpha, \omega]$ for ω in FIRST(βz) where the item you're working out the closure for can be written $[A \rightarrow \alpha.X\beta, z]...$)

 $S' \rightarrow S$

 $S \rightarrow E$ $E \rightarrow V$ $V \rightarrow X$ $V \rightarrow *E$

 $S \rightarrow V = E$

For short

 $S' \rightarrow S$ $S \rightarrow V = E$ $S \rightarrow E$ $E \rightarrow V$ $V \rightarrow X$ $V \rightarrow *E$

The first state of our $LR(1)$ automaton thus becomes

and we might as well write

$$
S' \rightarrow .S
$$

\n
$$
S \rightarrow .V = E
$$

\n
$$
S \rightarrow .E
$$

\n
$$
E \rightarrow .V
$$

\n
$$
V \rightarrow .X
$$

\n
$$
V \rightarrow .*E
$$

\n
$$
S \rightarrow .E
$$

Building the automaton

• The procedure remains the same, just with more elaborate closures

25

Where to put reduce actions

- When an item reduces, its lookahead symbol decides where to tabulate the reduction
- That's the reason why we wanted to track lookahead symbols in the first place

LR(1) parsing table

0) $S' \rightarrow S$ 1) $S \rightarrow V = E$ 2) S \rightarrow E 3) $E \rightarrow V$ 4) $V \rightarrow X$ 5) $V \rightarrow *E$

What if we merge them?

i.e. those which are similar except for the lookahead

 $0) S' \rightarrow S$

2) S \rightarrow E $3) E \rightarrow V$

4) $V \rightarrow X$

1) S \rightarrow V = E

LALR parsing table

LR parsing + this state reduction is Look-Ahead LR (LALR)

