

1

SLR, LALR and LR(1) parsing tables

TDT4205 – Lecture 11

2

Limitations of LR(0)

• We have seen how LR parsing operates in terms of
an automaton + a stack
– States are created from closures of items
– Transitions are actions based on the top of the stack, either before

or after the next token is shifted

• The grammars that fit LR(0) are a bit more restrictive
than they need to be
– Specifically, they can stall on decisions which can easily be

resolved by looking ahead in the token stream

3

To shift, or to reduce?

• Consider this grammar (which models arbitrarily long sums of terms)

S → E (A statement is an expression)
E → T + E (An expr. can be a sum of a term and an expr.)
E → T (An expr. can be a term)
T → x (A term can be a number, variable, whatever)

• The start symbol has just one production, we won’t
need to augment the grammar with any placeholder

4

In short order

• Closure of S → .E is a state

• Transitions on E, T, x, find closures at destination:

S → .E
E → .T + E
E → .T
T→ .x

S → E
E → T + E
E → T
T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

E

T

x

Whoops, there is a reduction here

5

In short order

• Transition on +, find closure at destination

S → E
E → T + E
E → T
T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+

6

In short order

• Transitions on T, E, x, closures, and we’re done

S → E
E → T + E
E → T
T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.
E

7

Numbers everywhere

• In the grammar, and on the states

0) S → E
1) E → T + E
2) E → T
3) T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.

1 2

3

45 4 6
E

8

Most of the LR(0) table

• Here’s what we get for the unproblematic states:

0) S → E
1) E → T + E
2) E → T
3) T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.

1 2

3

45 4 6

x + $ E T

1 s5 g2 g3

2 a

3

4 s5 g6 g3

5 r3 r3 r3

6 r1 r1 r1

E

9

Shift/reduce conflict

• State 3 could shift and go to 4 on ‘+’

0) S → E
1) E → T + E
2) E → T
3) T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.

1 2

3

45 4 6

x + $ E T

1 s5 g2 g3

2 a

3 s4

4 s5 g6 g3

5 r3 r3 r3

6 r1 r1 r1

E

10

Shift/reduce conflict

• State 3 could also reduce production 2
• Parser can’t decide here

0) S → E
1) E → T + E
2) E → T
3) T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.

1 2

3

45 4 6

x + $ E T

1 s5 g2 g3

2 a

3 r2 r2,s4 r2

4 s5 g6 g3

5 r3 r3 r3

6 r1 r1 r1

E

11

The immediate solution

• Wait with reductions until there are no more + tokens to shift
– Like the longest match rule for regex

• All we need to know is what the next token will be
– Buffer it, to look at what’s coming

• When are we interested?
– When the next token belongs to a construct that only comes after the

nonterminal we are working through a production for

• We did that already
– For a production A → α, any expected token which isn’t in α goes into the set of

tokens FOLLOW(A)
– That is its definition

12

Reworking the reductions

• With 1 token lookahead, reducing states no longer
need to reduce regardless of what comes next

• We can insert reduce actions a little more selectively,
that is

When an item A→α. suggests that a state is reducing,
put the reducing action in the table only at tokens in
FOLLOW(A)

13

Reworking the reductions

• E → T. is our problem item here
– FOLLOW(E) = {$} , by prod. 0; E always remains on the far right in

derivations

• E → T + E. is a reduction, too
– We already found FOLLOW(E)

• T → x.
FOLLOW(T) = {+,$} (+ because of prd. 1, $ because of prd. 2)

• S → E.
FOLLOW(S) = {$} (S is never on a r.h.s of anything)

0) S → E
1) E → T + E
2) E → T
3) T → x

14

An updated table

• Taking this into account, state 3 is no longer difficult
• Changes affect these rows

0) S → E
1) E → T + E
2) E → T
3) T → x

S → .E
E → .T + E
E → .T
T→ .x

T→ x.

S→ E.

E→T .+ E
E→ T.

T

E

x

E → T + .E
E → .T + E
E → .T
T → .x

+T
x

E→ T + E.

1 2

3

45 4 6

x + $ E T
1 s5 g2 g3
2 a
3 s4 r2
4 s5 g6 g3
5 r3 r3
6 r1E

15

That was the SLR table

aka. “Simple LR”
• So named because it is just a tiny adjustment of the

LR(0) scheme
• It does not, however, take all the information that it

can out of having a lookahead symbol
• That’s what the full-blown LR(1) scheme does

16

A grammar that needs more

• To revamp the whole scheme with lookahead symbols, the
idea of an item can be extended

• Take this (sub-)grammar of expressions, variables, and pointer
dereference a la C:

S’ → S (Unique production to start with)
S → V = E (Expr. can be assigned to variables)
S → E (Expressions are statements)
E → V (Variables are expressions)
V → x (Variables can be identifiers)
V → * E (Variables can be dereferenced pointer expressions)

(...and pointer expressions can have variables in them…)

• This is not SLR (can you figure out why not?)

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

17

Revisit the items

• LR(1) items include a lookahead symbol
A → α . X β says we’re ahead of X between α and β
A → α. X β t says the same, but t is the next token

• Take an item like [A → . X & %]
‘%’ might be found in some expansion of X, so we need
X → . <something> %
X → . <somethingelse> %
and all variants of X while foreseeing ‘%’.

• It can also be that X will reduce without shifting more stuff
The production says that we might see ‘&’ as lookahead at this point, so
X → . <something> &
X → . <somethingelse> &
are also possibilities we must include in the closure.

18

For our grammar

• Starting out as before, we get that
S’ → .S ?
has no sensible lookahead, because you can’t look beyond the end

• After S comes $, carry that through all nonterminal
expansions

S → .V = E $
S → .E $
E → .V $
V → .x $
V → .*E $

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

19

Are there other relevant
lookaheads?
• Looking at

S → .V = E
it is possible that we’re about to go to work on a V, and there is an ‘=’ token coming up
after it

• Taking it into account
S → .V = E
gives that
V → .x =
V → .*E =
also belong in the closure of LR(1) items

(In excessive notation, include the item [X → α, ω] for ω in FIRST(βz) where the item you’re working out
the closure for can be written [A → α.Xβ, z]…)

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

20

For short

• The first state of our LR(1) automaton thus becomes

and we might as well write

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $
V → .*E $
V → .x =
V → .*E =

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

21

Building the automaton

• The procedure remains the same, just with more
elaborate closures

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*

22

Building the automaton

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*

E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

E

V

23

Building the automaton

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*

E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

S → V = E. $

E

V → *.E $
E → .V $
V → .x $
V → .*E $

*

V → *E. $

E

E

V

24

This is it

S’ → S
S → V = E
S → E
E → V
V → x
V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*

E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

S → V = E. $

E

V → *.E $
E → .V $
V → .x $
V → .*E $

*

V → *E. $

E

E → V. $

V → x. $

x

V

x

*

E

V V

25

Number states & productions

0) S’ → S
1) S → V = E
2) S → E
3) E → V
4) V → x
5) V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*

E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

S → V = E. $

E

V → *.E $
E → .V $
V → .x $
V → .*E $

*

V → *E. $

E

E → V. $

V → x. $

x

V

x

*

E

V

1

2 3

4

3

5

6

8

7

V

9

13

14
10

12

11

26

Where to put reduce actions

• When an item reduces, its lookahead symbol decides
where to tabulate the reduction

• That’s the reason why we wanted to track lookahead
symbols in the first place

27

LR(1) parsing table

0) S’ → S
1) S → V = E
2) S → E
3) E → V
4) V → x
5) V → *E

x * = $ S E V

1 s8 s6 g2 g5 g3

2 a

3 s4 r3

4 s11 s13 g9 g7

5 r2

6 s8 s6 g10 g12

7 r3

8 r4 r4

9 r1

10 r5 r5

11 r4

12 r3 r3

13 s11 s13 g14 g7

14 r5

28

As you may notice
0) S’ → S
1) S → V = E
2) S → E
3) E → V
4) V → x
5) V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*

E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

S → V = E. $

E

V → *.E $
E → .V $
V → .x $
V → .*E $

*

V → *E. $

E

E → V. $

V → x. $

x

V

x

*

E

V

1

2 3

4

3

5

6

8

7

V

9

13

14
10

12

11

Some of these states are pretty similar...

29

What if we merge them?
0) S’ → S
1) S → V = E
2) S → E
3) E → V
4) V → x
5) V → *E

S’ → .S ?
S → .V = E $
S → .E $
E → .V $
V → .x $, =
V → .*E $, =

S’ → S. ? S → V . = E $
E → V. $

S → E. $

V → x. $,=

V → *.E $,=
E → .V $,=
V → .x $,=
V → .*E $,=

V

E

x

S

*
x

*
E → V. $,=

V → *E. $,=

S → V = . E $
E → .V $
V → .x $
V → .*E $

=

S → V = E. $

E*

x

V

*

E

V

1

2 3

4

3

5

6

8

7

9

10

i.e. those which are similar except for the lookahead

30

LALR parsing table

0) S’ → S
1) S → V = E
2) S → E
3) E → V
4) V → x
5) V → *E

x * = $ S E V

1 s8 s6 g2 g5 g3

2 a

3 s4 r3

4 s8 s6 g9 g7

5 r2

6 s8 s6 g10 g7

7 r3 r3

8 r4 r4

9 r1

10 r5 r5

LR parsing + this state reduction is Look-Ahead LR (LALR)

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

