

1

Type judgments

TDT4205 – Lecture 13

2

Where we are, conceptually

• Last time, we went through a way to see program
execution as proof construction in a restricted logic
– We’re primarily stealing some notation from that exercise
– Specifically, we’ll portray type judgments as a similar sort of

inference

• Before that, we went through the connection between
traversing a syntax tree and inherited/synthesized
attributes of its internal nodes

3

Where we are, textually

• Bouncing back and forth between ch. 5 / 6, I’m afraid
• There are bits about types in both of them
• There are bits in both of them which aren’t about types

As stated at the very beginning, I’m trying to complement the book with intuitions
pro: it provides several different ways to look at the subject
con: it doesn’t come out in the same order as the table of contents

• The stuff we’re presently covering is the foggiest part
• I’ll aim to squeeze in a summary to connect the dots as soon

as we get through 6
(For the meantime, this week draws on 5.3, 6.3 and 6.5)

4

A declaration
(This is a walkthrough of Fig.5.17 in the Dragon)

T → B C
B → int | float
C → [num] C | ε
permits

int[2][3]

to generate
T

B C

C

C[3]

[2]

ε

int

5

L-attribution, step 1
T.basic_type = int

↑ B.type = int C

C

C[3]

[2]

ε

int

6

L-attribution, step 2
T.basic_type = int

↓ C.basic_type = int
↑ C.type = array (2, <something>)

C

C[3]

[2]

ε

int

B.type = int

7

L-attribution, step 3
T.basic_type = int

↓ C.basic_type = int
↑ C.type = array (2, <something>)

↓ C.basic_type = int
↑ C.type = array (3, <something>)

C[3]

[2]

ε

int

B.type = int

8

L-attribution, step 4
T.basic_type = int

↓ C.basic_type = int
↑ C.type = array (2, <something>)

↓ C.basic_type = int
↑ C.type = array (3, <something>)

↓C.basic_type = int
↑C.type = int[3]

[2]

ε

int

B.type = int

9

L-attribution, step 5
T.basic_type = int

↓ C.basic_type = int
↑ C.type = array (2, <something>)

↓ C.basic_type = int
↑ C.type = array (3, int)

↓C.basic_type = int
↑C.type = int[3]

[2]

ε

int

B.type = int

10

L-attribution, step 5
T.basic_type = int

↓ C.basic_type = int
↑ C.type = array (2, array(3,int))

↓ C.basic_type = int
↑ C.type = array (3, int)

↓C.basic_type = int
↑C.type = int[3]

[2]

ε

int

B.type = int

11

L-attribution, step 6
T.basic_type = int

T.type = array (2, array (3, int))

↓ C.basic_type = int
↑ C.type = array (2, array(3,int))

↓ C.basic_type = int
↑ C.type = array (3, int)

↓C.basic_type = int
↑C.type = int[3]

[2]

ε

int

B.type = int

12

Attribution rules

T → B C Synthesize T.basic_type
 Let C inherit T.basic_type
 Synthesize T.type = C.type

B → int B.type = int
B → float B.type = float

C0 → [num] C1 Let C1 inherit C0.basic_type
 Synthesize C0.type = array (num, C1.type)

C → ε Synthesize C.type = C.basic_type

13

A smaller example

• Take these ternary expressions:
Tern → Bexp ? Exp : Exp
Bexp → true | false | Exp > Exp
Exp → num | var
and create the parse tree for
x>2 ? 1 : x

Tern

Bexp num var

var num
x 2

1 x>

14

A smaller example

• To verify that it’s a valid expression,
Tern → Bexp ? Exp1 ; Exp2 visit Bexp, synthesize bool
 synthesize Exp1.type
 synthesize Exp2.type
 enforce Exp1.type = Exp2.type

Bexp → true | false synthesize bool
Bexp → Exp1 > Exp2 synthesize Exp1.type
 synthesize Exp2.type
 enforce Exp1.type = Exp2.type

Exp → num Exp.type = num.type
Exp → var Exp.type = var.type

15

Very Strictly, in traversal order
Tern.type = int

(if x is int)

Bexp.type = bool
(if x is int) num.type = int Var.type = x.type

var.type = x.type num.type = int

x 2

1 x

(Strictly because we require x to be an int)

16

More relaxed

Tern.type = x.type
(convert 1 to x.type)

Bexp.type = bool
(convert 2 to x.type) num.type = int var.type = x.type

var.type = x.type num.type = int

x 2

1 x

Say we allow conversion from int to x.type (whatever it is):

17

Disregarding the order

• For the strict interpretation, we could write
 Bexp : bool Exp1 : T Exp2 : T
 Bexp ? Exp1 ; Exp2 : T
and
Exp1 : T Exp2 : T
 Bexp : bool |- Exp1 > Exp2 : bool
to capture the ideas that
– Bexp is boolean when Exp1 and Exp2 have the same type T
– Bexp ? E1 ; E2 has type T when E1 and E2 have the same type T

18

Proof tree

x : T2 2:T2
(x > 2) : bool 1:T1 x:T1
 (x > 2 ? 1 ; x) : T1
and get a substitution consistent with the rules if
T1=T2=int:
x : int 2: int
(x > 2) : bool 1 : int x : int
 (x > 2 ? 1 ; x) : int

(The presence of x in both sub-expressions forces
 1,2, to have the same type)

19

Another proof tree

Changing the expression a little
y : T2 3.14:T2
(y > 3.14) : bool 1:T1 x:T1
 (y > 3.14 ? 1 ; x) : T1
a consistent substitution might be T1=int, T2=float:
y : float 3.14: float
(y > 3.14) : bool 1 : int x : int
 (y > 3.14 ? 1 ; x) : int

(T1 and T2 aren’t necessarily the same)

20

In general

• We can attach static type semantics to syntax in the
format
H1 |- S1 : T1 … Hn |- Sn : Tn
 H0 |- S0 : T0
and let
– Hx be conjectures to prove,
– Sx be parts of syntax expressions
– Tx be the inferences of type information

21

Attribute grammars vs. static
natural semantics
• In terms of traversal ordering, this corresponds to

inputs (derived from the statement), and
outputs (from the inference process)

H1 |- S1 : T1 … Hn |- Sn : Tn
 H0 |- S0 : T0
i.e., start from a conjecture, work through all its
premises, conclude with the derived information

22

What are the H-s?

• Hypotheses. We could write out the reasoning in full,

y : T2 3.14 : float
y : float |- (y > 3.14) : bool |- 1 : int x : int |- x : T1
 y:float, x:int |- (y > 3.14 ? 1 ; x) : T1

to verify that what we hypothesized (“y is float, x is int”) is
consistent with the schema in at least one substitution of T1, T2

23

Why I prefer this notation

• It doesn’t mix implementation (traversal order) with
definition (rules of the type system)

• The attribute grammar approach is a special case of
inference rules anyway

24

They’re the same when...

1) There are no missing definitions
Everything in the outputs is also found from an input somewhere

2) There are no missing rules
Each syntax construct must have an applicable rule

3) It’s deterministic
There is only one applicable rule for each syntax construct

4) There are no constraints
Inputs are just variables

5) There are no links
No variables appear in several input positions

6) There is nothing dynamic
Constructs in premises are strictly parts of the construct in the conclusion

25

Don’t memorize that list
(unless you want to)
• We will only look at cases where these inference

rules could be exchanged for a tree traversal plan
• I just want to introduce the notation

– It is used elsewhere in the literature
– It can describe type information without pulling the details of

attribution order into the picture all the time

• It would be downright cruel to set up problems that
cannot be equally well expressed the way our book
does it.

26

So, what’s a type judgment?

• It’s a claim about a statement, written
|- E : T

which reads “E is a well-typed construct of type T”
• Type-checking a program P requires demonstrating

that |- P : T for a type T
• It can be done by traversal and attribution
• It can be done by some other logical inference engine

27

Honestly

• We won’t be implementing type checking, our toy language has
almost nothing in the way of types

• As far as this class goes, we’ll do as we do with the bottom-up
parsing schemes, as long as you can
– Read and understand inference rules
– See that they can be implemented by tree traversal and attribution

there is no need to split hairs over the β-s and γ-s

• The valuable takeaway is to build a vocabulary that lets you make an
informed guess about how types might be handled by your favorite
programming language

28

Next up

• Next time, we’ll
– chuck together a bunch of inference rules for various basic things

that are common in many languages

and talk a bit about
– static vs. dynamic types
– the strength of a type system
– what it means that one thing is equal to another

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

