

1

Simple CPU design and the run-time stack

TDT4205 – Lecture 17

2

Where we left off

• We have translated expressions, statements,
conditions and loops into TAC

• We stopped at function parameters, call and return
• I’d like to dwell on those for a bit, because their

implementation attaches to CPU design specifics

3

From tree to TAC

*

+

1 3

5

t1 = 1
t2 = 3
t3 = t1+t2

4

From tree to TAC

1

*

+ 5

3

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

5

A very simple CPU

• Suppose we have a machine with
– A register to track its position in the program (Program Counter)
– Three slots for numbers (A, B, C)
– Some memory
– Operations to load, store, and combine values in registers

PC
0

A
0

B
0

C
0

6

From TAC to operations

1) t1 = 1
2) t2 = 3
3) t3 = t1+t2
4) t4 = 5
5) t5 = t3*t4

PC
1

A
0

B
0

C
0

(1)
(2)
(3)
(4)

7

First step on a simple machine

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
3

A
1

B
0

C
1

(1) 1
(2)
(3)
(4)

1) Copy 1 into A
2) Increment C
3) Copy A into *C

8

Another step much like it

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
6

A
1

B
0

C
1

(1) 1
(2) 3
(3)
(4)

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C

9

Evaluation of an intermediate result

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
10

A
3

B
1

C
0

(1) 1
(2) 3
(3)
(4)

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
7) Copy *C into A
8) Decrement C
9) Copy *C into B
10) Decrement C

10

Evaluation of an intermediate result

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
13

A
4

B
1

C
1

(1) 4
(2) 3
(3)
(4)

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
7) Copy *C into A
8) Decrement C
9) Copy *C into B
10) Decrement C
11) A = A + B
12) Increment C
13) Copy A into *C

11

More of the same

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
16

A
5

B
1

C
2

(1) 4
(2) 5
(3)
(4)

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
7) Copy *C into A
8) Decrement C
9) Copy *C into B
10) Decrement C
11) A = A + B
12) Increment C
13) Copy A into *C
14) Copy 5 into A
15) Increment C
16) Copy A into *C

12

The final result

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
20

A
5

B
4

C
0

(1) 4
(2) 5
(3)
(4)

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
7) Copy *C into A
8) Decrement C
9) Copy *C into B
10) Decrement C
11) A = A + B
12) Increment C
13) Copy A into *C
14) Copy 5 into A
15) Increment C
16) Copy A into *C
17) Copy *C into A
18) Decrement C
19) Copy *C into B
20) Decrement C
21) A = A * B
22) Increment C
23) Copy A into *C

13

The final result

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
23

A
20

B
4

C
1

(1) 20
(2) 5
(3)
(4)

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
7) Copy *C into A
8) Decrement C
9) Copy *C into B
10) Decrement C
11) A = A + B
12) Increment C
13) Copy A into *C
14) Copy 5 into A
15) Increment C
16) Copy A into *C
17) Copy *C into A
18) Decrement C
19) Copy *C into B
20) Decrement C
21) A = A * B
22) Increment C
23) Copy A into *C

14

Many of those operations
were repetitive
• Sequences like

Set A to (value)
Increment C
Put value of a in memory at adr. C

appear whenever (value) needs to be stored away
• Sequences like

Set A to memory value at adr. C
Decrement C

appear when we need them again

15

Register C isn’t special

• The pattern we used to lay out the operations here
could just as well have used A or B to track memory
locations, and the other two for operations

• The one we choose behaves like a pointer to the top
of a stack, because we manipulate it that way

16

Stack operation support

• This is such a common thing to do that CPU designers embed
support for it into the instruction set

• If we make register C special by designating it as the stack-pointer
register, it can support instructions like

push 5 (Move reg C “forward” & place 5 where it points)
pop B (Put value from adr. in reg C into B & move C “backward”)

and the program shortens to
push 1
push 3
pop A
pop B
A = A + B
push A
…

17

Stack machines

• Instruction support doesn’t prevent the stack pointer
register from containing whatever you like
– All it tells us is that the value will change as a side effect of push and pop

operations

• Popping values off stack doesn’t delete them
– They will just be overwritten when the stack pointer next comes by there

• The scheme is enough to handle arbitrarily complicated
expressions
– There can be as many temporary values on stack as needed, while we

use registers for two at a time

18

It could be even simpler

• We could get away with
– one “accumulator” register
– an implicit stack pointer
– operations that combine values from the top of the stack into the accumulator

• We could even drop explicit registers altogether, using
– an implicit stack pointer
– operations that combine the top two elements

• CPUs like this work, but they result in longer programs with
more memory traffic
– They’re kind of old-fashioned, yet simple to make

19

Unconditional jumps

• Jump instructions have a straightforward
interpretation in our minimal CPU model
– they are assignments to the PC register, like so:

PC
4

A
1

B
0

C
1

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Jump 8
5) Copy 3 into A
6) Increment C
7) Copy A into *C
8) Copy 2 into A

PC
8

A
2

B
0

C
1

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) jump 8
5) Copy 3 into A
6) Increment C
7) Copy A into *C
8) Copy 2 into A

(Here, ops 5-7 will never be run)

20

Simple subroutines

• With memory indexing, we can store the value of PC
• This permits branching off to another part of the

program, and coming back again

PC
4

A
1

B
6

C
1

1) Copy 1 into A
2) Copy 6 into B
3) Push PC+2
4) Jump 168
5) Copy 2 into A
...
168) Copy 4 into A
169) B = B+A
170) Pop A
171) Jump A

(3)
(2)
(1) 5

PC
171

A
5

B
10

C
1

1) Copy 1 into A
2) Copy 6 into B
3) Push PC+2
4) Jump 168
5) Copy 2 into A
...
168) Copy 4 into A
169) B = B+A
170) Pop A
171) Jump A

(3)
(2)
(1) 5

Jump away... …do stuff, and
return to where we were

21

Those can be operations too

• “Call” translates into
– Push return address to remember
– Jump to target

• “Return” translates into
– Pop address to return to from stack
– Jump there

• As with “push” and “pop”, call/return are just shorthands for
sequences of operations we could also write out explicitly
– Subroutines make code modular, sections of it can be re-used in several places
– Subroutines don’t have local context, everything is just a global memory address
– The GOSUB keyword in many (old) dialects of BASIC works this way

22

Function call and return

• Translating function calls into this low-level
abstraction is a matter of using the stack for two
purposes
– Placing the return location in the program there
– Placing the values local to the call there

• An activation record gives a policy on how to sort
these things, so that they can be systematically
manipulated and recovered at the appropriate time

23

IA-32 activation records
• The personal computers of yesteryear had a

convention for how to structure stuff on the stack
• It’s noticeably cleaner than its present successor, so it

merits brief scrutiny
– Contemporary 64-bit CPUs (Intel and relatives) will still run IA-32

code, they’re backwards compatible
– Contemporary compilers will still generate it, if you tell them to

produce 32-bit x86 code (GCC does it with the flag -m32)

• We could have used it directly in the
practical work, but it grows more contrived each
year
– 16MHz 386/DX: performance monster of 1985
– I believe in keeping up with progress, even when it’s ugly

24

x86 in 60 seconds

• There’s a stack pointer register called ESP
• There’s a frame pointer register called EBP
• There are push and pop instructions that manipulate ESP

as a side-effect
• There are 2-operand instructions which store the result in

one of the operands (move, add, sub, …)
• There are another few registers

– We can use EAX and EBX just like A and B from our mini-machine

• There are ‘call’ and ‘ret’ operations, as discussed

25

What’s in a function’s context?

• Let’s take this one, in C:
int factorial (int n) {
 int result = n;
 if (result > 1)
 result *= factorial (result – 1);
 return result;
}

(This is an awful implementation, it’s made more to illustrate stack
frames than to compute factorials)

26

Key ingredients

int factorial (int n) {
 int result = n;
 if (result > 1)
 result *= factorial (result – 1);
 return result;
}

Argument to receive

Local variable

Argument to send

Return value

Next time, we will look at how x86 organized these parts,
and connect it back to TAC representation

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

