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Simple CPU design and the run-time stack

TDT4205 – Lecture 17
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Where we left off

• We have translated expressions, statements, 
conditions and loops into TAC

• We stopped at function parameters, call and return
• I’d like to dwell on those for a bit, because their 

implementation attaches to CPU design specifics
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From tree to TAC

*

+

1 3

5

t1 = 1
t2 = 3
t3 = t1+t2
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From tree to TAC

1

*

+ 5

3

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4
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A very simple CPU

• Suppose we have a machine with
– A register to track its position in the program (Program Counter)
– Three slots for numbers (A, B, C)
– Some memory
– Operations to load, store, and combine values in registers

PC
0

A
0

B
0

C
0
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From TAC to operations

1) t1 = 1
2) t2 = 3
3) t3 = t1+t2
4) t4 = 5
5) t5 = t3*t4

PC
1

A
0

B
0

C
0

(1) 
(2) 
(3) 
(4) 
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First step on a simple machine

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
3

A
1

B
0

C
1

(1)    1
(2) 
(3) 
(4) 

1) Copy 1 into A
2) Increment C
3) Copy A into *C
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Another step much like it

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
6

A
1

B
0

C
1

(1)    1
(2)    3
(3) 
(4) 

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
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Evaluation of an intermediate result

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
10

A
3

B
1

C
0

(1)    1
(2)    3 
(3) 
(4) 

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
7) Copy *C into A
8) Decrement C
9) Copy *C into B
10) Decrement C
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Evaluation of an intermediate result

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
13

A
4

B
1

C
1

(1)    4
(2)    3 
(3) 
(4) 

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
7) Copy *C into A
8) Decrement C
9) Copy *C into B
10) Decrement C
11) A = A + B
12) Increment C
13) Copy A into *C
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More of the same

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
16

A
5

B
1

C
2

(1)    4
(2)    5 
(3) 
(4) 

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
7) Copy *C into A
8) Decrement C
9) Copy *C into B
10) Decrement C
11) A = A + B
12) Increment C
13) Copy A into *C
14) Copy 5 into A
15) Increment C
16) Copy A into *C
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The final result

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
20

A
5

B
4

C
0

(1)    4
(2)    5 
(3) 
(4) 

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
7) Copy *C into A
8) Decrement C
9) Copy *C into B
10) Decrement C
11) A = A + B
12) Increment C
13) Copy A into *C
14) Copy 5 into A
15) Increment C
16) Copy A into *C
17) Copy *C into A
18) Decrement C
19) Copy *C into B
20) Decrement C
21) A = A * B
22) Increment C
23) Copy A into *C
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The final result

t1 = 1
t2 = 3
t3 = t1+t2
t4 = 5
t5 = t3*t4

PC
23

A
20

B
4

C
1

(1)    20
(2)    5 
(3) 
(4) 

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Copy 3 into A
5) Increment C
6) Copy A into *C
7) Copy *C into A
8) Decrement C
9) Copy *C into B
10) Decrement C
11) A = A + B
12) Increment C
13) Copy A into *C
14) Copy 5 into A
15) Increment C
16) Copy A into *C
17) Copy *C into A
18) Decrement C
19) Copy *C into B
20) Decrement C
21) A = A * B
22) Increment C
23) Copy A into *C
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Many of those operations 
were repetitive
• Sequences like

Set A to (value)
Increment C
Put value of a in memory at adr. C

appear whenever (value) needs to be stored away
• Sequences like

Set A to memory value at adr. C
Decrement C

appear when we need them again



  

15

Register C isn’t special

• The pattern we used to lay out the operations here 
could just as well have used A or B to track memory 
locations, and the other two for operations

• The one we choose behaves like a pointer to the top 
of a stack, because we manipulate it that way
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Stack operation support

• This is such a common thing to do that CPU designers embed 
support for it into the instruction set

• If we make register C special by designating it as the stack-pointer 
register, it can support instructions like

push 5 (Move reg C “forward” & place 5 where it points)
pop B (Put value from adr. in reg C into B & move C “backward”)

and the program shortens to
push 1
push 3
pop A
pop B
A = A + B
push A
…
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Stack machines

• Instruction support doesn’t prevent the stack pointer 
register from containing whatever you like
– All it tells us is that the value will change as a side effect of push and pop 

operations

• Popping values off stack doesn’t delete them
– They will just be overwritten when the stack pointer next comes by there

• The scheme is enough to handle arbitrarily complicated 
expressions
– There can be as many temporary values on stack as needed, while we 

use registers for two at a time
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It could be even simpler

• We could get away with
– one “accumulator” register
– an implicit stack pointer
– operations that combine values from the top of the stack into the accumulator

• We could even drop explicit registers altogether, using
– an implicit stack pointer
– operations that combine the top two elements

• CPUs like this work, but they result in longer programs with 
more memory traffic
– They’re kind of old-fashioned, yet simple to make
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Unconditional jumps

• Jump instructions have a straightforward 
interpretation in our minimal CPU model
– they are assignments to the PC register, like so:

PC
4

A
1

B
0

C
1

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) Jump 8
5) Copy 3 into A
6) Increment C
7) Copy A into *C
8) Copy 2 into A

PC
8

A
2

B
0

C
1

1) Copy 1 into A
2) Increment C
3) Copy A into *C
4) jump 8
5) Copy 3 into A
6) Increment C
7) Copy A into *C
8) Copy 2 into A

(Here, ops 5-7 will never be run)
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Simple subroutines

• With memory indexing, we can store the value of PC
• This permits branching off to another part of the 

program, and coming back again

PC
4

A
1

B
6

C
1

1) Copy 1 into A
2) Copy 6 into B
3) Push PC+2
4) Jump 168
5) Copy 2 into A
...
168) Copy 4 into A
169) B = B+A
170) Pop A
171) Jump A

(3)
(2)
(1)    5

PC
171

A
5

B
10

C
1

1) Copy 1 into A
2) Copy 6 into B
3) Push PC+2
4) Jump 168
5) Copy 2 into A
...
168) Copy 4 into A
169) B = B+A
170) Pop A
171) Jump A

(3)
(2)
(1)    5

Jump away... …do stuff, and
return to where we were
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Those can be operations too

• “Call” translates into
– Push return address to remember
– Jump to target

• “Return” translates into
– Pop address to return to from stack
– Jump there

• As with “push” and “pop”, call/return are just shorthands for 
sequences of operations we could also write out explicitly
– Subroutines make code modular, sections of it can be re-used in several places
– Subroutines don’t have local context, everything is just a global memory address
– The GOSUB keyword in many (old) dialects of BASIC works this way
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Function call and return

• Translating function calls into this low-level 
abstraction is a matter of using the stack for two 
purposes
– Placing the return location in the program there
– Placing the values local to the call there

• An activation record gives a policy on how to sort 
these things, so that they can be systematically 
manipulated and recovered at the appropriate time
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IA-32 activation records
• The personal computers of yesteryear had a 

convention for how to structure stuff on the stack
• It’s noticeably cleaner than its present successor, so it 

merits brief scrutiny
– Contemporary 64-bit CPUs (Intel and relatives) will still run IA-32 

code, they’re backwards compatible
– Contemporary compilers will still generate it, if you tell them to 

produce 32-bit x86 code (GCC does it with the flag -m32)

• We could have used it directly in the               
practical work, but it grows more contrived         each 
year
– 16MHz 386/DX: performance monster of 1985
– I believe in keeping up with progress, even when it’s ugly
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x86 in 60 seconds

• There’s a stack pointer register called ESP
• There’s a frame pointer register called EBP
• There are push and pop instructions that manipulate ESP 

as a side-effect
• There are 2-operand instructions which store the result in 

one of the operands (move, add, sub, …)
• There are another few registers

– We can use EAX and EBX just like A and B from our mini-machine

• There are ‘call’ and ‘ret’ operations, as discussed
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What’s in a function’s context?

• Let’s take this one, in C:
int factorial ( int n ) {
  int result = n;
  if ( result > 1 )
      result *= factorial ( result – 1 );
  return result;
}

(This is an awful implementation, it’s made more to illustrate stack 
frames than to compute factorials)
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Key ingredients

int factorial ( int n ) {
  int result = n;
  if ( result > 1 )
      result *= factorial ( result – 1 );
  return result;
}

Argument to receive

Local variable

Argument to send

Return value

Next time, we will look at how x86 organized these parts,
and connect it back to TAC representation
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