

1

Function calls and the run-time stack

TDT4205 – Lecture 18

2

Beyond jump and return

• We’ve looked at how jumps to saved addresses
create the control flow of procedure calls

• Functions also require data in a local environment to
be arranged somehow

• Abandoning our hypothetical mini-CPU, we can
examine how x86-s do it

3

The basic x86 approach
• Arguments need to go on the stack

– The calling function handles putting them there, and taking them away again

• Return address must go on the stack
– The calling function handles it, because it knows where to resume execution

• Local variables need to go on the stack
– The called function knows how much space they will need, and allocates it

• Stack is both local namespace and temporary results
– Stack pointer deals with intermediate results
– Frame pointer locates the start of the local namespace

• Return value must go somewhere
– A designated register plays this part

4

Activation record of
our factorial function

Argument: “n”
Return address
Caller’s frame ptr.
Local var: “result”
(Intermediate data)
Argument: value of “result-1”

int factorial (int n) {
 int result = n;
 if (result > 1)
 result *= factorial (result – 1);
 return result;
}

Return address
My frame ptr.
Next call’s local var. “result”

Caller places these, prior to
call

Generated function body
places these

Callee places these,
when called

5

Calling factorial(3)

push 3

call factorial

3
<return adr>ESP

(EBP is somewhere below)

6

factorial(3) receives

push 3
call factorial

push EBP

move ESP into EBP

3
<return adr>

ESP, EBP EBP before call

7

factorial() makes local space

push 3
call factorial

push EBP
move ESP into EBP

sub 4, ESP

3
<return adr>

EBP EBP before call
“result”ESP

8

Assign argument n to “result”

push 3
call factorial

push EBP
move ESP into EBP

sub 4, ESP
move 12(EBP), EAX

move EAX, -4(EBP)

3
<return adr>

EBP EBP before call
“result” = 3ESP

9

Calculate result-1 for next call,
push it as argument

push 3
call factorial

push EBP
move ESP into EBP

sub 4, ESP
move 8(EBP), EAX
move EAX, -4(EBP)

(...find out that 3-1 = 2…)

push 2

3
<return adr>

EBP EBP before call
“result” = 3

ESP 2

10

Make the next call, thus pushing
return adr.

push 3
call factorial

push EBP
move ESP into EBP

sub 4, ESP
move 8(EBP), EAX
move EAX, -4(EBP)

(...find out that 3-1 = 2…)
push 2

call factorial

3
<return adr>

EBP EBP before call
“result” = 3

ESP
2

return adr. for
factorial(3)

11

...and the whole circus repeats...

push 2
call factorial

push EBP
move ESP into EBP

sub 4, ESP
move 8(EBP), EAX
move EAX, -4(EBP)

(...find out that 2-1 = 1…)
push 1

call factorial

3
<return adr>

EBP

EBP before
factorial(3)

“result” = 3

ESP

2

return adr. for
factorial(3)

EBP before
factorial(2)

“result” = 2
1

return adr. for
factorial(2)

12

...until return.
Unwind factorial(1):

push 1
call factorial

push EBP
move ESP into EBP

sub 4, ESP
move 8(EBP), EAX
move EAX, -4(EBP)

(...find out that 1 > 1 is false…)

move -4(EBP), EAX

move EBP, ESP

pop EBP

ret 3
<return adr>

EBP

EBP before
factorial(3)

“result” = 3

ESP

2

return adr. for
factorial(3)

EBP before
factorial(2)

“result” = 2
1

return adr. for
factorial(2)

EBP before
factorial(1)

“result” = 1

13

Unwinding factorial(2)

add 4, ESP

...multiply EAX into -4(EBP)…
move -4(EBP), EAX

move EBP, ESP

pop EBP

ret

3
<return adr>

EBP

EBP before
factorial(3)

“result” = 3

ESP

2

return adr. for
factorial(3)

EBP before
factorial(2)

“result” = 2
1

Result: EAX=2

14

Unwinding factorial(3)

add 4, ESP

...multiply EAX into -4(EBP)…
move -4(EBP), EAX

move EBP, ESP

pop EBP

ret

3
<return adr>

EBP
EBP before
factorial(3)

“result” = 6ESP
2

Result: EAX=6

15

Returning to caller

add 4, ESP

...multiply EAX into -4(EBP)…
move -4(EBP), EAX

move EBP, ESP

pop EBP

ret

3
EBP off somewhere below

ESP

Result: EAX=6

The answer is here

16

A handful of details

• All my addresses are in multiples of 4, on the
assumption that “int” is 32 bits (4 bytes)

• x86 stack space grows from high to low addresses,
because it starts from the end of the process image:

– “push” subtracts from the stack pointer
– “pop” adds to the stack pointer

text data heap → ← stack0 2^64-1

17

A handful of white lies

• This was almost the sequence of operations you’ll get out if
you punch in “factorial.c” and run it through “cc -m32 -S
factorial.c” to get the x86 assembly

...but not quite…

• The dimensioning of local space (movement of ESP at
activation) isn’t exactly flush with the number of local variables

• I skipped evaluation of conditionals and multiplication
– We’ve covered them in TAC, and can do them up in assembly later

• Syntax deviates
– You can’t copy-paste what’s written here and expect it to assemble

18

The focal point

• Function call in TAC looks like this
param t1
param t3
param x
call foo

for a function foo(a,b,c)
• The ‘param’ notation has an immediate interpretation in IA-32

assembly, i.e. “push the parameter on stack”
• It has a slightly different one in x86_64 which we’ll look at later
• Together, they may clarify why a low-IR (abstract assembler) has

use for the ‘param’ notation

19

Secondary points

• We didn’t talk a lot about indirect addressing, except
for its use in arrays

i.e. expressions like t2 = 12(t1)
to mean “the value 12 addresses away from that in t1”

• The layout of an activation record makes an obvious
use of it

Local variables are translated into stack positions, located by their
offset from the frame pointer

20

Back to the overview

• Expressions translate into strings of operations, with
temporaries for intermediate results

• Loops and conditionals translate into evaluation code for
the condition, followed by fixed control flow patterns

• Function call and return translate into buffering up the
arguments and jumping to the function

• Function bodies translate into a machine-related
convention for where to find the arguments and where to
put the local environment

21

The Keys to the Kingdom

• What hasn’t been mentioned is that these translation patterns are
not final definitions taken from the Great Standard of Program
ConstructionsTM

– They are devices we invent to give source languages their meaning
– If you implement another translation of switch statements, you redefine what every

source program with a switch in will do
– If you invent a new language construct, the translation pattern you assign to it will

specify what it can be used for

• This is the biggest takeaway from compiler construction:
The evaluation rules you learn for any language only appear
because someone decided to implement them that way

The processor doesn’t care, you can make different rules if you like.

22

Inefficiencies that appear

• Duplicate values
t1 = x
t2 = y
t3 = t1 + t2

might as well be
t1 = x + y

if the expression-translation recognizes the special
case where its operands are terminals

23

Redundant temporaries
• Temporary vars. have limited lifespan:

t1 = 1
t2 = 2
t3 = 1 + 2
t4 = 6
t5 = 7
t6 = t4 + t5

might as well re-use t1, t2
t1 = 6
t2 = 7
t4 = t1 + t2

when their work is done.
• Pro: less space
• Con: less precise analyses at optimization

We’ll return to what this means

24

Jumps to unconditional jumps

If a then if b then c=d else e=f else g=h
becomes
ifFalse a goto L1
 ifFalse b goto L2
 c=d
 jump Lend2
 L2:
 e=f
 Lend2:
jump Lend1
L1:
 g = h
Lend1:

25

This may as well shortcut

If a then if b then c=d else e=f else g=h

ifFalse a goto L1
 ifFalse b goto L2
 c=d
 jump Lend1
 L2:
 e=f

jump Lend1
L1:
 g = h
Lend1:

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

