

1

Introduction to optimizations

TDT4205 – Lecture 22

2

Transformations to improve
program performance
• This topic is scattered around a few different

subchapters in the book
– Some are most easily applied to high-level IR
– Others are simpler at low-level

• I’m collecting them under a single heading to give a
context for the analysis methods we’re about to cover
– Many optimizations require combinations of different analysis

results
– If you can keep them at the back of your mind, it’s easier to see

what the analyses are for

3

A number of possible tricks

– Function inlining
– Function cloning
– Constant folding
– Constant propagation
– Unreachable/dead code elimination
– Loop-invariant code motion
– Common sub-expression elimination
– Strength reduction
– Loop unrolling

4

Function inlining

• A function like
int sumsq (x, y) { return (x*x)+(y*y); }

makes the call
z = sumsq (a, b);

equivalent to
z = (a*a)+(b*b);

• This saves a function call
– Altered control flow + memory interactions for stack frame

• Generated code size grows with the number of inlined function
instances
– Repeated generation of same instruction sequence

5

(As an aside)

• Both C and C++ have an inline keyword for functions, in support
of this transformation
– In slightly different ways, these work as programmer-provided suggestions that the

compiler should consider a function for inlining
– Whether or not they are inlined becomes subject to a performance estimate at the

compiler’s discretion
– This is great, except for when it needs to behave predictably across different compilers

• Inlining can be forced with a macro definition
#define SUMSQ(x,y) ((x)*(x)+(y)*(y))
(at the cost of some type safety, and the benefit of the compiler’s analysis)

– The exercises may have revealed that I’m a habitual macro abuser
– For better or worse, my reason for that is the predictability thing
– Consider it a work-related injury if you will, excessive preprocessor use is not pretty

software engineering

6

Function cloning

• If we can establish that the arguments frequently have the value 1, the
same function

int sumsq (x, y) { return (x*x)+(y*y); }

could be generated in multiple versions
int sumsq_x_eq_1 (y) { return (y*y)+1; }
int sumsq_y_eq_1 (x) { return (x*x)+1; }
int sumsq (x, y) {
 if (x==1) return sumsq_x_eq_1 (y);
 else if (y==1) return sumsq_y_eq_1 (x);
 else return (x*x)+(y*y);
}

• When the work saved in the appropriate clone outweighs the overhead
of the inserted code to select it at run-time, this is an optimization

7

Function cloning in action

• Without having to predict values, one use of this you may spot
in the wild is
– Generate a variety of implementations which target various specific CPU

instruction set extensions (vector operations, fused multiply-accumulate
instructions, …)

– Inject run-time code to identify the specific CPU model in use
– Branch to the appropriate version of the function

• This creates portable code by default, and is usually
complemented with the option to generate code for one
specific instruction set (saving the overhead)
– In case you’re sure that your program will only ever run on, say, AVX2-capable

processors

8

Constant propagation

• If the value of a variable is known to be constant, its uses
can be replaced by the constant value

n = 10
c = 2
for (i = 0; i<n; i++) { s = s + i * c; }

becomes
for (i=0; i<10; i++) { s = s + i * 2; }

– Named constants can appear for readability reasons, maintaining a
single place to modify a constant used in many places, etc.

9

Constant folding

• We do some of this when simplifying VSL trees:
x = 1.1 * 2;

becomes
x = 2.2;

Constant expressions appear for several reasons:
– “n_elements * sizeof(element_t)” reads more easily than “22*12”
– “2*PI” is clearer than “2 * 3.1415928...” is clearer than “6.283185...”
– Translations and optimizations can create them

 int x = a[2] → t1 = 2*4
 t2 = a + t1
 x = *t2;

10

Fancier constant folding

• Algebra can be simplified in a number of obvious ways:
x * 1 = x x * 0 = 0
x / 1 = x x + 0 = x
x || false = x x && true = x
etc. etc.

• Repeated application can simplify expressions away
a = 1; b=0; h = 1;
 (a*x + b*y) / (h*h)
→ (1*x + 0*y) / (1*1)
→ (x + 0) / 1
→ x

(NB: this can be risky business with floating point numbers)

11

Copy propagation

• After x=y, y can be used instead of x until x is assigned
differently

x = y;
if (x > 1) { s = x * f (x-1); }
becomes
x = y;
if (y > 1) { s = y * f (y-1); }

• Repeated application gives further benefit
– If there was a “y = z” before, z could be replaced instead
– Fewer variables reduce pressure on the use of a limited number of registers

12

Common subexpression
elimination
• If a program computes the same intermediate value several times,

the value can be re-used:
a = (b+c) * d
c = b + c

can be re-written as
temp = b+c
a = temp * d
c = temp

• Common subexpressions can occur as side-effects of translation
a[i] = b[i] + 1
is liable to generate the same offset-calculation for “[i]” twice, if a and b are same type

13

Unreachable code elimination

• It can be useful to insert code that never runs under particular
compile-time conditions:

#define DEBUG false
…
s = 1;
if (DEBUG)
 printf (“s = %d”, s);

translates to “s=1;” when you don’t care for the output

(Unreachable code can be hard to detect in low-IR, where control
flow is reduced to jumps and labels)

14

Dead vs. unreachable

• Statements can also be eliminated if their effects are never
seen

x = y+1
y = 1
x = 2 * z
becomes
y = 1
x = 2 * z
because the y+1 value of x is never used (it’s “dead”)

• Dead code may appear as a side-effect of translation, and/or
other optimizations

15

Loop-invariant code motion

• Code that repeats the same computation inside a loop can be
moved out of the iteration:

for (i=0; i<360; i++)
 angle_rad = i * (PI / 180.0)

becomes
temp = PI / 180.0
for (i=0; i<360; i++)
 angle_rad = i * temp

• Invariant code can only be moved if it has no visible side-effect
– Moving a print statement won’t do, even if its values are the same every iteration

16

Strength reduction

• Replace expensive operations with cheaper ones
for (i=0; i<n; i++) {
 v = 8 * i;
 sum += v;
}

can be written
v = -8;
for (i=0; i<n; i++) {
 v += 8;
 sum += v;
}

to replace multiplication by addition

17

Strength reduction

• If you take it one step further, the induction variable i can be removed
altogether:

v = -8;
for (i=0; i<n; i++) {
 v += 8;
 sum += v;
}

can be written
v = -8;
for (; v < (n-1)*8;) {
 v += 8;
 sum += v;
}

18

Strength reduction

• There are a bunch of equivalences for various
frequently used operation/value combinations

x * 2 = x+x
x * 2 = (x<<1) (for integers)
x * 2^c = (x<<c) ...
x / 2^c = (x>>c) …

– Whether a particular replacement actually saves any time is
architecture-dependent, and merits measurement

19

Loop unrolling

• Run loop body multiple times per iteration:
for (i=0; i<n; i++) { S; }
unrolled 4 times becomes
for (i=0; i<n; i+=4) { S0; S1; S2; S3; }

(with substitutions of ‘i+1’, ‘i+2’, ‘i+3’ for i in copies 1-3)

• Pro: computation workload is the same, but ¾ fewer
conditional branch instructions

• Con: loop body code grows bigger
– ...and needs care when n is not a multiple of 4...

20

The importance of loops

• Program hotspots are often loops
– Most execution time is spent doing repetitive tasks

• Loop optimizations multiply any gain of the
optimization by the iteration count

21

The safety of optimizing

• It’s best when you can rely on the compiler to implement these
maneuvers
– They make a mess of tidy source programs

• The compiler has to be conservative when applying optimizations
– E.g., it can not take a value to be constant unless the language semantics absolutely

guarantee it
– The programmer knows what the program is meant to do, but may overlook potential

interpretations that ruin automatic tuning

• Part of the value of studying compilers is to notice it when they can’t
help you do what you had in mind
– When it’s possible, you can rework the program so that the compiler sees what you want
– When it’s not, you can transform the program yourself (trading readability for speed only

where it counts)

22

Going forward

• There are many ways to boost the efficiency of a
program

• The whole is greater than the sum of parts
– optimizations interact
– optimizations can be applied several times
– optimizations can work at different levels of abstraction

• Problem:
When can we automatically detect that they are safe?

• That’s the backdrop for the last chunk of our syllabus

23

An elephant in the room

• The transformations we look at trade operations and
control flow constructs for each other

• I’ve alluded a few times to the observation that data
movement is at least equally important for program
performance

• Automatic recognition of data movement tuning is an open
research topic
– We don’t cover it much because contemporary compilers are frankly not

very good at it
– That’s well worth being aware of, we’ll return to it in the end

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

