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Introduction to optimizations

TDT4205 – Lecture 22
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Transformations to improve 
program performance
• This topic is scattered around a few different 

subchapters in the book
– Some are most easily applied to high-level IR
– Others are simpler at low-level

• I’m collecting them under a single heading to give a 
context for the analysis methods we’re about to cover
– Many optimizations require combinations of different analysis 

results
– If you can keep them at the back of your mind, it’s easier to see 

what the analyses are for
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A number of possible tricks

– Function inlining
– Function cloning
– Constant folding
– Constant propagation
– Unreachable/dead code elimination
– Loop-invariant code motion
– Common sub-expression elimination
– Strength reduction
– Loop unrolling
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Function inlining

• A function like
int sumsq ( x, y ) { return (x*x)+(y*y); }

makes the call
z = sumsq ( a, b );

equivalent to
z = (a*a)+(b*b);

• This saves a function call
– Altered control flow + memory interactions for stack frame

• Generated code size grows with the number of inlined function 
instances
– Repeated generation of same instruction sequence
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(As an aside)

• Both C and C++ have an inline keyword for functions, in support 
of this transformation
– In slightly different ways, these work as programmer-provided suggestions that the 

compiler should consider a function for inlining
– Whether or not they are inlined becomes subject to a performance estimate at the 

compiler’s discretion
– This is great, except for when it needs to behave predictably across different compilers

• Inlining can be forced with a macro definition
#define SUMSQ(x,y) ((x)*(x)+(y)*(y))
(at the cost of some type safety, and the benefit of the compiler’s analysis)

– The exercises may have revealed that I’m a habitual macro abuser
– For better or worse, my reason for that is the predictability thing
– Consider it a work-related injury if you will, excessive preprocessor use is not pretty 

software engineering
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Function cloning

• If we can establish that the arguments frequently have the value 1, the 
same function

int sumsq ( x, y ) { return (x*x)+(y*y); }

could be generated in multiple versions
int sumsq_x_eq_1 ( y ) { return (y*y)+1; }
int sumsq_y_eq_1 ( x ) { return (x*x)+1; }
int sumsq ( x, y ) {
   if ( x==1 ) return sumsq_x_eq_1 ( y );
   else if ( y==1 ) return sumsq_y_eq_1 ( x );
   else return (x*x)+(y*y);
}

• When the work saved in the appropriate clone outweighs the overhead 
of the inserted code to select it at run-time, this is an optimization
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Function cloning in action

• Without having to predict values, one use of this you may spot 
in the wild is
– Generate a variety of implementations which target various specific CPU 

instruction set extensions (vector operations, fused multiply-accumulate 
instructions, …)

– Inject run-time code to identify the specific CPU model in use
– Branch to the appropriate version of the function

• This creates portable code by default, and is usually 
complemented with the option to generate code for one 
specific instruction set (saving the overhead)
– In case you’re sure that your program will only ever run on, say, AVX2-capable 

processors
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Constant propagation

• If the value of a variable is known to be constant, its uses 
can be replaced by the constant value

n = 10
c = 2
for ( i = 0; i<n; i++ ) { s = s + i * c; }

becomes
for ( i=0; i<10; i++ ) { s = s + i * 2; }

– Named constants can appear for readability reasons, maintaining a 
single place to modify a constant used in many places, etc.
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Constant folding

• We do some of this when simplifying VSL trees:
x = 1.1 * 2;

becomes
x = 2.2;

Constant expressions appear for several reasons:
– “n_elements * sizeof(element_t)” reads more easily than “22*12”
– “2*PI” is clearer than “2 * 3.1415928...” is clearer than “6.283185...”
– Translations and optimizations can create them

 int x = a[2]  → t1 = 2*4
   t2 = a + t1
   x = *t2;
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Fancier constant folding

• Algebra can be simplified in a number of obvious ways:
x * 1 = x x * 0 = 0
x / 1 = x x + 0 = x
x || false = x x && true = x
etc. etc.

• Repeated application can simplify expressions away
a = 1; b=0; h = 1;
 (a*x + b*y) / (h*h)
→  (1*x + 0*y) / (1*1)
→ (x + 0) / 1
→ x

(NB: this can be risky business with floating point numbers)
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Copy propagation

• After x=y, y can be used instead of x until x is assigned 
differently

x = y;
if ( x > 1 ) { s = x * f ( x-1 ); }
becomes
x = y;
if ( y > 1 ) { s = y * f ( y-1 ); }

• Repeated application gives further benefit
– If there was a “y = z” before, z could be replaced instead
– Fewer variables reduce pressure on the use of a limited number of registers
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Common subexpression 
elimination
• If a program computes the same intermediate value several times, 

the value can be re-used:
a = (b+c) * d
c = b + c

can be re-written as
temp = b+c
a = temp * d
c = temp

• Common subexpressions can occur as side-effects of translation
a[i] = b[i] + 1
is liable to generate the same offset-calculation for “[ i ]” twice, if a and b are same type
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Unreachable code elimination

• It can be useful to insert code that never runs under particular 
compile-time conditions:

#define DEBUG false
…
s = 1;
if ( DEBUG )
    printf ( “s = %d”, s );

translates to “s=1;” when you don’t care for the output

(Unreachable code can be hard to detect in low-IR, where control 
flow is reduced to jumps and labels)
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Dead vs. unreachable

• Statements can also be eliminated if their effects are never 
seen

x = y+1
y = 1
x = 2 * z
becomes
y = 1
x = 2 * z
because the y+1 value of x is never used (it’s “dead”)

• Dead code may appear as a side-effect of translation, and/or 
other optimizations
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Loop-invariant code motion

• Code that repeats the same computation inside a loop can be 
moved out of the iteration:

for ( i=0; i<360; i++ )
  angle_rad = i * ( PI / 180.0 )

becomes
temp = PI / 180.0
for ( i=0; i<360; i++ )
  angle_rad = i * temp

• Invariant code can only be moved if it has no visible side-effect
– Moving a print statement won’t do, even if its values are the same every iteration
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Strength reduction

• Replace expensive operations with cheaper ones
for ( i=0; i<n; i++ ) {
 v = 8 * i;
   sum += v;
}

can be written
v = -8;
for ( i=0; i<n; i++ ) {
    v += 8;
    sum += v;
}

to replace multiplication by addition
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Strength reduction

• If you take it one step further, the induction variable i can be removed 
altogether:

v = -8;
for ( i=0; i<n; i++ ) {
    v += 8;
    sum += v;
}

can be written
v = -8;
for ( ; v < (n-1)*8; ) {
    v += 8;
    sum += v;
}
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Strength reduction

• There are a bunch of equivalences for various 
frequently used operation/value combinations

x * 2 = x+x
x * 2 = (x<<1) (for integers)
x * 2^c = (x<<c) ...
x / 2^c = (x>>c) …

– Whether a particular replacement actually saves any time is 
architecture-dependent, and merits measurement
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Loop unrolling

• Run loop body multiple times per iteration:
for ( i=0; i<n; i++ ) { S; }
unrolled 4 times becomes
for ( i=0; i<n; i+=4 ) { S0; S1; S2; S3; }

(with substitutions of ‘i+1’, ‘i+2’, ‘i+3’ for i in copies 1-3)

• Pro: computation workload is the same, but ¾ fewer 
conditional branch instructions

• Con: loop body code grows bigger
– ...and needs care when n is not a multiple of 4...
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The importance of loops

• Program hotspots are often loops
– Most execution time is spent doing repetitive tasks

• Loop optimizations multiply any gain of the 
optimization by the iteration count
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The safety of optimizing

• It’s best when you can rely on the compiler to implement these 
maneuvers
– They make a mess of tidy source programs

• The compiler has to be conservative when applying optimizations
– E.g., it can not take a value to be constant unless the language semantics absolutely 

guarantee it
– The programmer knows what the program is meant to do, but may overlook potential 

interpretations that ruin automatic tuning

• Part of the value of studying compilers is to notice it when they can’t 
help you do what you had in mind
– When it’s possible, you can rework the program so that the compiler sees what you want
– When it’s not, you can transform the program yourself (trading readability for speed only 

where it counts)
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Going forward

• There are many ways to boost the efficiency of a 
program

• The whole is greater than the sum of parts
– optimizations interact
– optimizations can be applied several times
– optimizations can work at different levels of abstraction

• Problem:
When can we automatically detect that they are safe?

• That’s the backdrop for the last chunk of our syllabus
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An elephant in the room

• The transformations we look at trade operations and 
control flow constructs for each other

• I’ve alluded a few times to the observation that data 
movement is at least equally important for program 
performance

• Automatic recognition of data movement tuning is an open 
research topic
– We don’t cover it much because contemporary compilers are frankly not 

very good at it
– That’s well worth being aware of, we’ll return to it in the end
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