

1

Data flow analysis framework
Partial orders, lattices, and operators

TDT4205 – Lecture 25

2

From last time
• We defined control flow graphs in terms of

– Operations
– Basic blocks of operations (that end in jumps)
– Program points

• As an example, we looked at live variables...
(variables that may still be used before their next assignment)

...how they can be found by traversing a control flow graph...
– Collect them in sets attached to program points
– Find out how instructions affect the sets attached to the neighboring program points
– Find out how to handle the sets at points where several control flows meet

...and how the control flow graph captures every possible execution of the program
(as well as a few impossible ones, to stay on the safe side)

3

There’s a general procedure
here
• Associate program points with sets that represent the

information we’re after
• Figure out how the sets change

– As a function of instructions
– As a function of meeting points between control paths

• Make a safe assumption at an initial point
• Work out the function throughout the graph
• Repeat until the sets stop changing

4

There are two issues with it

• Will the sets ever stop changing?
• Does the analysis get better by repeated

applications?
• We’ll talk about the first one today, and the second

one later

5

Convergence

• Will the scheme always work?
– It will under certain conditions:

• If the sets have a maximum and minimum possible size, and
• If the changes we make either only add or remove elements,

they will necessarily reach a point where they stop changing, so the
analysis ends.

• It’s good to guarantee that it does reach an end, so
that the compiler won’t get stuck on analyzing some
programs forever

6

Precision

• How good is the outcome of the analysis?
– We can call it precise if it reflects all the control flows the program

can/will take, and none of those it will not take

• A perfectly precise analysis can not be derived by a
computer

• It’s still good to see if we can say anything about how
much precision is lost, and why

7

Sets and orders

• Some sets have a sequence we’re taught in grade school
– Take the natural numbers, 1 < 2 < 3 < 4 < …
– The ordering relation here is ‘<’
– It is a total order, because it puts any pair of natural numbers in relation to

each other

• Other sets don’t have any
– Take the complex numbers, you can neither say that 1 is bigger, smaller, nor

equal to the imaginary unit

• Some sets let you consistently pick how to order them
– And you can write the ordering relation with some mildly deformed

comparison operator like “⊑”, to distinguish it from ≤, ⊆, and others

8

Partial order relations

• A partial order (P,⊑) contains
– A set of things (P)
– A partial order relation (⊑)

• The partial order relation is
– Reflexive: x ⊑ x
– Anti-symmetric: if x ⊑ y and y ⊑ x, then x = y
– Transitive: if x ⊑ y and y ⊑ z, then x ⊑ z

• For a total order then for every y,x either x ⊑ y or y ⊑ x
• In partial orders, not every pair needs to be comparable

9

An example

• We can partially order some food ingredients, for
illustration

• Let x y denote that x is an ingredient in y⊑
flour bread⊑
flour pasta⊑
eggs pasta⊑
yeast bread⊑
pasta lasagna⊑
bread sandwich⊑

10

Hasse diagrams

• Keeping transitivity in mind, we can draw a
picture of this order

• It’s implied that yeast goes into making a
sandwich via the bread connection

• There are pairs here which are not
comparable by our ingredient relation

flour eggsyeast

bread pasta

lasagnasandwich

11

Least Upper Bound (LUB)

• The least upper bound of an element pair is
the first thing they have in common, going
up the order

• LUB(yeast,flour) = bread

flour eggsyeast

bread pasta

lasagnasandwich

12

Greatest Lower Bound (GLB)

• The greatest lower bound of an element
pair is the first thing they have in common,
going down the order

• GLB(bread,pasta) = flour

flour eggsyeast

bread pasta

lasagnasandwich

13

Maximum and minimum

• Partial orders don’t necessarily have a unique top or
bottom

• GLB(yeast,eggs) doesn’t exist
• LUB(sandwich, pasta) doesn’t exist either

flour eggsyeast

bread pasta

lasagnasandwich

14

Lattices

• A partial order is a lattice if any finite (non-empty) subset has a
LUB and a GLB

• The natural numbers ordered by < is a lattice
– If you pick a finite subset, LUB is the biggest number you picked, and GLB is the

smallest one

• The natural numbers do have a unique bottom element (⊥)
– It’s zero

• They don’t have a unique top element (⊤)
– They are a countably infinite sequence

• You can pick infinite subsets
– The even numbers, the odd numbers, the primes...

15

Complete lattices

• A lattice is complete if any (non-empty) subset has a
LUB and GLB

• These have top (“biggest”) and bottom (“smallest”)
elements

For a complete lattice (L,)⊑
 ⊤ = LUB(L)
 ⊥ = GLB(L)

• Every finite lattice is complete

16

Meet and join

• Just to have some symbols that are independent of how
we choose the order, define two operators

• “Meet”
x y = GLB(x,y)⊓

• “Join”
x y = LUB(x,y)⊔

(…with their natural extension to sets of more elements...)

17

Power sets

• Enough with the food ingredients, consider the set
{a,b,c}

• Its Cartesian* product with itself is the set of all pairs
{ {a,b}, {a,c}, {b,c} }

• Its power set is
{∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

• The power set gives a partial order by the subset
relation ⊆

* Technically, the product of all unordered pair combinations is not called
“Cartesian”, but “n-th symmetric product” is cumbersome to say, and we
won’t need the distinction for anything.

18

The power set lattice

• Ordering relation: ⊆
• Meet operator: ∩
• Join operator: ∪
• Top: {a,b,c}
• Bottom: ∅

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

∅

19

We can turn it upside/down

Just switch the
operators around:

• Ordering relation: ⊇
• Meet operator: ∪
• Join operator: ∩
• Top: ∅
• Bottom: {a,b,c}

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

∅

20

Connection to live variables

• If we take {a,b,c} to be the three variables in a short
program, every possible choice of live variables
corresponds to a point in the power set lattice

• If we can express the effect of statements as a transfer
function from one place to another in the lattice, we can
argue that the set attached to a program point only moves
in one direction wrt. the order when it is applied repeatedly

• That means it will either end up at the top, or stop
somewhere before it

21

Transfer functions

• This is just a formalization of the idea that the
instruction between two program points is a function
from one place in the lattice to another

• For an instruction I
– Forward analysis: out[I] = F(in[I])
– Backward analysis: in[I] = F(out[I])

22

Extension to basic blocks

• The function of a block B is just a nesting of the
functions of its component instructions

• Forward:
out[B] = Fn (Fn-1 (… (F2 (F1 (in[B])))))

• Backward:
in[B] = F1 (F2 (… (Fn-1 (Fn (out[B])))))

23

Where paths meet up

• For the points where multiple control flows intersect:
• Forward:

in[B] = { out[B’] | B’ is a predecessor of B }⊓
• Backward:

out[B] = { in[B’] | B’ is a successor of B }⊓

If we really wanted to, we could use instead and reverse ⊔
the orders

With , transfers in the lattice move toward its bottom⊓
With , transfers in the lattice move toward its top⊔

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

