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Data flow analysis framework
Partial orders, lattices, and operators

TDT4205 – Lecture 25
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From last time
• We defined control flow graphs in terms of

– Operations
– Basic blocks of operations (that end in jumps)
– Program points

• As an example, we looked at live variables...
(variables that may still be used before their next assignment)

...how they can be found by traversing a control flow graph...
– Collect them in sets attached to program points
– Find out how instructions affect the sets attached to the neighboring program points
– Find out how to handle the sets at points where several control flows meet

...and how the control flow graph captures every possible execution of the program
(as well as a few impossible ones, to stay on the safe side)
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There’s a general procedure 
here
• Associate program points with sets that represent the 

information we’re after
• Figure out how the sets change

– As a function of instructions
– As a function of meeting points between control paths

• Make a safe assumption at an initial point
• Work out the function throughout the graph
• Repeat until the sets stop changing
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There are two issues with it

• Will the sets ever stop changing?
• Does the analysis get better by repeated 

applications?
• We’ll talk about the first one today, and the second 

one later
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Convergence

• Will the scheme always work?
– It will under certain conditions:

• If the sets have a maximum and minimum possible size, and
• If the changes we make either only add or remove elements,

they will necessarily reach a point where they stop changing, so the 
analysis ends.

• It’s good to guarantee that it does reach an end, so 
that the compiler won’t get stuck on analyzing some 
programs forever
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Precision

• How good is the outcome of the analysis?
– We can call it precise if it reflects all the control flows the program 

can/will take, and none of those it will not take

• A perfectly precise analysis can not be derived by a 
computer

• It’s still good to see if we can say anything about how 
much precision is lost, and why
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Sets and orders

• Some sets have a sequence we’re taught in grade school
– Take the natural numbers, 1 < 2 < 3 < 4 < …
– The ordering relation here is ‘<’
– It is a total order, because it puts any pair of natural numbers in relation to 

each other

• Other sets don’t have any
– Take the complex numbers, you can neither say that 1 is bigger, smaller, nor 

equal to the imaginary unit

• Some sets let you consistently pick how to order them
– And you can write the ordering relation with some mildly deformed 

comparison operator like “⊑”, to distinguish it from ≤, ⊆, and others
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Partial order relations

• A partial order (P,⊑) contains
– A set of things (P)
– A partial order relation (⊑)

• The partial order relation is
– Reflexive:  x ⊑ x
– Anti-symmetric: if x ⊑ y and y ⊑ x, then x = y
– Transitive:  if x ⊑ y and y ⊑ z, then x ⊑ z

• For a total order then for every y,x either x ⊑ y or y ⊑ x
• In partial orders, not every pair needs to be comparable
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An example

• We can partially order some food ingredients, for 
illustration

• Let x  y denote that x is an ingredient in y⊑
flour  bread⊑
flour  pasta⊑
eggs  pasta⊑
yeast  bread⊑
pasta  lasagna⊑
bread  sandwich⊑
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Hasse diagrams

• Keeping transitivity in mind, we can draw a 
picture of this order

• It’s implied that yeast goes into making a 
sandwich via the bread connection

• There are pairs here which are not 
comparable by our ingredient relation

flour eggsyeast

bread pasta

lasagnasandwich
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Least Upper Bound (LUB)

• The least upper bound of an element pair is 
the first thing they have in common, going 
up the order

• LUB(yeast,flour) = bread

flour eggsyeast

bread pasta

lasagnasandwich
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Greatest Lower Bound (GLB)

• The greatest lower bound of an element 
pair is the first thing they have in common, 
going down the order

• GLB(bread,pasta) = flour

flour eggsyeast

bread pasta

lasagnasandwich
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Maximum and minimum

• Partial orders don’t necessarily have a unique top or 
bottom

• GLB(yeast,eggs) doesn’t exist
• LUB(sandwich, pasta) doesn’t exist either

flour eggsyeast

bread pasta

lasagnasandwich



  

14

Lattices

• A partial order is a lattice if any finite (non-empty) subset has a 
LUB and a GLB

• The natural numbers ordered by < is a lattice
– If you pick a finite subset, LUB is the biggest number you picked, and GLB is the 

smallest one

• The natural numbers do have a unique bottom element (⊥)
– It’s zero

• They don’t have a unique top element (⊤)
– They are a countably infinite sequence

• You can pick infinite subsets
– The even numbers, the odd numbers, the primes...
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Complete lattices

• A lattice is complete if any (non-empty) subset has a 
LUB and GLB

• These have top (“biggest”) and bottom (“smallest”) 
elements

For a complete lattice (L, )⊑
 ⊤ = LUB(L)
 ⊥ = GLB(L)

• Every finite lattice is complete
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Meet and join

• Just to have some symbols that are independent of how 
we choose the order, define two operators

• “Meet”
x  y = GLB(x,y)⊓

• “Join”
x  y = LUB(x,y)⊔

(…with their natural extension to sets of more elements...)
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Power sets

• Enough with the food ingredients, consider the set 
{a,b,c}

• Its Cartesian* product with itself is the set of all pairs
{ {a,b}, {a,c}, {b,c} }

• Its power set is
{∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

• The power set gives a partial order by the subset 
relation ⊆

* Technically, the product of all unordered pair combinations is not called
“Cartesian”, but “n-th symmetric product” is cumbersome to say, and we
won’t need the distinction for anything.
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The power set lattice

• Ordering relation: ⊆
• Meet operator: ∩
• Join operator: ∪
• Top: {a,b,c}
• Bottom: ∅

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

∅
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We can turn it upside/down

Just switch the 
operators around:

• Ordering relation: ⊇
• Meet operator: ∪
• Join operator: ∩
• Top: ∅
• Bottom: {a,b,c}

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

∅
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Connection to live variables

• If we take {a,b,c} to be the three variables in a short 
program, every possible choice of live variables 
corresponds to a point in the power set lattice

• If we can express the effect of statements as a transfer 
function from one place to another in the lattice, we can 
argue that the set attached to a program point only moves 
in one direction wrt. the order when it is applied repeatedly

• That means it will either end up at the top, or stop 
somewhere before it
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Transfer functions

• This is just a formalization of the idea that the 
instruction between two program points is a function 
from one place in the lattice to another

• For an instruction I
– Forward analysis: out[I] = F(in[I])
– Backward analysis: in[I] = F(out[I])
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Extension to basic blocks

• The function of a block B is just a nesting of the 
functions of its component instructions

• Forward:
out[B] = Fn ( Fn-1 ( … ( F2 ( F1 ( in[B] ) ) ) ) )

• Backward:
in[B] = F1 ( F2 ( … ( Fn-1 ( Fn ( out[B] ) ) ) ) )
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Where paths meet up

• For the points where multiple control flows intersect:
• Forward:

in[B] =  { out[B’] | B’ is a predecessor of B }⊓
• Backward:

out[B] =  { in[B’] | B’ is a successor of B }⊓

If we really wanted to, we could use  instead and reverse ⊔
the orders

With , transfers in the lattice move toward its bottom⊓
With , transfers in the lattice move toward its top⊔
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