

1

Data flow analysis instances

TDT4205 – Lecture 27

2

Where we were

• We have gone through Live Variables
– by intuition, and
– as a set of constraint equations that converge to a fixed point when

you solve them iteratively, while
– looking at how the solutions correspond to positions in a lattice

and we’ve argued that the general method works for
different types of information as well.

• Today, we’ll try it out with
– A few different types of elements in the sets
– Different constraints

3

The framework ingredients

• A domain of things to analyze
– Sets of variables (Liveness)
– Sets of copies
– Sets of expressions
– Sets of variable definitions…

• A transfer function
– Gives a forward/backward direction
– Says how to change the sets based on the program logic

• A meet operator
– Says what to do when control flow paths collide

4

Copy propagation

• Some variables can be copies of each other, let us
detect them
– Liveness is a backward analysis that adds set elements from any

path to a program point
– Copy propagation is a forward analysis that restricts set elements

to those that are valid along every path to a program point

• We can work copy propagation out by intuition as
well, to illustrate the effects of direction and choice of
meet operator

5

Copy propagation
• I’ve modified

the running
example a bit,
so that there
are some
copies to
detect

x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

6

Copy propagation
• The first two

statements
create some
copies to start
with

• The loop body
makes x a
copy of another
variable than it
was before

x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

generate “x=z”
delete “x = anything else“

delete “y = anything”

7

Copy propagation
• Here’s an

assignment
which stops t
from being a
copy of any
other variable

x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

{x=z, z=t}

Delete
“t=anything”

and
“anything = t”

8

Copy propagation
• Control flows

meet:
To be sure that
we can treat
two variables
as copies of
each other,
there can’t be
any possibility
that they’re
different

x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

{x=z, z=t}

{x=z}
Copies are only

guaranteed to be copies
if they are copies

along every path to here

9

Copy propagation
x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

{x=z, z=t}

{x=z}
{x=z}

Delete copies with z
Generate “z=t”

10

Copy propagation
x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

{x=z, z=t}

{x=z}
{x=z}

{z=t}

11

Iteration 2
• We’ve found a path

to the loop head
where x=y is not
necessarily true

• Take it away:
{x=y,z=t} {z=t}⋂
= {z=t}

x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

{x=z, z=t}

{x=z}
{x=z}

{z=t}

{x=y,z=t}

12

Solution
x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{z=t}

{x=z, z=t}

{x=z}
{x=z}

{z=t}

{z=t}

13

Available Expressions

• An available expression is an expression evaluated in
all program executions, which would have the same
value if re-evaluated

• The sets we look for are sets of expressions, so we
need to number all of those

14

Available Expressions
Data flow equations
• Instructions:

out[B] = FB (in[B]) (Forward analysis)

• Control flow:
in[B] = { out[B’] | B’ pred(B) }⋂ ∈ (Meet op. is intersection)

• Interpretation:
An expression is available at the entry of B if it is
available at the exit of all predecessor blocks

15

Available Expressions
Transfer function

FI(X) = { X – kill [I] } gen [I]⋃
where

kill [I] = expressions “killed” by I
gen [I] = expressions “generated” by I

x = y OP z generates {y OP z}, kills expr. with x in them
x = OP y generates {OP y}, kills expr. with x
x = y generates nothing, kills expr. with x
x = & y generates nothing, kills expr. with x
if (x) generates nothing, kills nothing
return x generates nothing, kills nothing
x = f (y1, y2, …, yn) generates nothing, kills expr with x

16

Expressions in the example

e1: y + 1
e2: 2 * z
e3: y + z

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

17

Data flow equations

L4 = { L3 } {e1}⋃
L5 = { L4 – e1 } e2⋃
L8 = { L7 } e3⋃
L9 = L6 L8⋂
L10 = L9 – {e2,e3}
L12 = L11– {e2,e3}

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

e1: y +1
e2: 2 * z
e3: y + z

18

Iteration 1
L1 =
L2 =
L3 =
L4 = e1
L5 = {e1 – e1 } e2 = e2⋃
L6 = e2
L7 = e2
L8 = e2,e3
L9 = {e2} {e2,e3} = e2⋂
L10 = {e2 – e2} = {}
L11 =
L12 =

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

e1: y +1
e2: 2 * z
e3: y + z

L1 = {} L10⋂
L4 = { L3 } {e1}⋃

L5 = { L4 – e1 } e2⋃
L8 = { L7 } e3⋃

L9 = L6 L8⋂
L10 = L9 – {e2,e3}

L11 = L1
L12 = L11– {e2,e3}

19

Iteration 2: no change
L1 =
L2 =
L3 =
L4 = e1
L5 = e2
L6 = e2
L7 = e2
L8 = e2,e3
L9 = e2
L10 =
L11 =
L12 =

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

e1: y +1
e2: 2 * z
e3: y + z

L1 = {} L10⋂
L4 = { L3 } {e1}⋃

L5 = { L4 – e1 } e2⋃
L8 = { L7 } e3⋃

L9 = L6 L8⋂
L10 = L9 – {e2,e3}

L11 = L1
L12 = L11– {e2,e3}

20

Reaching Definitions

• A reaching definition is a definition of a variable
where the assigned value may be observed at a
program point in some execution

• The sets we look for are sets of assignments, so we
need to number all of those

21

Reaching Definitions
Data flow equations
• Instructions:

out[B] = FB (in[B]) (Forward analysis)

• Control flow:
in[B] = { out[B’] | B’ pred(B) }⋃ ∈ (Meet op. is union)

• Interpretation:
A definition reaches the entry of block B if it reaches
the exit of at least one of its predecessor nodes

22

Reaching Definitions
Transfer function

FI(X) = { X – kill [I] } gen [I]⋃
where

kill [I] = definitions “killed” by I
gen [I] = definitions “generated” by I

x = y OP z generates {x = y OP z}, kills other definitions of x
x = OP y generates {x = OP y}, kills other definitions of x
x = y generates {x = y}, kills other definitions of x
x = & y generates {x = &y}, kills other definitions of x
if (x) generates nothing, kills nothing
return x generates nothing, kills nothing
x = f (y1, y2, …, yn) generates {x = f…}, kills other definitions of x

23

Definitions in the example

d1: x = y +1
d2: y = 2 * z
d3: x = y + z
d4: z = 1
d5: z = x

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

24

Data flow equations

L1 = {} L10⋃
L4 = {L3-d3} d1⋃
L5 = L4 d2⋃
L8 = {L7-d1} d3⋃
L9 = L6 L8⋃
L10 = {L9-d5} d4⋃
L11 = L2
L12 = {L11-d4} d5⋃

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

d1: x = y+1
d2: y = 2*z
d3: x = y+z
d4: z = 1
d5: z = x

25

Iteration 1
L1 =
L2 =
L3 =
L4 = d1
L5 = d1,d2
L6 = d1,d2
L7 = d1,d2
L8 = d2,d3
L9 = {d1,d2} {d2,d3} = {d1,d2,d3}⋃
L10 = {d1,d2,d3} d4 = {d1,d2,d3,d4}⋃
L11 =
L12 = d5

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

d1: x = y+1
d2: y = 2*z
d3: x = y+z
d4: z = 1
d5: z = x

L1 = {} L10⋃
L4 = {L3-d3} d1⋃
L5 = L4 d2⋃
L8 = {L7-d1} d3⋃
L9 = L6 L8⋃
L10 = {L9-d5} d4⋃
L11 = L2
L12 = {L11-d4} d5⋃

26

Iteration 2
L1 = {} {d1,d2,d3,d4}⋃
L2 = d1,d2,d3,d4
L3 = d1,d2,d3,d4
L4 = d1,d2,d4
L5 = d1,d2,d4
L6 = d1,d2,d4
L7 = d1,d2,d4
L8 = d2,d3,d4
L9 = d1,d2,d3 {d1,d2,d4} = {d1,d2,d3,d4}⋃
L10 = d1,d2,d3,d4
L11 = d1,d2,d3,d4
L12 = d5 ⋃ d1,d2,d3 = {d1,d2,d3,d5}

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

d1: x = y+1
d2: y = 2*z
d3: x = y+z
d4: z = 1
d5: z = x

L1 = {} L10⋃
L4 = {L3-d3} d1⋃
L5 = L4 d2⋃
L8 = {L7-d1} d3⋃
L9 = L6 L8⋃
L10 = {L9-d5} d4⋃
L11 = L2
L12 = {L11-d4} d5⋃

27

Iteration 3: no change
L1 = d1,d2,d3,d4
L2 = d1,d2,d3,d4
L3 = d1,d2,d3,d4
L4 = d1,d2,d4
L5 = d1,d2,d4
L6 = d1,d2,d4
L7 = d1,d2,d4
L8 = d2,d3,d4
L9 = d1,d2,d3,d4
L10 = d1,d2,d3,d4
L11 = d1,d2,d3,d4
L12 =d1,d2,d3,d5

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

d1: x = y+1
d2: y = 2*z
d3: x = y+z
d4: z = 1
d5: z = x

L1 = {} L10⋃
L4 = {L3-d3} d1⋃
L5 = L4 d2⋃
L8 = {L7-d1} d3⋃
L9 = L6 L8⋃
L10 = {L9-d5} d4⋃
L11 = L2
L12 = {L11-d4} d5⋃

28

Key takeaways

• The choice of domain determines what we’re
analyzing

• With union as meet operator, we get “maybe”-
analyses
– There is a path where an element was introduced

• With intersection as meet operator, we get “must”-
analyses
– Every path introduces these elements

29

Next time

• We will
– put all these (and one more) into a big ol’ overview
– take out the lattices again, and try to say something about how well

the fixed point solution characterizes the analyzed program
– invent a function which lets us use the same method to detect loops

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

