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Data flow analysis instances

TDT4205 – Lecture 27
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Where we were

• We have gone through Live Variables
– by intuition, and
– as a set of constraint equations that converge to a fixed point when 

you solve them iteratively, while
– looking at how the solutions correspond to positions in a lattice

and we’ve argued that the general method works for 
different types of information as well.

• Today, we’ll try it out with
– A few different types of elements in the sets
– Different constraints
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The framework ingredients

• A domain of things to analyze
– Sets of variables (Liveness)
– Sets of copies
– Sets of expressions
– Sets of variable definitions…

• A transfer function
– Gives a forward/backward direction
– Says how to change the sets based on the program logic

• A meet operator
– Says what to do when control flow paths collide



  

4

Copy propagation

• Some variables can be copies of each other, let us 
detect them
– Liveness is a backward analysis that adds set elements from any 

path to a program point
– Copy propagation is a forward analysis that restricts set elements 

to those that are valid along every path to a program point

• We can work copy propagation out by intuition as 
well, to illustrate the effects of direction and choice of 
meet operator
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Copy propagation
• I’ve modified 

the running 
example a bit, 
so that there 
are some 
copies to 
detect

x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t
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Copy propagation
• The first two 

statements 
create some 
copies to start 
with

• The loop body 
makes x a 
copy of another 
variable than it 
was before

x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

generate “x=z”
delete “x = anything else“

delete “y = anything”
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Copy propagation
• Here’s an 

assignment 
which stops t 
from being a 
copy of any 
other variable

x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

{x=z, z=t}

Delete
“t=anything”

and
“anything = t”
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Copy propagation
• Control flows 

meet:
To be sure that 
we can treat 
two variables 
as copies of 
each other, 
there can’t be 
any possibility 
that they’re 
different

x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

{x=z, z=t}

{x=z}
Copies are only

guaranteed to be copies
if they are copies

along every path to here
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Copy propagation
x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

{x=z, z=t}

{x=z}
{x=z}

Delete copies with z
Generate “z=t”
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Copy propagation
x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

{x=z, z=t}

{x=z}
{x=z}

{z=t}
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Iteration 2
• We’ve found a path 

to the loop head 
where x=y is not 
necessarily true

• Take it away:
{x=y,z=t}  {z=t}⋂
= {z=t} 

x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{x=y,z=t}

{x=z, z=t}

{x=z}
{x=z}

{z=t}

{x=y,z=t}
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Solution
x = y
z = t

if (c)

x = z
y = 2*z
if(d)

t=1

u = z+1
z = t

{x=y,z=t}

{z=t}

{x=z, z=t}

{x=z}
{x=z}

{z=t}

{z=t}
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Available Expressions

• An available expression is an expression evaluated in 
all program executions, which would have the same 
value if re-evaluated

• The sets we look for are sets of expressions, so we 
need to number all of those
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Available Expressions
Data flow equations
• Instructions:

out[B] = FB ( in[B] ) (Forward analysis)

• Control flow:
in[B] =  { out[B’] | B’  pred(B) }⋂ ∈ (Meet op. is intersection)

• Interpretation:
An expression is available at the entry of B if it is 
available at the exit of all predecessor blocks
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Available Expressions
Transfer function

FI(X) = { X – kill [I] }  gen [I]⋃
where

kill [ I ] = expressions “killed” by I
gen [ I ] = expressions “generated” by I

x = y OP z   generates {y OP z}, kills expr. with x in them
x = OP y   generates {OP y}, kills expr. with x
x = y   generates nothing, kills expr. with x
x = & y   generates nothing, kills expr. with x
if ( x )   generates nothing, kills nothing
return x   generates nothing, kills nothing
x = f ( y1, y2, …, yn ) generates nothing, kills expr with x
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Expressions in the example

e1: y + 1
e2: 2 * z
e3: y + z

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12
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Data flow equations

L4 = { L3 }  {e1}⋃  
L5 = { L4 – e1 }  e2⋃
L8 = { L7 }  e3⋃
L9 = L6  L8⋂
L10 = L9 – {e2,e3}
L12 = L11– {e2,e3}

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

e1: y +1
e2: 2 * z
e3: y + z
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Iteration 1
L1 = 
L2 =
L3 = 
L4 = e1
L5 = {e1 – e1 }  e2 = e2⋃
L6 = e2
L7 = e2
L8 = e2,e3
L9 = {e2}  {e2,e3} = e2⋂
L10 = {e2 – e2} = {}
L11 = 
L12 =

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

e1: y +1
e2: 2 * z
e3: y + z

L1 = {}  L10⋂
L4 = { L3 }  {e1}⋃  

L5 = { L4 – e1 }  e2⋃
L8 = { L7 }  e3⋃

L9 = L6  L8⋂
L10 = L9 – {e2,e3}

L11 = L1
L12 = L11– {e2,e3}
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Iteration 2: no change
L1 =
L2 =
L3 = 
L4 = e1
L5 = e2
L6 = e2
L7 = e2
L8 = e2,e3
L9 = e2
L10 =
L11 = 
L12 =

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

e1: y +1
e2: 2 * z
e3: y + z

L1 = {}  L10⋂
L4 = { L3 }  {e1}⋃  

L5 = { L4 – e1 }  e2⋃
L8 = { L7 }  e3⋃

L9 = L6  L8⋂
L10 = L9 – {e2,e3}

L11 = L1
L12 = L11– {e2,e3}
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Reaching Definitions

• A reaching definition is a definition of a variable 
where the assigned value may be observed at a 
program point in some execution

• The sets we look for are sets of assignments, so we 
need to number all of those



  

21

Reaching Definitions
Data flow equations
• Instructions:

out[B] = FB ( in[B] ) (Forward analysis)

• Control flow:
in[B] =   { out[B’] | B’  pred(B) }⋃ ∈ (Meet op. is union)

• Interpretation:
A definition reaches the entry of block B if it reaches 
the exit of at least one of its predecessor nodes
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Reaching Definitions
Transfer function

FI(X) = { X – kill [I] }  gen [I]⋃
where

kill [ I ] = definitions “killed” by I
gen [ I ] = definitions “generated” by I

x = y OP z  generates {x = y OP z}, kills other definitions of x
x = OP y   generates {x = OP y}, kills other definitions of x
x = y   generates {x = y}, kills other definitions of x
x = & y   generates {x = &y}, kills other definitions of x
if ( x )   generates nothing, kills nothing
return x   generates nothing, kills nothing
x = f ( y1, y2, …, yn ) generates {x = f…}, kills other definitions of x
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Definitions in the example

d1: x = y +1
d2: y = 2 * z
d3: x = y + z
d4: z = 1
d5: z = x

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12
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Data flow equations

L1 = {}  L10⋃
L4 = {L3-d3}  d1⋃
L5 = L4  d2⋃
L8 = {L7-d1}  d3⋃
L9 = L6  L8⋃
L10 = {L9-d5}  d4⋃
L11 = L2
L12 = {L11-d4}  d5⋃

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

d1: x = y+1
d2: y = 2*z
d3: x = y+z
d4: z = 1
d5: z = x
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Iteration 1
L1 = 
L2 =
L3 = 
L4 = d1
L5 = d1,d2
L6 = d1,d2
L7 = d1,d2
L8 = d2,d3
L9 = {d1,d2}  {d2,d3} = {d1,d2,d3}⋃
L10 = {d1,d2,d3}  d4 = {d1,d2,d3,d4}⋃
L11 = 
L12 = d5

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

d1: x = y+1
d2: y = 2*z
d3: x = y+z
d4: z = 1
d5: z = x

L1 = {}  L10⋃
L4 = {L3-d3}  d1⋃
L5 = L4  d2⋃
L8 = {L7-d1}  d3⋃
L9 = L6  L8⋃
L10 = {L9-d5}  d4⋃
L11 = L2
L12 = {L11-d4}  d5⋃
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Iteration 2
L1 = {}  {d1,d2,d3,d4}⋃
L2 = d1,d2,d3,d4
L3 = d1,d2,d3,d4
L4 = d1,d2,d4
L5 = d1,d2,d4
L6 = d1,d2,d4
L7 = d1,d2,d4
L8 = d2,d3,d4
L9 = d1,d2,d3  {d1,d2,d4} = {d1,d2,d3,d4}⋃
L10 = d1,d2,d3,d4
L11 = d1,d2,d3,d4
L12 = d5 ⋃ d1,d2,d3 = {d1,d2,d3,d5}

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

d1: x = y+1
d2: y = 2*z
d3: x = y+z
d4: z = 1
d5: z = x

L1 = {}  L10⋃
L4 = {L3-d3}  d1⋃
L5 = L4  d2⋃
L8 = {L7-d1}  d3⋃
L9 = L6  L8⋃
L10 = {L9-d5}  d4⋃
L11 = L2
L12 = {L11-d4}  d5⋃
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Iteration 3: no change
L1 = d1,d2,d3,d4
L2 = d1,d2,d3,d4
L3 = d1,d2,d3,d4
L4 = d1,d2,d4
L5 = d1,d2,d4
L6 = d1,d2,d4
L7 = d1,d2,d4
L8 = d2,d3,d4
L9 = d1,d2,d3,d4
L10 = d1,d2,d3,d4
L11 = d1,d2,d3,d4
L12 =d1,d2,d3,d5

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

L1

L2
L3

L4
L5

L6
L7

L8 L9

L10
L11

L12

d1: x = y+1
d2: y = 2*z
d3: x = y+z
d4: z = 1
d5: z = x

L1 = {}  L10⋃
L4 = {L3-d3}  d1⋃
L5 = L4  d2⋃
L8 = {L7-d1}  d3⋃
L9 = L6  L8⋃
L10 = {L9-d5}  d4⋃
L11 = L2
L12 = {L11-d4}  d5⋃
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Key takeaways

• The choice of domain determines what we’re 
analyzing

• With union as meet operator, we get “maybe”-
analyses
– There is a path where an element was introduced

• With intersection as meet operator, we get “must”-
analyses
– Every path introduces these elements
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Next time

• We will
– put all these (and one more) into a big ol’ overview
– take out the lattices again, and try to say something about how well 

the fixed point solution characterizes the analyzed program
– invent a function which lets us use the same method to detect loops
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