
  

1

Dataflow Analysis Framework:
Summary and precision

TDT4205 – Lecture 28
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We have looked at

• Live Variables
• Available Expressions
• Reaching Definitions
• Copy Propagation

– as instances of a general dataflow analysis method
– as points in a control flow graph
– as data flow equations that associate sets with the points
– as positions in a partial order (lattice) of possible sets

• Today, we’ll add one more (Constant Folding) and look at 
how good our iterative solution is
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Constant Folding
(and propagation)
• The domain we’re after is pairs of variables, and their 

constant values.
– Obviously, not every variable will have a constant value, more on that 

in a minute

• Forward analysis
– Traces paths from a point where a variable may be constant, to any 

point where we have determined that it isn’t

• An intersection meet operator (of sorts)
– A constant value must be the same along every path, otherwise it isn’t 

very constant
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Three levels of information

• We can say three things about the constant-ness of a 
variable X
1) X may be a constant, but we haven’t found its value yet
2) X may be a constant, its value has only been 36 (or some other number)
3) X is not constant, we’ve seen changes in its value

● We can order these observations according to how much 
we’ve found out about X:

X = ⊤ ← Can’t say anything about X yet (“least precise knowledge”)
X = 21 ← X is 21 somewhere in the program
X = ⊥ ← X is not 21 everywhere (“most precise knowledge”)
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The program logic

• An assignment of a constant to a variable (v=c) generates 
that pair as a possibly constant value

gen [ I ] = {v=c}

• It also destroys the possibility that v is any other constant than 
c

kill [ I ] = {v=n where n ≠ c}

• An assignment of an expression (v=u+w) generates a 
possibly constant value if all its terms are constant

gen [ I ] = {v=k} kill [ I ] = { v=n where n ≠ k}
k=u+w if u,w are constants
k=  ⊥ if u or w are  ⊥ (known to be not-constant)
k= T otherwise
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If we draw the three levels

• There is an infinity of constants
• “X=36” is as informative as “X=21”, but taken 

together, they say that X is neither 36 nor 21 always
• A lattice of more and less informative levels becomes

⊤

⊥

0 1-1-2 2 ......

(It’s infinitely wide, but has finite height)
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When X=⊤ meets X=2

• One set of observations haven’t seen any value for X
• The other has only seen that X = 2
• X could be the constant 2
• {X= } ⊤ ⨅ {X=2} gives {X=2} (greatest lower bound in the order)

⊤

⊥

0 1-1-2 2 ......
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When X=-1 meets X=2

• One set of observations have only seen that X=-1
• The other has only seen that X = 2
• X can’t be a constant, there are two different values
• {X=-1} ⨅ {X=2} gives {X= }⊥ (greatest lower bound in the order)

⊤

⊥

0 1-1-2 2 ......
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Part of a meet operator

• This ordering relation of 
 ⊥ ⊑ (numbers) ⊑ ⊤

and the meet operator
p  q = glb ( p, q )⨅ (in our constants-lattice)

gives how to handle multiple observations about one 
variable
– The p-s and q-s here are set elements like “X=64”, “X= ”, “X= ”, ⊥ ⊤ et 

cetera.
– Those all talk about one variable
– “Y=27”, “Y=13”, “Y= ” are positions in a separate lattice, which describes ⊤

the constant-ness of Y
(that has the exact same structure)
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When there are more 
variables
• The domain of the Constant Folding analysis is sets of bindings to 

values
{v1=c1, v2=c2, v3=c3,…}

where the c-s are , , or numbers⊥ ⊤
• Between two program points, the transfer function then takes us 

between
{v1=c1, v2=c2, v3=c3, …}

and
{v1’=c1’, v2=c2’ v3=c3’, …}

• Can we confidently say that
{v1=c1, v2=c2, v3=c3, …} ⊒ {v1’=c1’, v2=c2’ v3=c3’, …}

so that the transfer function will work towards a guaranteed, finite goal?
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Products of lattices
• Lattices are partial orders, they consist of a set, and an order

(which fulfills the constraint that all subsets have a g.l.b. and l.u.b.)

• The sets have Cartesian products
L1 x L2 = { (x,y) | x  L∊ 1, y  L∊ 2 }

L1 x L2 x L3= { (x,y,z) | x  L∊ 1, y  L∊ 2, z  L∊ 3}

...and so on…

• If L1, … Ln are (complete) lattices, their Cartesian product is a (complete) lattice as 
well, with the order defined so that the n-tuples

(y1, y2, … , yn)  ( x⊒ 1, x2, … , xn)

if and only if
y1  x⊒ 1 , y2  x⊒ 2, … , yn  x⊒ n

• In other words, if we apply a monotonic function to all the elements in the n-tuple 
from a lattice product, the n-tuples preserve the same order
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The whole meet operator

• When two control paths meet up, their respective const-information 
sets might be something like

{x = 3, y = , z = 5}⊤
and
{x = 3, y = 2, z = }⊥

• The CF meet operator applies the constant-glb relation to all pairs
    {x = 3, y = ⊤, z = 5}

 ⨅ {x = 3, y = 2, z = ⊥}
=  {x = 3, y = 2, z = ⊥}

glb(3,3) = 3, glb( ,2) = 2⊤ , glb(5, ) = ⊥ ⊥
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Convergence

• The whole CF lattice is ordered by the relation from the 
constant-lattices of each of its variables

• The meet op. (glb) of the constant-ness states of one variable is 
monotonic
– It never goes from “X = 24” to “X is still unknown” (⊤)
– It never goes from “X is not constant” (⊥) to “X is 62” either

• Therefore, the combination of individual meets for all the 
variables is monotonic also
– Same rationale, it’s not going to go from a “more specific” point

{x = 3, y = 2, z = } ⊥
to a “less specific” point like

{x = 3, y = 2, z = 5}
because that’s not what comes out of {z = }  {z = 5}⊥ ⨅
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The analyses we have seen

• Ok… to recap what we know about all this stuff now
– Domains are made up of elements that represent information from 

the source code, they are sets of
Live variables (Liveness)
Pairs of variables (Copy Propagation)
Expressions (Available Expressions)
Definitions / assignments (Reaching Definitions)
Constant-information about variables (Constant Folding)
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Transfer functions

• Descriptions of how statements affect the sets at program points before 
and after

LV: lv before = { lv after – var. defined } ⋃ { var. used }
CP: copies after = { copies before - copies ruined } ⋃ { copies made }
AE: expr. after = { expr. before – expr. ruined } ⋃ { expr. evaluated }
RD: defs after = { defs before – defs overwritten } ⋃ { defs made }
CF: const after = { const before – non-const found} ⋃ { const made }

or, with more conventional notation
LV: in[I] = { out[I] - def(I) } ⋃ use(I) (Backward)
CP: out[I] = { in[I] – kill(I) } ⋃ gen(I) (Forward)
AE: out[I] = { in[I] – kill(I) } ⋃ gen(I) (Forward)
RD: out[I] = { in[I] – kill(I) } ⋃ gen(I) (Forward)
CF: out[I] = { in[I] – kill(I) } ⋃ gen(I) (Forward)

(what each analysis kills and generates follows from how the instructions affect its domain)
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Meet operators

• Descriptions of how to combine control flow paths, 
when they cross

LV: U (variables used along any path)
CP: ∩ (copies made along every path)
AE: ∩ (expressions available along every path)
RD: U (definitions coming from any path)
CF: ⨅CF (glb relation from constant-ness lattices)
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Monotonicity

• Guarantee that iterating over the data flow equations take 
program points strictly toward one end of the domain’s order

• The contributions from instructions are static, the source code 
doesn’t change during analysis

• The meet operators only contribute in one direction
LV: x U y is glb in power set lattice of variables
CP: x ∩ y is glb in power set lattice of copies
AE: x ∩ y is glb in power set lattice of expressions
RD: x U y is glb in power set lattice of definitions
CF: x ⨅CF y is glb in the product of constant-lattices we discussed

• None of these analyses will run forever
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Ups and downs

• Up until this point, I waved my hands at the beginning and 
pointed out that we can arrange our lattice orders
– With ∅ at the bottom and the set all elements at the top
– With ∅ at the top and the set of all elements at the bottom
– With g.l.b. and l.u.b. determining the direction when points are combined
– An idea of a “Top” (⊤) and “Bottom” ( )⊥
– Some matching, vague notion of “more” and “less” program information

and suggested that all of these can be rearranged as a matter of 
notation

• I have played fast and loose with this because we haven’t said 
anything where it matters
– Same kind of nuisance as talking about stacks that grow into lower addresses, it’s 

disruptive to stop and remember that up is down and plus is minus every 2 minutes
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Making a choice

• Consistency matters more in an overview, so let’s 
standardize it a bit

• Choose the top  to be the most an analysis can ⊤
hope for

• Choose the meet operator  to be the greatest lower ⨅
bound of a lattice subset

• Choose the bottom  to be the worst outcome⊥
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Why choose these?

• The book draws with up/down in these directions (Fig. 9.22, p.622) 

• We need a convention before discussing “precision”

• On the other hand
– Several fixed points can solve the same system of constraint equations
– The one that our iterative method finds is called the maximal fixed point
– It is “maximal” in the sense of being at the end of a chain of states which is as long 

as possible
– Paradoxically, that puts it closest to the order point called “bottom”

(sigh)
– That’s the way it goes
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Interpretations from top to 
bottom

∅
For live variables:

a b c

a,b a,c b,c

a,b,c

Most useful:
No variables are
needed

Most careful:
All variables are
needed
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Interpretations from top to 
bottom
For available expressions:

e1,e2
e1,e3 e2,e3

e1 e2 e3

e1,e2,e3

Most useful:
All expressions
can be re-used

Most careful:
No expressions
can be re-used∅
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Several solutions

• As a trivial example, take the “program” x = y+z, and consider 
liveness
– We get 1 constraint equation: in = {out – x} U {y,z}

• Start from out = {x,y,z}
{y,z} are live here

x = y + z
{x,y,z} are live here

• Start from out = {}
{y,z} are live here

x = y + z
{} is live here

• These are both solutions to the data flow equation
• Apply the constraints again, nothing changes in either case
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This path will
never be taken

What’s the best solution?

• That would be the one which captures what the 
program actually does:

if(true)

if(true)

a = b + c x = y + z

a = d + e x = v + w

{b,c,d,e} live
{v,w,y,z} dead
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Which solution does the 
framework suggest?
• That’s the one which comes from considering the 

meet operator applied to all possible paths

if(true)

if(true)

a = b + c x = y + z

a = d + e x = v + w

{b,c,d,e} U {b,c,v,w} U {y,z,d,e} U {y,z,v,w} = {b,c,d,e,v,w,y,z}
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Which solution do we 
compute?
• The one that comes from starting every point at , ⊤

and iterating with  until there’s no change⨅
if(true)

if(true)

a = b + c x = y + z

a = d + e x = v + w
{d,e} U 
{v,w}

{b,c,d,e,v,w} U {y,z,d,e,v,w}

{b,c,d,e,v,w,y,z}
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Names for those

• In order, we can call them
IDEAL             (The one that accurately reflects the code)
Meet-Over-Paths       (The one that considers every path)
Maximal Fixed Point     (The one we get by iterating from )⊤

• IDEAL is the most precise solution, because it would tell us 
exactly what the program means
– Sadly, that can not be computed automatically

• MOP would be as close as we could get by static inspection
– Trace every possible execution individually, apply  between all⨅
– Sadly, we can’t compute that either
– “Every possible execution” includes going through every (dynamically 

determined) loop once, two times, three times, … and on to infinity
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Their relationship

• The solution we do get (the way we’ve been working), is the MFP
The iterations for a point go through a descending chain

  ⊤ ⊒ F( )  F(F( ))  …  MFP⊤ ⊒ ⊤ ⊒ ⊒ (← where we stop iterating)

• This is excessively careful
– It combines paths as soon as possible, thereby losing precision
– We’ll see in a minute

• It’s safe
MOP  ⊒ MFP

– They’re often the same (as in all our examples so far)
– When they differ, MOP is closer to the most useful end of the order

• MOP applies constraints along paths never taken, when there are any
IDEAL  MOP  MFP⊒ ⊒
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MFP evaluation

• MFP computes the function of B3 on the combination 
of out(B1) and out(B2)

B1 B2

B3

out(B1)  out(B⨅ 2)

FB3( out(B1)  out(B⨅ 2) )
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MOP evaluation

• MOP computes the function of B3 by combining
– B3s effect on out(B1)

– B3s effect on out(B2)

B1 B2

B3

out(B2)

FB3( out(B1) )   F⨅ B3( out(B2) )

out(B1)
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Distributivity

• If F is a distributive function wrt. ⨅, then
F ( x  y ) = F(x)  F(y)⨅ ⨅
(that’s the definition of distributive)

• When the function representing an analysis has this property, then the 
MFP solution (we can compute) is the same as the MOP solution (we 
can’t compute)

• When
– the function is just adding and removing elements to sets
– the operator is just simple combinations of set elements

distributivity follows
If F is something like “delete element x”, then practically by common sense,
F( {x,y,z} U {v,w,x} ) = {v,w,y,z}
F( {x,y,z} ) U F( {v,w,x} ) = {y,z} U {v,w} = {v,w,y,z}
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Distributivity vs Constant Folding

• LV, CP, AE, RD all give MFP=MOP, because their functions are distributive wrt. 
their respective union/intersection meet operators

• The constant-detecting scheme is not distributive wrt. its funny meet operator
• Witness:

X=3
Y=2

X=2
Y=3

Z = Y + X
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Distributivity vs Constant Folding

• By Meet-Over-Paths, here are the two paths

X=3
Y=2

X=2
Y=3

Z = Y + X

{X=3,Y=2}

{X=3,Y=2, Z=5}

X=3
Y=2

X=2
Y=3

Z = Y + X
{X=2,Y=3}

{X=2,Y=3, Z=5}

This gives the MOP solution

{X=3,Y=2, Z=5} ⨅CF {X=2,Y=3, Z=5}  =   {X= , Y= , ⊥ ⊥ Z = 5 }
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Distributivity vs Constant Folding

• The Maximal Fixed Point solution is less informative, it misses that Z=5 
regardless of which way it’s calculated

X=3
Y=2

X=2
Y=3

Z = Y + X

{X=3,Y=2}

{X=⊥,Y=⊥, Z=⊥}

{X=2,Y=3}

{X=3,Y=2} ⨅CF {X=2,Y=3}  = {X=⊥,Y=⊥}
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