

1

Dataflow Analysis Framework:
Summary and precision

TDT4205 – Lecture 28

2

We have looked at

• Live Variables
• Available Expressions
• Reaching Definitions
• Copy Propagation

– as instances of a general dataflow analysis method
– as points in a control flow graph
– as data flow equations that associate sets with the points
– as positions in a partial order (lattice) of possible sets

• Today, we’ll add one more (Constant Folding) and look at
how good our iterative solution is

3

Constant Folding
(and propagation)
• The domain we’re after is pairs of variables, and their

constant values.
– Obviously, not every variable will have a constant value, more on that

in a minute

• Forward analysis
– Traces paths from a point where a variable may be constant, to any

point where we have determined that it isn’t

• An intersection meet operator (of sorts)
– A constant value must be the same along every path, otherwise it isn’t

very constant

4

Three levels of information

• We can say three things about the constant-ness of a
variable X
1) X may be a constant, but we haven’t found its value yet
2) X may be a constant, its value has only been 36 (or some other number)
3) X is not constant, we’ve seen changes in its value

● We can order these observations according to how much
we’ve found out about X:

X = ⊤ ← Can’t say anything about X yet (“least precise knowledge”)
X = 21 ← X is 21 somewhere in the program
X = ⊥ ← X is not 21 everywhere (“most precise knowledge”)

5

The program logic

• An assignment of a constant to a variable (v=c) generates
that pair as a possibly constant value

gen [I] = {v=c}

• It also destroys the possibility that v is any other constant than
c

kill [I] = {v=n where n ≠ c}

• An assignment of an expression (v=u+w) generates a
possibly constant value if all its terms are constant

gen [I] = {v=k} kill [I] = { v=n where n ≠ k}
k=u+w if u,w are constants
k= ⊥ if u or w are ⊥ (known to be not-constant)
k= T otherwise

6

If we draw the three levels

• There is an infinity of constants
• “X=36” is as informative as “X=21”, but taken

together, they say that X is neither 36 nor 21 always
• A lattice of more and less informative levels becomes

⊤

⊥

0 1-1-2 2

(It’s infinitely wide, but has finite height)

7

When X=⊤ meets X=2

• One set of observations haven’t seen any value for X
• The other has only seen that X = 2
• X could be the constant 2
• {X= } ⊤ ⨅ {X=2} gives {X=2} (greatest lower bound in the order)

⊤

⊥

0 1-1-2 2

8

When X=-1 meets X=2

• One set of observations have only seen that X=-1
• The other has only seen that X = 2
• X can’t be a constant, there are two different values
• {X=-1} ⨅ {X=2} gives {X= }⊥ (greatest lower bound in the order)

⊤

⊥

0 1-1-2 2

9

Part of a meet operator

• This ordering relation of
 ⊥ ⊑ (numbers) ⊑ ⊤

and the meet operator
p q = glb (p, q)⨅ (in our constants-lattice)

gives how to handle multiple observations about one
variable
– The p-s and q-s here are set elements like “X=64”, “X= ”, “X= ”, ⊥ ⊤ et

cetera.
– Those all talk about one variable
– “Y=27”, “Y=13”, “Y= ” are positions in a separate lattice, which describes ⊤

the constant-ness of Y
(that has the exact same structure)

10

When there are more
variables
• The domain of the Constant Folding analysis is sets of bindings to

values
{v1=c1, v2=c2, v3=c3,…}

where the c-s are , , or numbers⊥ ⊤
• Between two program points, the transfer function then takes us

between
{v1=c1, v2=c2, v3=c3, …}

and
{v1’=c1’, v2=c2’ v3=c3’, …}

• Can we confidently say that
{v1=c1, v2=c2, v3=c3, …} ⊒ {v1’=c1’, v2=c2’ v3=c3’, …}

so that the transfer function will work towards a guaranteed, finite goal?

11

Products of lattices
• Lattices are partial orders, they consist of a set, and an order

(which fulfills the constraint that all subsets have a g.l.b. and l.u.b.)

• The sets have Cartesian products
L1 x L2 = { (x,y) | x L∊ 1, y L∊ 2 }

L1 x L2 x L3= { (x,y,z) | x L∊ 1, y L∊ 2, z L∊ 3}

...and so on…

• If L1, … Ln are (complete) lattices, their Cartesian product is a (complete) lattice as
well, with the order defined so that the n-tuples

(y1, y2, … , yn) (x⊒ 1, x2, … , xn)

if and only if
y1 x⊒ 1 , y2 x⊒ 2, … , yn x⊒ n

• In other words, if we apply a monotonic function to all the elements in the n-tuple
from a lattice product, the n-tuples preserve the same order

12

The whole meet operator

• When two control paths meet up, their respective const-information
sets might be something like

{x = 3, y = , z = 5}⊤
and
{x = 3, y = 2, z = }⊥

• The CF meet operator applies the constant-glb relation to all pairs
 {x = 3, y = ⊤, z = 5}

 ⨅ {x = 3, y = 2, z = ⊥}
= {x = 3, y = 2, z = ⊥}

glb(3,3) = 3, glb(,2) = 2⊤ , glb(5,) = ⊥ ⊥

13

Convergence

• The whole CF lattice is ordered by the relation from the
constant-lattices of each of its variables

• The meet op. (glb) of the constant-ness states of one variable is
monotonic
– It never goes from “X = 24” to “X is still unknown” (⊤)
– It never goes from “X is not constant” (⊥) to “X is 62” either

• Therefore, the combination of individual meets for all the
variables is monotonic also
– Same rationale, it’s not going to go from a “more specific” point

{x = 3, y = 2, z = } ⊥
to a “less specific” point like

{x = 3, y = 2, z = 5}
because that’s not what comes out of {z = } {z = 5}⊥ ⨅

14

The analyses we have seen

• Ok… to recap what we know about all this stuff now
– Domains are made up of elements that represent information from

the source code, they are sets of
Live variables (Liveness)
Pairs of variables (Copy Propagation)
Expressions (Available Expressions)
Definitions / assignments (Reaching Definitions)
Constant-information about variables (Constant Folding)

15

Transfer functions

• Descriptions of how statements affect the sets at program points before
and after

LV: lv before = { lv after – var. defined } ⋃ { var. used }
CP: copies after = { copies before - copies ruined } ⋃ { copies made }
AE: expr. after = { expr. before – expr. ruined } ⋃ { expr. evaluated }
RD: defs after = { defs before – defs overwritten } ⋃ { defs made }
CF: const after = { const before – non-const found} ⋃ { const made }

or, with more conventional notation
LV: in[I] = { out[I] - def(I) } ⋃ use(I) (Backward)
CP: out[I] = { in[I] – kill(I) } ⋃ gen(I) (Forward)
AE: out[I] = { in[I] – kill(I) } ⋃ gen(I) (Forward)
RD: out[I] = { in[I] – kill(I) } ⋃ gen(I) (Forward)
CF: out[I] = { in[I] – kill(I) } ⋃ gen(I) (Forward)

(what each analysis kills and generates follows from how the instructions affect its domain)

16

Meet operators

• Descriptions of how to combine control flow paths,
when they cross

LV: U (variables used along any path)
CP: ∩ (copies made along every path)
AE: ∩ (expressions available along every path)
RD: U (definitions coming from any path)
CF: ⨅CF (glb relation from constant-ness lattices)

17

Monotonicity

• Guarantee that iterating over the data flow equations take
program points strictly toward one end of the domain’s order

• The contributions from instructions are static, the source code
doesn’t change during analysis

• The meet operators only contribute in one direction
LV: x U y is glb in power set lattice of variables
CP: x ∩ y is glb in power set lattice of copies
AE: x ∩ y is glb in power set lattice of expressions
RD: x U y is glb in power set lattice of definitions
CF: x ⨅CF y is glb in the product of constant-lattices we discussed

• None of these analyses will run forever

18

Ups and downs

• Up until this point, I waved my hands at the beginning and
pointed out that we can arrange our lattice orders
– With ∅ at the bottom and the set all elements at the top
– With ∅ at the top and the set of all elements at the bottom
– With g.l.b. and l.u.b. determining the direction when points are combined
– An idea of a “Top” (⊤) and “Bottom” ()⊥
– Some matching, vague notion of “more” and “less” program information

and suggested that all of these can be rearranged as a matter of
notation

• I have played fast and loose with this because we haven’t said
anything where it matters
– Same kind of nuisance as talking about stacks that grow into lower addresses, it’s

disruptive to stop and remember that up is down and plus is minus every 2 minutes

19

Making a choice

• Consistency matters more in an overview, so let’s
standardize it a bit

• Choose the top to be the most an analysis can ⊤
hope for

• Choose the meet operator to be the greatest lower ⨅
bound of a lattice subset

• Choose the bottom to be the worst outcome⊥

20

Why choose these?

• The book draws with up/down in these directions (Fig. 9.22, p.622)

• We need a convention before discussing “precision”

• On the other hand
– Several fixed points can solve the same system of constraint equations
– The one that our iterative method finds is called the maximal fixed point
– It is “maximal” in the sense of being at the end of a chain of states which is as long

as possible
– Paradoxically, that puts it closest to the order point called “bottom”

(sigh)
– That’s the way it goes

21

Interpretations from top to
bottom

∅
For live variables:

a b c

a,b a,c b,c

a,b,c

Most useful:
No variables are
needed

Most careful:
All variables are
needed

22

Interpretations from top to
bottom
For available expressions:

e1,e2
e1,e3 e2,e3

e1 e2 e3

e1,e2,e3

Most useful:
All expressions
can be re-used

Most careful:
No expressions
can be re-used∅

23

Several solutions

• As a trivial example, take the “program” x = y+z, and consider
liveness
– We get 1 constraint equation: in = {out – x} U {y,z}

• Start from out = {x,y,z}
{y,z} are live here

x = y + z
{x,y,z} are live here

• Start from out = {}
{y,z} are live here

x = y + z
{} is live here

• These are both solutions to the data flow equation
• Apply the constraints again, nothing changes in either case

24

This path will
never be taken

What’s the best solution?

• That would be the one which captures what the
program actually does:

if(true)

if(true)

a = b + c x = y + z

a = d + e x = v + w

{b,c,d,e} live
{v,w,y,z} dead

25

Which solution does the
framework suggest?
• That’s the one which comes from considering the

meet operator applied to all possible paths

if(true)

if(true)

a = b + c x = y + z

a = d + e x = v + w

{b,c,d,e} U {b,c,v,w} U {y,z,d,e} U {y,z,v,w} = {b,c,d,e,v,w,y,z}

26

Which solution do we
compute?
• The one that comes from starting every point at , ⊤

and iterating with until there’s no change⨅
if(true)

if(true)

a = b + c x = y + z

a = d + e x = v + w
{d,e} U
{v,w}

{b,c,d,e,v,w} U {y,z,d,e,v,w}

{b,c,d,e,v,w,y,z}

27

Names for those

• In order, we can call them
IDEAL (The one that accurately reflects the code)
Meet-Over-Paths (The one that considers every path)
Maximal Fixed Point (The one we get by iterating from)⊤

• IDEAL is the most precise solution, because it would tell us
exactly what the program means
– Sadly, that can not be computed automatically

• MOP would be as close as we could get by static inspection
– Trace every possible execution individually, apply between all⨅
– Sadly, we can’t compute that either
– “Every possible execution” includes going through every (dynamically

determined) loop once, two times, three times, … and on to infinity

28

Their relationship

• The solution we do get (the way we’ve been working), is the MFP
The iterations for a point go through a descending chain

 ⊤ ⊒ F() F(F()) … MFP⊤ ⊒ ⊤ ⊒ ⊒ (← where we stop iterating)

• This is excessively careful
– It combines paths as soon as possible, thereby losing precision
– We’ll see in a minute

• It’s safe
MOP ⊒ MFP

– They’re often the same (as in all our examples so far)
– When they differ, MOP is closer to the most useful end of the order

• MOP applies constraints along paths never taken, when there are any
IDEAL MOP MFP⊒ ⊒

29

MFP evaluation

• MFP computes the function of B3 on the combination
of out(B1) and out(B2)

B1 B2

B3

out(B1) out(B⨅ 2)

FB3(out(B1) out(B⨅ 2))

30

MOP evaluation

• MOP computes the function of B3 by combining
– B3s effect on out(B1)

– B3s effect on out(B2)

B1 B2

B3

out(B2)

FB3(out(B1)) F⨅ B3(out(B2))

out(B1)

31

Distributivity

• If F is a distributive function wrt. ⨅, then
F (x y) = F(x) F(y)⨅ ⨅
(that’s the definition of distributive)

• When the function representing an analysis has this property, then the
MFP solution (we can compute) is the same as the MOP solution (we
can’t compute)

• When
– the function is just adding and removing elements to sets
– the operator is just simple combinations of set elements

distributivity follows
If F is something like “delete element x”, then practically by common sense,
F({x,y,z} U {v,w,x}) = {v,w,y,z}
F({x,y,z}) U F({v,w,x}) = {y,z} U {v,w} = {v,w,y,z}

32

Distributivity vs Constant Folding

• LV, CP, AE, RD all give MFP=MOP, because their functions are distributive wrt.
their respective union/intersection meet operators

• The constant-detecting scheme is not distributive wrt. its funny meet operator
• Witness:

X=3
Y=2

X=2
Y=3

Z = Y + X

33

Distributivity vs Constant Folding

• By Meet-Over-Paths, here are the two paths

X=3
Y=2

X=2
Y=3

Z = Y + X

{X=3,Y=2}

{X=3,Y=2, Z=5}

X=3
Y=2

X=2
Y=3

Z = Y + X
{X=2,Y=3}

{X=2,Y=3, Z=5}

This gives the MOP solution

{X=3,Y=2, Z=5} ⨅CF {X=2,Y=3, Z=5} = {X= , Y= , ⊥ ⊥ Z = 5 }

34

Distributivity vs Constant Folding

• The Maximal Fixed Point solution is less informative, it misses that Z=5
regardless of which way it’s calculated

X=3
Y=2

X=2
Y=3

Z = Y + X

{X=3,Y=2}

{X=⊥,Y=⊥, Z=⊥}

{X=2,Y=3}

{X=3,Y=2} ⨅CF {X=2,Y=3} = {X=⊥,Y=⊥}

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

