

1

Instruction selection

TDT4205 – Lecture 30

2

Where we are

• We have a fairly low-level view of the program, but
– It features a memory model of infinite temporary variables
– It isn’t specific in terms of operations provided by the architecture

• These will be our last two topics
– Selecting machine-specific operations
– Mapping variables to memory locations

3

Low-IR vs. machinery

• The instructions of low-level IR are not the same as
the target machine

High-level
IR

Low-level
IR

Lang. 1

Lang. 2

Lang. 3

CPU 1

CPU 2

CPU 3

4

Straightforward solution

• Map every low-level IR to a fixed sequence of assembly
instructions

x = y + z →

• Disadvantages:
– Lots of redundant operations
– More memory traffic than necessary

move y,r1
move z,r2
add r1,r2
move r2, x

5

There may be several
alternatives
• Translate a[i+1] = b[j]

using these operations
add r2,r1 ← r1 = r1 + r2
mul c, r1 ← r1 = r1 * c
load r2, r1 ← r1 = *r2
store r2, r1 ← *r1 = r2
movem r2, r1 ← *r1 = *r2
movex r3, r2, r1 ← *r1 = *(r2+r3)

6

The general steps
Let’s say that everything is 8-byte elements, and

– Register ra holds &a

– Register rb holds &b

– Register ri holds i

– Register rj holds j

a[i+1] = b[j] needs to
– Find address of b[j]
– Load b[j]
– Find address of a[i+1]
– Store into a[i+1]

7

One translation

• Address of b[j]
mulc 8,rj

add rj, rb

• Load b[j]
load rb, r1

• Address of a[i+1]
add 1, ri

mulc 8, ri

add ri, ra

• Store into a[i+1]
store r1, ra

t1 = j*8
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*8
t6 = a+t5
*t6 = t3

TAC

8

Another translation

• Address of b[j]
mulc 8,rj

add rj, rb

• Address of a[i+1]
add 1, ri

mulc 8, ri

add ri, ra

• Store into a[i+1]
movem rb, ra

t1 = j*8
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*8
t6 = a+t5
*t6 = t3

TAC

9

One more translation

• Address of b[j]
mulc 8,rj

• Address of a[i+1]
add 1, ri

mulc 8, ri

add ri, ra

• Store into a[i+1]
movex rj, rb, ra

t1 = j*8
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*8
t6 = a+t5
*t6 = t3

TAC

10

Why care?

• Not all instructions are created equal
• Some complete in a clock cycle
• Others decompose into a sequence of steps, and

take many

• If we have a choice of translations, we’d like the one
with the smallest sum of costs

11

Partial instructions aren’t
necessarily adjacent
• Address of b[j]

mulc 8,rj

• Address of a[i+1]
add 1, ri

mulc 8, ri

add ri, ra

• Store into a[i+1]
movex rj, rb, ra

t1 = j*8
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*8
t6 = a+t5
*t6 = t3

TAC

12

Tree representation

• The 4 overall steps can be written as a tree

store

load

+

b *

j 8

+

a *

+

i 1

8

13

Instructions can be tiles

(Subtrees of a particular pattern)

store

load

+

b *

j 8

+

a *

+

i 1

8

movem r2,r1

14

Instructions can be tiles

(Subtrees of a particular pattern)

store

load

+

b *

j 8

+

a *

+

i 1

8

movex r3,r2,r1

15

Tiling

An instruction selection covers the tree with disjoint tiles

store

load

+

b *

j 8

+

a *

+

i 1

8

movem rb, ra

add ri, ra

mulc 8,ri

add 1, ri

add rj, rb

mulc 8, rj

16

Tiling

An instruction selection covers the tree with disjoint tiles

store

load

+

b *

j 8

+

a *

+

i 1

8

movem rb, ra

add ri, ra

mulc 8,ri

add 1, ri

add rj, rb

mulc 8, rj

mulc 8, rj

add rj, rb

add 1, ri

mulc 8,ri

add ri, ra

movem rb,ra

17

Tilings for comparison

Alternate tilings give different costs

store

load

+

b *

j 8

+

a *

+

i 1

8

store

load

+

b *

j 8

+

a *

+

i 1

8

Using store rb,ra
Using movex rj,rb,ra

18

Better than trees

• If we let common sub-expressions be represented by
the same node, the trees become directed acyclic
graphs (DAGs)

• Separate labels and annotations
– Label nodes with variales, constants or operators
– Annotate nodes with variables that hold their value
– Construct DAG from low-level IR

19

Basic procedure

• For each instruction in a basic block
if it’s “x = y op z”

find or create a node annotated y
find or create a node annotated z
find or create a node labeled op with operands y and z
remove annotation x from everywhere
add annotation x to the op node

if it’s “x = y”
find or create a node annotated y
add annotation x to it

20

Like so: step 1
t = y + 1
w = y + 1
y = z *t
t = t + 1
z = t * y
w = z

y 1

+

y

t

21

Like so: step 2
t = y + 1
w = y + 1
y = z *t
t = t + 1
z = t * y
w = z

y 1

+

y

t,w

22

Like so: step 3
t = y + 1
w = y + 1
y = z *t
t = t + 1
z = t * y
w = z

y 1

+

y

t,w

*

z
z

23

Like so: step 4
t = y + 1
w = y + 1
y = z *t
t = t + 1
z = t * y
w = z

y 1

+

y

w

*

z
z

+
t

24

Like so: step 5
t = y + 1
w = y + 1
y = z *t
t = t + 1
z = t * y
w = z

y 1

+

y

w

*

z

z

+
t

*

25

Like so: step 6
t = y + 1
w = y + 1
y = z *t
t = t + 1
z = t * y
w = z

y 1

+

y

*

z

z,w

+
t

*

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

