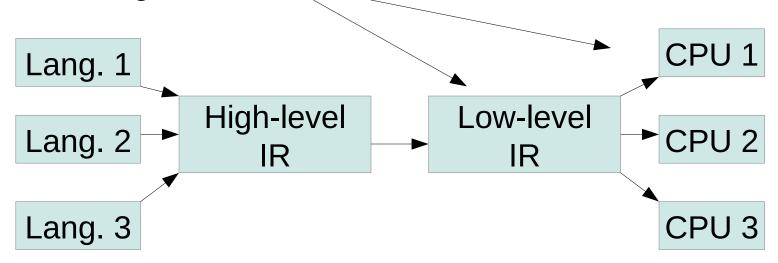
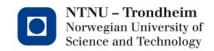


Instruction selection

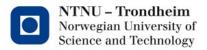
www.ntnu.edu TDT4205 – Lecture 30


Where we are


- We have a fairly low-level view of the program, but
 - It features a memory model of infinite temporary variables
 - It isn't specific in terms of operations provided by the architecture
- These will be our last two topics
 - Selecting machine-specific operations
 - Mapping variables to memory locations

Low-IR vs. machinery

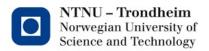
 The instructions of low-level IR are not the same as the target machine


Straightforward solution

Map every low-level IR to a fixed sequence of assembly instructions

$$x = y + z \rightarrow$$

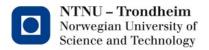
move y,r1 move z,r2 add r1,r2 move r2, x


- Disadvantages:
 - Lots of redundant operations
 - More memory traffic than necessary

There may be several alternatives

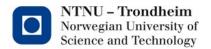
 Translate a[i+1] = b[j] using these operations

```
add r2,r1 \leftarrow r1 = r1 + r2 mul c, r1 \leftarrow r1 = r1 + r2 \leftarrow r1 = r1 * c load r2, r1 \leftarrow r1 = *r2 store r2, r1 \leftarrow *r1 = r2 movem r2, r1 \leftarrow *r1 = *r2 movex r3, r2, r1 \leftarrow *r1 = *(r2+r3)
```



The general steps

Let's say that everything is 8-byte elements, and

- Register r_a holds &a
- Register r_b holds &b
- Register r, holds i
- Register r_i holds j


```
a[i+1] = b[j] needs to
```

- Find address of b[j]
- Load b[j]
- Find address of a[i+1]
- Store into a[i+1]


```
Address of b[j]
mulc 8,r<sub>j</sub>
add r<sub>j</sub>, r<sub>b</sub>
Load b[j]
load r<sub>b</sub>, r1
Address of a[i+1]
add 1, r<sub>i</sub>
mulc 8, r<sub>i</sub>
add r<sub>i</sub>, r<sub>a</sub>
```

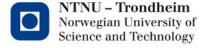
TAC

Store into a[i+1]

store r1, r_a

Another translation

Address of b[j]


```
mulc 8, r_j add r_j, r_b
```

Address of a[i+1]

```
add 1, r_i mulc 8, r_i add r_i, r_a
```

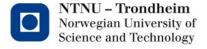
Store into a[i+1]

TAC

One more translation

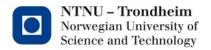
Address of b[j]

```
mulc 8,r<sub>j</sub> ◀
```


Address of a[i+1]

```
add 1, r<sub>i</sub>
mulc 8, r<sub>i</sub>
add r<sub>i</sub>, r<sub>a</sub>
```

Store into a[i+1]


movex
$$r_j$$
, r_b , r_a

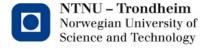
TAC

Why care?

- Not all instructions are created equal
- Some complete in a clock cycle
- Others decompose into a sequence of steps, and take many
- If we have a choice of translations, we'd like the one with the smallest sum of costs

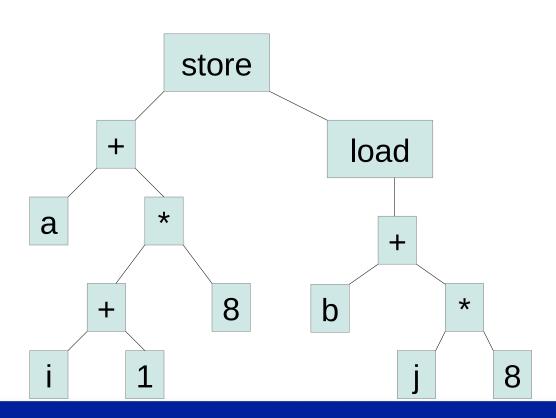
Partial instructions aren't necessarily adjacent

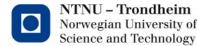
 Address of b[j] mulc 8,r_i


Address of a[i+1]

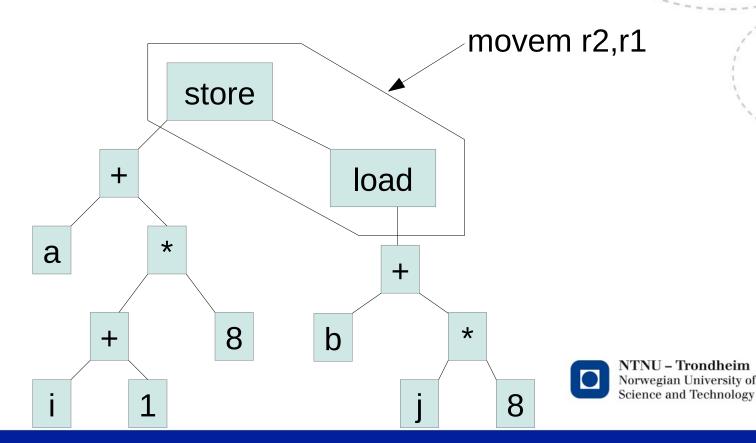
add 1, r_i mulc 8, r_i add r_i , r_a

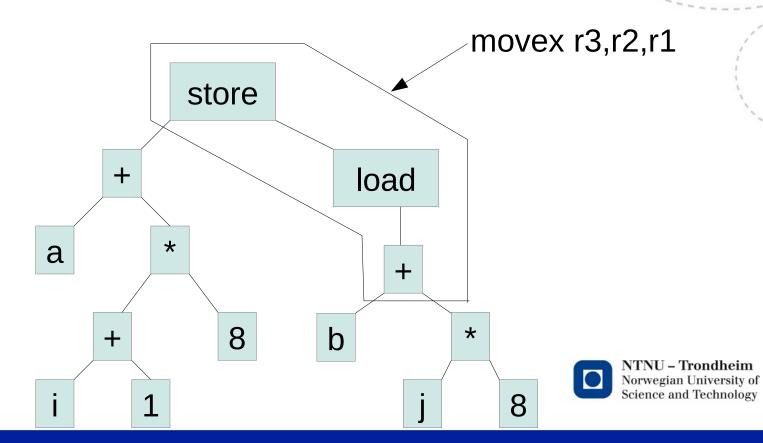
• Store into a[i+1]


 $movex r_{j}, r_{b}, r_{a}$

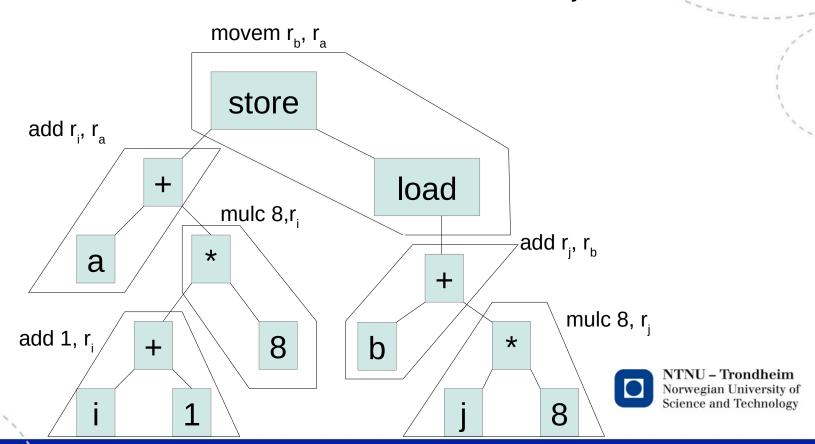

TAC

Tree representation

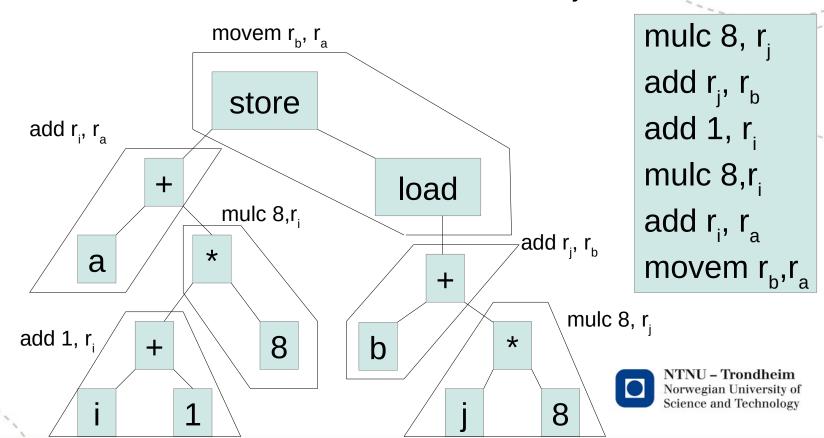

The 4 overall steps can be written as a tree


Instructions can be tiles

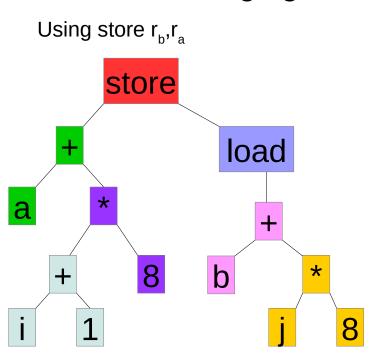
(Subtrees of a particular pattern)

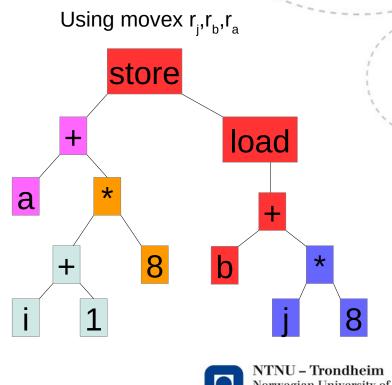

Instructions can be tiles

(Subtrees of a particular pattern)

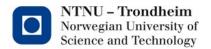

Tiling

An instruction selection covers the tree with disjoint tiles

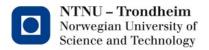

Tiling


An instruction selection covers the tree with disjoint tiles

Tilings for comparison


Alternate tilings give different costs

Better than trees


- If we let common sub-expressions be represented by the same node, the trees become directed acyclic graphs (DAGs)
- Separate labels and annotations
 - Label nodes with variales, constants or operators
 - Annotate nodes with variables that hold their value
 - Construct DAG from low-level IR

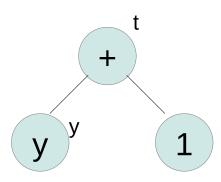
Basic procedure

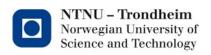
For each instruction in a basic block

```
if it's "x = y op z"
    find or create a node annotated y
    find or create a node annotated z
    find or create a node labeled op with operands y and z
    remove annotation x from everywhere
    add annotation x to the op node
if it's "x = y"
    find or create a node annotated y
    add annotation x to it
```



```
t = y + 1


w = y + 1


y = z *t

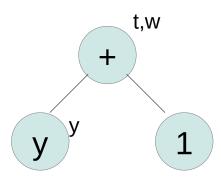
t = t + 1

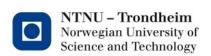
z = t * y

w = z
```

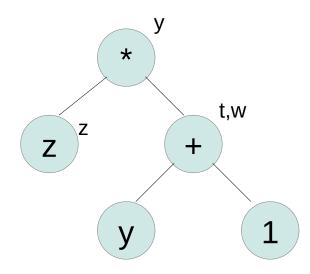


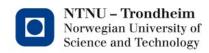
```
t = y + 1

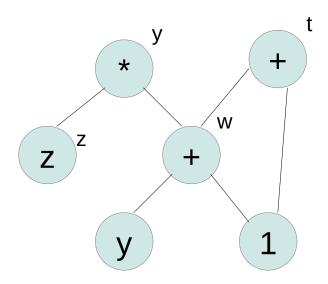

w = y + 1

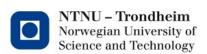

y = z * t

t = t + 1

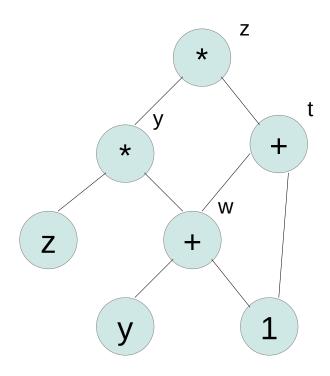

z = t * y

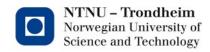

w = z
```

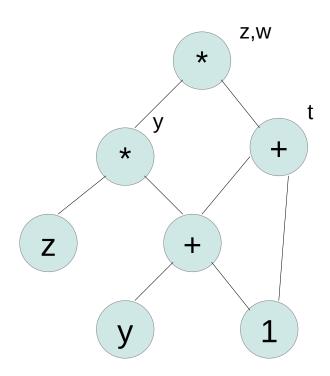

$$t = y + 1$$

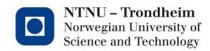
 $w = y + 1$
 $y = z *t$
 $t = t + 1$
 $z = t * y$
 $w = z$




$$t = y + 1$$

 $w = y + 1$
 $y = z * t$
 $t = t + 1$
 $z = t * y$
 $w = z$




$$t = y + 1$$

 $w = y + 1$
 $y = z * t$
 $t = t + 1$
 $z = t * y$
 $w = z$

$$t = y + 1$$

 $w = y + 1$
 $y = z * t$
 $t = t + 1$
 $z = t * y$
 $w = z$

