
Gradient Descent Training Rule: The Details

1 For Perceptrons

The whole idea behind gradient descent is to gradually, but consistently, decrease the output error by
adjusting the weights. The trick is to figure out HOW to adjust the weights. Intuitively, we know that if
a change in a weight will increase (decrease) the error, then we want to decrease (increase) that weight.
Mathematically, this means that we look at the derivative of the error with respect to the weight: ∂E

∂wij
,

which represents the change in the error given a unit change in the weight.

Once we find this derivative, we will update the weight via the following:

∆wij = −η
∂Ei

∂wij

(1)

This essentially represents the distance times the direction of change. The distance, η, is a standard parameter
in neural networks and often called the learning rate. In more advanced algorithms, this rate may gradually
decrease during the epochs of the training phase.

If we update all the weights using this same formula, then this amounts to moving in the direction of steepest
descent along the error surface - hence the name, gradient descent.

The above equation is easy, and it captures our basic intuitions: decrease (increase) a weight that positively
(negatively) contributes to the error. Unfortunately, computing ∂E

∂wij
is not so trivial.

For the following derivation, the perceptron depicted in Figure 1 will be used.

First we need to compute the error, and in the case of a perceptron or a row of independent perceptrons,
we can focus on the error at any particular output node, i. A standard metric is the sum of squared errors
(SSE):

�

�

� � �

� � �

� � �

� � � � � �

�
� � � � � �

	
 � � �

�

Figure 1: Simple perceptron with n weighted input lines

1

Ei =
1

2

∑

d∈D

(tid − oid)2 (2)

where tid and oid are the desired/target and actual outputs, respectively, at node i on example data instance
d.

So, to find ∂Ei

∂wij
, we compute:

∂
(

1
2

∑

d∈D(tid − oid)2
)

∂wij

(3)

Taking the derivative inside the summation and using standard calculus:

1

2

∑

d∈D

2(tid − oid)
∂(tid − oid)

∂wij

=
∑

d∈D

(tid − oid)
∂(−oid)

∂wij

(4)

The tid term disappears from the derivative, since ∂tid

∂wij
= 0, i.e. the target value is completely independent

of the weight. This makes sense, since the target is set from outside the system.

Now, the output value oid is equal to the transfer function for the perceptron, fT , applied to the sum of
weighted inputs to the perceptron (on example instance d), sumid. So we can rewrite as:

∑

d∈D

(tid − oid)
∂(−fT (sumid))

∂wij

(5)

where:

sumid =

n
∑

k=1

wikxkd (6)

Here, summing over the k means summing over the n inputs to node i. That is, we sum the weighted outputs
of all of i’s suppliers.

Using the Chain Rule from calculus, which states that:

∂f(g(x))

∂x
=

∂f

∂g(x)
×

∂g(x)

∂x
(7)

we can calculate the derivative of the transfer function with respect to the weight as follows:

∂(fT (sumid))

∂wij

=
∂fT (sumid)

∂sumid

×
∂sumid

∂wij

(8)

2

Now, the first term on the right-hand-side will vary, depending upon the transfer function. Shortly, we will
compute it for a few different functions. But first, we can (easily) compute the second term of the product:

∂sumid

∂wij

=
∂ (

∑n
k=1 wikxkd)

∂wij

=
∂ (wi1x1d + wi2x2d + . . . + wijxjd + . . . + winxnd)

∂wij

(9)

=
∂(wi1x1d)

∂wij

+
∂(wi2x2d)

∂wij

+ . . . +
∂(wijxjd)

∂wij

+ . . . +
∂(winxnd)

∂wij

= 0 + 0 + . . . + xjd + . . . + 0 = xjd (10)

This makes perfect sense: the change in the sum given a unit change in a particular weight, wij , is simply
xjd.

Next, we calculate ∂fT (sumid)
∂sumid

for different transfer functions, fT .

1.1 The Identity Transfer Function

First, if fT is the identity function, then fT (sumid) = sumid, and thus:

∂fT (sumid)

∂sumid

= 1 (11)

So in that simple case:

∂(fT (sumid))

∂wij

=
∂fT (sumid)

∂sumid

×
∂sumid

∂wij

= 1 × xjd = xjd (12)

So putting everything together, for the identity transfer function, the derivative of the error with respect to
weight wij is:

∂Ei

∂wij

=
∂

(

1
2

∑

d∈D(tid − oid)
2
)

∂wij

=
∑

d∈D

(tid − oid)
∂(−oid)

∂wij

=
∑

d∈D

(tid − oid)
∂(−fT (sumid))

∂wij

(13)

= −

∑

d∈D

(

(tid − oid)
∂fT (sumid)

∂sumid

×
∂sumid

∂wij

)

= −

∑

d∈D

((tid − oid)(1)xjd) = −

∑

d∈D

(tid − oid)xjd (14)

Thus, the weight update for a neural network using identity transfer functions is:

∆wij = −η
∂Ei

∂wij

= η
∑

d∈D

(tid − oid)xjd (15)

3

One of the early types of simple neural units, called an Adaline, used this update rule even though step
functions were used as transfer functions. So even though the step function is not everywhere differentiable,
by treating it like an identity function, you can still get a good estimate of ∂Ei

∂wij
.

1.2 The Sigmoidal Transfer Function

The sigmoidal function is very popular for neural networks, because it performs very similar to a step

function, but it is everywhere differentiable. Thus, we can compute ∂fT (sumid)
∂sumid

for the sigmoidal, although

we cannot for a standard step function (due to the discontinuity at the step point).

The standard form of the sigmoidal is:

fT (sumid) =
1

1 + e−sumid
(16)

So

∂fT (sumid)

∂sumid

=
∂

(

(1 + e−sumid)−1
)

∂sumid

= (−1)
∂(1 + e−sumid)

∂sumid

(1 + e−sumid)−2 (17)

= (−1)(−1)e−sumid(1 + e−sumid)−2 =
e−sumid

(1 + e−sumid)2
(18)

But, this is the same as:

fT (sumid)(1 − fT (sumid)) = oid(1 − oid) (19)

Summarizing the result so far:

∂fT (sumid)

∂sumid

=
e−sumid

(1 + e−sumid)2
= fT (sumid)(1 − fT (sumid)) = oid(1 − oid) (20)

Now we can compute ∂Ei

∂wij
for neural networks using sigmoidal transfer functions:

∂Ei

∂wij

=
∑

d∈D

(tid−oid)
∂(−fT (sumid))

∂wij

= −

∑

d∈D

(

(tid − oid)
∂fT (sumid)

∂sumid

×
∂sumid

∂wij

)

= −

∑

d∈D

(tid−oid)oid(1−oid)xjd

(21)

So, the weight update for networks using sigmoidal transfer functions is:

4

∆wij = −η
∂Ei

∂wij

= η
∑

d∈D

(tid − oid)oid(1 − oid)xjd (22)

1.3 Batch versus Incremental Updating

Notice that the previous update rules for wij , for both the identity and sigmoidal functions, involve batch
processing in that we compute the total error for all the training instances (d ∈ D) before we update the
weights.

An alternative is to update the weights after EACH example has passed through the network. In this case,
the update rules are:

η(tid − oid)xjd (23)

for the identity function, and for the sigmoidal:

η(tid − oid)oid(1 − oid)xjd (24)

In these equations, the error terms associated with each node, i, on instance d are:

(tid − oid) (25)

for the identity function, and for the sigmoidal:

(tid − oid)oid(1 − oid) (26)

Clearly, one should choose a much lower value of the learning rate, η, for incremental than for batch pro-
cessing.

For batch processing with a single layer of output perceptrons, and thus only one layer of weights to learn,
it suffices to simply sum the products of xjd and the error term over all the training data, and then to add
∆wij to wij at the end of the training epoch.

The main drawback of incremental updating is that the final weight values can be dependent upon the
order of presentation of the examples. As explained in a later section, the computational effort involved in
incremental and batch processing are approximately equal.

2 Gradient Descent for Multi-Layer Neural Networks

For multi-layer networks, the relationship between the error term and ANY weight ANYWHERE in the
network needs to be calculated. This involves propagating the error term at the output nodes backwards

5

through the network, one layer at a time. At each layer, m, an error term (similar to those discussed above)
is computed for each node,i, in the layer. Call this δid. It represents the effect of sumid on the output error
for example d, that is:

δid =
∂Ed

∂sumid

(27)

Then, going backwards to layer m-1, for each node, j, in that layer, we want to compute ∂Ed

∂sumjd
. This is

accomplished by computing the product of:

• the influence of j’s input sum upon j’s output:
∂fT (sumjd)

∂sumjd
, which is just ojd(1 − ojd) for a sigmoidal

fT .

• the sum of the contributions of j’s output value to the total error via each of j’s downstream neighbors.

Thus, the complete equation for computing node j’s contribution to the error is:

∂Ed

∂sumjd

=
∂ojd

∂sumjd

n
∑

k=1

∂sumkd

∂ojd

∂Ed

∂sumkd

(28)

In this section, the variable o is used to denote the output values of all nodes, not just those in the output
layer.

The relationships between the different partial derivatives is easiest to see with the diagram in Figure 2:

Just as ∂sumkd

∂wkj
= ojd, since most of the terms in the summation are zero (as shown in equations 9 and 10),

we also have:

∂sumkd

∂ojd

= wkj (29)

Substituting equations 27 and 29 into equation 28 yields :

δjd =
∂Ed

∂sumjd

=
∂ojd

∂sumjd

n
∑

k=1

wkjδkd (30)

This illustrates how the error terms at level m-1 (i.e. the δjd) are based on backpropagated error terms from
level m (i.e., the δkd), with each layer-m error adjusted by the weight along the arc from node j to node k.

Assuming sigmoidal transfer functions:

∂ojd

∂sumjd

=
∂fT (sumjd)

∂sumjd

= ojd(1 − ojd) (31)

6

�

�

�� � � � � � � �

� � �

� � �
� � � � � �

� � � ! � � �

� � � ! " � �
� � � � � �

� � � ! # � �
� � � � � �

� � $ � �
� � � ! # � �

� � $ � �
� � � ! " � �

$ �

Figure 2: Multi-layer network displaying basic backpropagation terms and their relationships

Thus,

δjd = ojd(1 − ojd)
n

∑

k=1

wkjδkd (32)

This provides an operational definition for implementing the recursive backpropagation algorithm for net-
works using sigmoidal transfer functions:

1. For each output node, i, compute its error term using:

δid = (tid − oid)oid(1 − oid) (33)

2. Working backwards, layer by layer, compute the error terms for each internal node, j, as:

δjd = ojd(1 − ojd)

n
∑

k=1

wkjδkd (34)

where the k are the downstream neighbor nodes.

Once we know ∂Ed

∂sumid
= δi, the computation of ∂Ed

∂wij
is quite easy. This stems from the fact that the only

effect of wij upon the error is via its effect upon sumid:

∂Ed

∂wij

=
∂sumid

∂wij

×
∂Ed

∂sumid

=
∂sumid

∂wij

× δid = ojdδid (35)

7

So, given an error term, δi, for node i, the update of wij for all nodes j feeding into i is simply:

∆wij = ηδidojd (36)

Obviously, the procedure is similar for other types of transfer functions, such as the linear or inverse hyper-

bolic tangent function. It is only
∂fT (sumjd)

∂sumjd
that will vary.

3 Batch Processing for Multilayer Neural Networks

As shown in equations 33 and 34, when performing incremental weight updates, the error terms for nodes
are a function of the output values of those nodes on a particular training case. Then, as shown in equations
35 and 36, the contribution of wij to the error (which determines ∆wij) is also a function of the output
value of node j on that same training case.

Hence, for batch processing, it will not suffice to update the node error terms after each training case and
then, at the end of the epoch, update the weights based on the node errors. Instead, we need to keep track
of the ∆wij after each training case, but we do not actually update the weight until the end of the epoch.

So we sum the recommended weight changes after each training instance, but we only modify the weight at
epoch’s end. Formally, we are computing:

∑

d∈D

∆dwij (37)

Notice that the recommended changes can be positive or negative, so they may partially cancel one another
out.

Unfortunately, this means that batch processing does not save computational effort, since we are essentially
performing full backpropagation after each training instance. Although we do not update wij on each
instance, we update the sum of the changes (equation 37), which is just as much work, computationally.
However, practically speaking, it makes more sense to change wij once, at the end of an epoch, than to raise
and lower it many times during the course of that same epoch.

8

