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Search vs. planning

Consider the task get milk, bananas, and a cordless drill
Standard search algorithms seem to fail miserably:

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

Inefficient Generate and Test
Generate: Apply MANY different operators (often repeatedly)
Test: Use heuristic function (h) to assess states.



Informed Search is Still Pretty Dumb

• Informed Search ONLY means that you have a good heuristic (h) =
estimate of distance(state, goal)

• It does NOT mean that you have knowledge that allows you to predict
the effect of an operator on a state.

• Trial + Error: You have to APPLY the operator to the state to find the
successor state.

Needed: Explicit knowledge about:

•WHEN operators are applicable: Preconditions.

•WHAT happens when they are applied: Effects.

Then, system can reason with preconditions and effects to:
Determine proper operators and operator sequences
Without necessarily applying the operators to states



Goals Must also be Explicit

In informed search, the goal is often only understood operationally:
We can use it to compute h(state)
But that’s about it!
The system has no deep understanding of the goal
So it cannot do sophisticated reasoning to analyze states w.r.t. goals.

In general, the actions and goals need to be expressed DECLARATIVELY,
not just PROCEDURALLY.

1. Procedural - the machine can EXECUTE it.

2. Declarative - the AI system can REASON with it, often in many different
ways.

Similar to the difference between a data file and a database.



Search vs. planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

Search Planning

States Lisp data structures Logical sentences
Actions Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions

States, Actions + Goals are often procedural in search, but declarative in
planning.



Search and Linear Operator Sequences

Drive to 
Supermarket

Buy Milk

Drive to 
Hardware 
Store

Buy Drill

Drive to 
Supermarket

Buy Milk

Drive to 
Hardware 
Store

Buy Drill

State A State B

h

Even informed search involves
many trial-and-error attempts at 

operator sequencing.

The heuristic, h, is the only
place where intelligence/knowlege

is used

Drive to 
Supermarket

Buy Drill

Drive to 
Hardware 
Store

Buy Milk

State C



Planning and Intelligent Partial-Ordering

Drive to 
Supermarket Buy Milk

Drive to 
Hardware 
Store

Buy Drill

Drive 
Home 

  1. Must be at market to buy milk.
2. Should buy milk LAST, so it 

does not spoil in the car

1. Must be at hardware 
store to buy drill.

Must precede
Explicit, Declarative
Knowledge that the
planner can reason
with to determine 
precedence links

1. Do not drive home 
until ALL items have 
been purchased



Classic Planning Environments

1. Fully Observable - we see everything that matters

2. Deterministic - the effects of actions are known, exactly.

3. Static - no changes happen to environment other than those caused by
agent actions

4. Discrete - Changes in time and space occur in quantum amounts

Ch. 11 methods assume a classic environment
Ch. 12 methods handle real-world situations, where many of the classic
assumptions cannot be assumed.



Representations for Planning

Making operators/actions and goals explicit.
Operators: Breaking into preconditions, action, and effects.
Goals: Breaking into subgoals

Preconditions: off(motor) ∧ in(key, ignition) ∧ on(foot, clutch)
Action: turn(key)
Effects: on(motor) ∧ ¬off(motor)

Goal: home(me)
Subgoals: in(car, garage) ∧ off(motor) ∧ in(me, house)



Problem Decomposition

To solve a goal, just solve all the subgoals.
A Subgoal (S) is solved when:

1) Either true initially, or action chosen that has S as an effect.
2) No other actions make S false after it becomes true

home(me)

off(motor)in(car, garage) in(me,house)

Goal

Subgoals

on(motor) open(door,garage) in-front-of(car, garage)

drive(car)
Operator/Action

After choosing drive(car): 
Subgoals = off(motor), in(me,house),

on(motor), open(door,garage), in-front-of(car,garage),



Representational Issues

1. Effects -vs- Add + Delete Lists

2. Can Negative Literals appear in states (or just positive ones)?

3. Unmentioned literals are:

(a) FALSE (Closed World Assumption) - The only things that are true are
those that are explicitly stated as true; all else is assumed false.

(b) UNKNOWN (Open World Assumption) - some true things may simply
not have been mentioned.

4. Frame Problem - What literals remain the same after an action?
STRIPS assumption: All literals not explicitly mentioned in the Effects
(or Add/Delete) list(s) are unchanged.



Representational Issues (2)

5. Goals may contain:

(a) ONLY Conjunctions: On(blockA, blockB) ∧On(blockB, blockC)

(b) BOTH Conjunctions and Disjunctions:
On(blockA, blockB)∧(On(blockB, blockC)∨On(blockB, , blockD))

6. Goals may contain:

(a) ONLY ground literals:
At(plane227, airport99) ∨ At(plane376, airport99)

(b) Quantified variables:
∃x plane(x) ∧ At(x, airport99)

7. Conditional effects, equality tests, variable typing, etc., etc.

Expressibility - Efficiency Tradeoff:

The more you can represent, the larger the search space!!



STRIPS operators

Tidily arranged actions descriptions, restricted language

Precondition: At(p), Sells(p, x)
Action: Buy(x)
Effect: Have(x)

Have(x)

At(p)  Sells(p,x)

Buy(x)

[Note: this abstracts away many important details!]

Restricted language ⇒ efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms



STRIPS Examples

BlocksWorld

Precondition: Clear(x) ∧ Clear(y) ∧On(x, z)
Action: Stack(x,y)
Effect: ¬Clear(y) ∧ ¬On(x, z) ∧On(x, y) ∧ Clear(z)
By the STRIPS Assump, Clear(x) remains true since it’s not mentioned in
effects.

..Alternatively...

Precondition: Clear(x) ∧ Clear(y) ∧ empty(hand)
Action: Stack(x,y)
DELETE: Clear(y) , On(x,z)
ADD: Clear(z) , On(x,y)

PlaneWorld

Precondition: At(p, from)∧Plane(p)∧Airport(from)∧Airport(to)
Action: Fly(p,from,to)
Effect: ¬At(p, from) ∧ At(p, to)



Successor-State Axioms for Flying

FlyPrecond(p, f, to, s) ⇔ At(p, f, s) ∧ Plane(p)

∧Airport(f) ∧ Airport(to)

At(p, x,Result(a, s))⇔

(At(p, x, s) ∧

(a 6= Fly(p, f, x) ∨ ¬FlyPrecond(p, f, x, s)))

∨(At(p, f, s) ∧

a = Fly(p, f, x) ∧ FlyPrecond(p, f, x, s))



Planning as State-Space Search

States = conjunctions of literals
Operators = planning actions
Use Forward- or Backward-Chaining Search

Precondition: At(p, from)∧Plane(p)∧Airport(from)∧Airport(to)
Action: Fly(p,from,to)
Effect: ¬At(p, from) ∧ At(p, to)

(a)

(b)



At(P1, A)

Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

At(P1, B)

At(P2, B)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)



Forward State-Space Search: Progression

Initial State: Conjunction of Literals in start state
Search: Apply actions and update current state based on action effects.
End Test: Current state is superset of the goal state.

Heuristics - for both Progression and Regression

1. Subgoal Independence Assumption - Each subgoal can be solved indepen-
dently.

(a) Optimistic - when actions can clobber (negate) other subgoals

(b) Pessimistic - when actions can solve more than 1 subgoal at once.

2. Relaxed Problem - abstract the operators

(a) Remove all preconditions - assume all ops are always applicable.

(b) Remove negative effects - so no action clobbers a subgoal.

Using these often involves running a planner based on these assumptions
(e.g. with abstract operators and all subgoals treated separately), just to
calculate h(state)!!



Backward State-Space Search: Regression

Initial State: Conjunction of Literals in goal state
Search: Apply actions in reverse and update current state based on pre-
conditions.
End Test: Current state is a subset of the initial state.

• Relevant action: achieves one or more subgoals

• Consistent action: does not undo any subgoals.

With progresssion, it is hard to know what operators are relevant, so many
unecessary ones are often applied.
With regression, only operators that achieve a subgoal are worth applying
(i.e., relevant)

Regressing a state S through a relevant and consistent action A:
1) Any positive effects of A that are in S are deleted.
2) Any preconditions of A are added, unless already true in S.



Blocksworld Regression Example

Precondition: Clear(x) ∧ Clear(y) ∧On(x, z)
Action: Stack(x,y)
Effect: ¬Clear(y) ∧ ¬On(x, z) ∧On(x, y) ∧ Clear(z)

S = On(B,C) ∧ Clear(A)
Regressing S through Stack(B,C) yields:
S* = Clear(B) ∧ Clear(C) ∧On(B,A)

Note that Clear(B) need not be true in S for this regression to be legal, even
though a) it must be true in S* and b) the STRIPS assumption entails that
it does not change after Stack(B,C).



Least Commitment Planning

Least Commitment = Delaying choices as long as possible.
Make important, obvious and/or highly-constrained (action) choices early
Make remaining choices later, and only as needed.

State-Space Progression and Regression are total-order planners:
They create linear plan sequences, one consecutive step at a time,
from start to goal or goal to start.

Partial-order planners

• Add actions to plans without committing to an absolute time/step.

• Deal mainly with relative constraints: action A must precede action B.

• Can be implemented as search in a space of planning states, where the
planning operators are different from the real-world actions:

– Real-world: stack(x,y), clear-hand, put-on-table(x)

– Planner: stack(B,A) precedes stack(C,B); add stack(D,E) to plan



Partial-Order Planning

1. Generate a list of constraints among actions: partial-order plan.

2. Create one or more linear (total-order) plans that are consistent with the
constraints.

StartStartStart

Total-Order Plans:Partial-Order Plan:

Start

Left

Sock

Finish

Start

Finish

Right

Sock

Start

Left

Sock

FinishFinish

Left

Sock

Finish

Right

Sock

Finish

Right

Sock

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Right

Sock

Right

Shoe

Left

Sock

Left

Shoe

Finish

Left

Sock

Left

Sock

Right

Sock

Right

Shoe

Right

Sock

Left

Shoe

Right

Shoe

Left

Shoe

Right

Shoe

Left

Shoe

Left

Sock

Right

Sock

Left

Shoe

Right

Shoe

Left

Shoe

Right

Shoe

Left

Shoe

Right

Shoe



Partially ordered plans

Partially ordered collection of steps with
Start step has the initial state description as its effect
Finish step has the goal description as its precondition
causal links from outcome of one step to precondition of another
temporal ordering between pairs of steps

Open condition = precondition of a step not yet causally linked

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it



Partial-Order Shopping

Preconditions: red- open subgoals; black - satisfied subgoals
Arrows: black - causal links; green - ordering constraints: act-a ≺ act-b.

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)



Partial-Order Shopping (2)

1) Add Buy(Drill) to satisfy Have(Drill) of Finish
2) Add Buy(Milk) to satisfy Have(Milk) of Finish
3) Add Go(SM) to satisfy At(SM) of Buy(Milk)
4) Add causal link from Start to precondition Sells(HWS,Drill) of Buy(Drill)

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)



Partial-Order Shopping (3)

1. Add Buy(Bananas) to satisfy Have(Bananas) precondition of Finish.

2. Add causal links from Start to the preconditions Sells(SM,Milk) and
Sells(SM,Bananas) of Buy(Milk) and Buy(Bananas), respectively.

3. Add Go(SM) to satisfy At(SM) of Buy(Bananas) and Buy(Milk).

4. Add Go(Home) to satisfy At(Home) of Finish.

5. Note that Go(Home) could conflict with Buy(Milk) and Buy(Bananas)
by clobbering the At(SM) precondition. Add ordering constraints so
that Go(Home) does not come between Go(SM) and Buy(Milk) and
Buy(Bananas): Buy(Milk) ≺ Go(SM), and Buy(Bananas) ≺ Go(SM).



Partial-Order Shopping (4)

6. Add Go(HWS) to satisfy At(HWS) of Buy(Drill).

7. Add causal link from Start to Go(HWS), since At(Home) (the Effect of
Start) satisfies the precondition: At(X) where X 6= HWS.

8. Similarly, add causal link from Go(HWS) to Go(SM), since At(HWS)
satisfies the precondition: At(X) where X 6= SM.

9. Add a 3rd such causal link between Go(SM) and Go(Home), since Go(SM)
satisfies the precondition for Go(Home).

10. Note that Go(SM) could conflict with At(HWS) precondition of Buy(Drill).
Add ordering constraint so that Go(SM) does not come between Go(HWS)
and Buy(Drill): Buy(Drill) ≺ Go(SM).



Partial-Order Shopping (5)

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)



Partial-Order Planning (POP) Overview

Operators on partial plans:
add a link from an existing action to an open condition
add a step (i.e., a new action) to fulfill an open condition
order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable



POP algorithm

function POP(initial, goal, operators) returns plan

plan←Make-Minimal-Plan(initial, goal)

loop do

if Solution?(plan) then return plan

Sneed, c←Select-Subgoal(plan)

Choose-Operator(plan, operators,Sneed, c)

Resolve-Threats(plan)

end

function Select-Subgoal(plan) returns Sneed, c

pick a plan step Sneed from Steps(plan)

with a precondition c that has not been achieved

return Sneed, c



POP algorithm (2)

procedure Choose-Operator(plan, operators,Sneed, c)

choose a step Sadd from operators or Steps(plan) that has c as an effect

if there is no such step then fail

add the causal link Sadd
c
−→ Sneed to Links(plan)

add the ordering constraint Sadd ≺ Sneed to Orderings(plan)

if Sadd is a newly added step from operators then

add Sadd to Steps(plan)

add Start ≺ Sadd ≺ Finish to Orderings(plan)

procedure Resolve-Threats(plan)

for each Sthreat that threatens a link Si
c
−→ Sj in Links(plan) do

choose either

Demotion: Add Sthreat≺ Si to Orderings(plan)

Promotion: Add Sj ≺ Sthreat to Orderings(plan)

if not Consistent(plan) then fail

end



Subgoal Clobbering and Promotion/Demotion

A clobberer is a potentially intervening step that destroys the condition
achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)



Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:
– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer
– selection of Sneed is irrevocable

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Can be made efficient with good heuristics derived from problem description

Particularly good for problems with many loosely related subgoals



Example: Blocksworld

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y) 
   Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem



Blocksworld (2)

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)



Blocksworld (3)

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)



Blocksworld (4)

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)



Blocksworld (5)

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

Final totally-ordered plan:
1. PutOnTable(C) 2. PutOn(B,C) 3. PutOn(A,B)



Partial-Order Planning as Search

Start

Goal

Start

Goal

Act 
B

Start

Goal

Act 
M

Start

Goal

Act 
D

Start

Goal

Act 
D

Act 
B

Start

Goal

Act 
DAct 

B

Start

Goal

Act 
D

Act 
P

Start

Goal
Act 
D

Act 
B

Act 
Q



Choices during POP Search

1. The planning-state to expand - use h

2. The open subgoal/pre-condition to try to satisfy.



Partial-Order Planning Search Heuristics

POP doesn’t work directly with real-world states (as does total-order plan-
ning) → hard to estimate h.

Best Possibilities for h

• Number Open Preconditions

• Number Open Preconditions - Number Preconds satisfied by Start (but
possibly clobbered) along the way.

– Optimistic - when initially-true subgoals get clobbered

– Pessimistic - when one operator can achieve multiple subgoals

Best Possibility for next open-precondition to satisfy

Best generator criteria = Most-constrained precondition: the one with FEWEST
number of actions that can satisfy it.



Planning Graphs

Series of Levels, where the nth level contains:
1) All literals that could be true after nth planning steps.
2) All actions whose preconditions could be true after nth planning step.

ONLY work with propositional reps - no variables!

S0

p
q
r

A0

p & q => 
     m & not(p)

p & r => 
    n & not(r)

Initial
State

Possible
Actions at
Step 0

Possible
Literals at
Step 1

Possible
Actions at
Step 1

S1
p
q
r

not(p)

not(r)

m
n

A1

p & q => 
     m & not(p)

p & r => 
    n & not(r)

q & n  =>
not(m)

Red arcs = mutual exclusion (mutex): 
Cannot be simultaneously true (literals) or independently executed (rules)

during the given planning step.



Planning-Graph Generation

1. S0 = the initial state = all initially-true literals

2. A0 = set of all actions whose preconditions are satisfied by S0 literals.

3. Record the mutually-exclusive (mutex) constraints among actions of A0.

4. S1 = set of all literals that could be true if at least one action in A0 is
performed. Also, all literals in S0 are in S1 via persistence actions.

5. Record the mutex constraints among literals in S1.

6. A1 = set of all actions whose preconditions are satisfied by S1 literals.

7. Continue until level S(n) = S(n+1)*

*In GRAPHPLAN, halting may occur before reaching this steady-state:
If all literals in the goal state are found in S(k),
and if no pairs of these literals are mutex,
Then GraphPlan will stop generating states
and search backwards for a proper action sequence.



Criteria for Mutual Exclusion (Mutex Links)

Actions

1. Inconsistent Effects: The effects of one action are inconsistent with
the effects of another, i.e. one asserts A and the other asserts not(A).

2. Interference: An effect of one action is inconsistent with a precondition
of the other, i.e., one asserts not(A) and the other has A as a precondition.

3. Competing Needs: A precondition of one action is mutex with a pre-
condition of the other action.

In general, two actions are NOT mutex iff they are independent and hence
COULD both be executed at the same time.

Literals

1. Inconsistent: One literal is the negation of the other.

2. Inconsistent Support: Every pair of actions (that produce the two
literals) is mutex. This assumes that the two literals are not effects of
the same action.



Solution Extraction in Graphplan

Solving Boolean CSP, where vars are actions at each A(s) level.
Find a set of in/out assignments to those variables so that all subgoals are
satisfied.

1. Init state = last-generated layer, S(k) of Planning Graph. This includes
all subgoals, SG(k).

2. n = k.

3. If n== 0, return C(1)..C(k) as the solution; else continue.

4. At action level A(n-1), choose a conflict-free subset of the actions that
cover the subgoals in S(n). Call this covering set C(n).
Conflict-free → for each action pair, the actions are not mutex, nor are
any of their preconditions.

5. If no C(n) is found, backtrack (i.e. n = n + 1, Go to Step 3).

6. Let SG(n-1) = Preconditions(C(n)).

7. n = n - 1.

8. Go to Step 3



Graphplan Blocksworld

B A

C

on(b,table)  on(a,table)  
on(c,a)  clear(b)  clear(c)

A0

S0

B A

C

stack(c,b)
stack(b,c)

putontable(c)
persist(on(b,table))

persist(on(a,table))
persist(on(c,a))
persist(clear(b))
persist(clear(c))

B A C

S1

B A

C

A

C

B

on(c,table) on(b,table)  on(a,table)  
on(b,c)  on(c,a)  on(c,b)
clear(a)  clear(b)  clear(c)
not(clear(c))   not(clear(b))

*These complete states are only for
illustrative purposes.  Graph planners only

work with literals and rules, not 
complete states.



Graphplan Blocksworld (2)

stack(a,b)
stack(a,c)
stack(b,a)
stack(b,c)
stack(c,a)
stack(c,b)

persist(on(a,table))
persist(on(b,table))
persist(on(c,table))
persist(on(b,c))
persist(on(c,b))
persist(on(c,a))

putontable(b)
putontable(c)

A1

S2
on(c,table) on(b,table)  on(a,table)  

on(a,b)  on(a,c)  on(b,a)  
on(b,c)  on(c,a)  on(c,b)
clear(a)  clear(b)  clear(c)

not(clear(a)) not(clear(b))   not(clear(c))

Every literal is possible, 
but MANY are mutually
exclusive (mutex).

stack(b,a)

on(b,a) on(c,b)

persist(on(c,b)) stack(c,b)

Goal State

persist(clear(a))
persist(clear(b))
persist(clear(c))

persist(not(clear(b)))
persist(not(clear(c)))

A

B

C



Graphplan Blocksworld (3)

The two subgoals(literals) on(b,a) and on(c,b) are mutually exclusive (mu-
tex), because each possible action pair that achieves them is mutex:

• stack(b,a) – mutex – persist(on(c,b)) by competing needs criteria: The
precondition clear(b) of stack(b,a) is mutex with the precondition on(c,b)
of persist(on(c,b)).

• stack(b,a) –mutex–stack(c,b) by interference criteria: The effect not(clear(b))
of stack(c,b) is the negation of the precondition clear(b) of stack(b,a).

The goal state cannot be achieved in S2, so GraphPlan needs to generate
A2 and S3.



Graphplan Blocksworld (4)

stack(a,b)
stack(a,c)
stack(b,a)
stack(b,c)
stack(c,a)
stack(c,b)

persist(on(a,table))
persist(on(b,table))
persist(on(c,table))
persist(on(b,c))
persist(on(c,b))
persist(on(c,a))

putontable(b)
putontable(c)

persist(clear(a))
persist(clear(b))
persist(clear(c))

A2

S3

on(c,table) on(b,table)  on(a,table)  
on(a,b)  on(a,c)  on(b,a)  
on(b,c)  on(c,a)  on(c,b)
clear(a)  clear(b)  clear(c)

not(clear(a)) not(clear(b))   not(clear(c))

Again, every literal is possible, 
but FEWER are mutually
exclusive than in S2, since
there are MORE actions

that support them.

stack(b,a)

on(b,a) on(c,b)

persist(on(c,b)) stack(c,b)

Goal State

persist(on(a,b))
persist(on(a,c))
persist(on(b,a))

persist(not(clear(a)))
persist(not(clear(b)))
persist(not(clear(c)))

A

B

C

persist(on(b,a))



Graphplan Blocksworld (5)

• In S3, on(b,a) and on(c,b) are NOT mutex, since at least one pair of their
action supports are not mutex: persists(on(b,a)) and stack(c,b).

• This is a necessary, but not sufficient criterium for the goal to be
achievable by a legal plan.

• So Graphplan stops at S3 and tries to find a plan by working backwards.

• If none is found, it continues trying by generating A3 and S4.



Graphplan Halting

1. Literals increase monotonically: Due to persistence actions, once a literal
appears in S(i), it exists in S(j) ∀j > i

2. Actions increase monotonically: Since literals increase monotonically, the
preconditions for an action never disappear once present. So more and
more actions become possible in successive layers.

3. Mutexes DECREASE monotonically! Several cases depending upon type
of mutex:

(a) Inconsistent effect - property of actions only, so these don’t change.

(b) Interference - again, property of actions; no change.

(c) Competing needs - preconditions that are mutex =¿ actions are mutex.
This CAN change over time if the precondition literals become non-
mutex.



Graphplan Halting (2)

Mutex changes among literals:

1. Inconsistent - this never changes.

2. Inconsistent support - this can change. Since actions are increasing mono-
tonically, the support for literals increases monotonically. So at some
point, two mutex literals may gain action supports that are not mutex.
E.g., the two subgoals in the above Blocksworld example

• Since number of literals and actions are monotonic and finite, they will
eventually reach a stable level.

• Since the number of mutexes is monotonically decreasing, they too will
reach a stable level.

• Hence, the planning graph will eventually level off, with S(m) = S(m+1)
for some m.



Planning Graphs used for Heuristics

• Heuristics for other planners. The level at which a literal first appears
(level cost) gives a good estimate of the minimal number of actions
needed to produce it.

• Hence, a 2nd planner could sum the level costs of a state’s subgoals to
compute h(state).

• However, this is not an admissible heuristic, since each level may involve
several parallel actions

• So use a serial planning graph.



Heuristics from a Serial Planning Graph

Serial Planning Graph = planning graph which has mutex links among all
pairs of non-persistent actions.

1. Max-Level: Max level-cost of the state’s subgoals - admissible but weak.

2. Level-Sum: Sum of level costs of all subgoals - nonadmissible, since an
action may achieve several subgoals at once, but quite useful for problems
that are reasonably decomposable.

3. Set-Level: Level at which ALL subgoals first appear, with no mutexes
between pairs. Admissible and very effective, especially in domains with
a lot of subgoal interaction.



Complexity Analysis of Graph-Based Planning

Let A = Number of general actions, e.g. stack(x,y)
Let L = Number of literals (e.g. on(block-A, block-B))
Let M = f(A,L) = Number of specific actions (e.g. stack(block-A, block-B))
- e.g. f(A,L) = A*L.

Normal State-Space Search

• worst-case branching factor of M (all specific actions from each state)

• So a k-level search has complexity O(Mk).



Complexity Analysis of GraphPlan

Generating the Planning Graph

• O(L2) to generate each state level; consider mutex relations between all
pairs of literal. item O((L + M)2) to generate an action level: consider
mutex relations between all actions (including O(L) persistence links)

• O(k(L2 +(L+M)2)) = O(k(L2 +M 2)) = O(kM 2) for a k-level search.

Extracting a Solution

• This is backward search across the Action levels, looking for groups of
independent acts that satisfy the next state-levels subgoals.

• Assume a maximum action-group size of g.

• Then each search node in this space has a worst-case branching factor of:








L + M

g








≈ (L + M)g (1)



Complexity Analysis of GraphPlan (2)

• So a k-level search has extraction complexity O(k(L + M)g)

Total Graph Generation + Plan Extraction: O(kM 2 + kM g) = O(kM g)
So GraphPlan beats conventional state-space planning when g < k

That is quite common, since most significant problems have a larger k than
g:
The number of plan steps that could be done in parallel is normally much
less than the total number of steps in the plan!!


