
Bayesian networks

AIMA2e Chapter 14



Outline

♦ Syntax

♦ Semantics

♦ Parameterized distributions



Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi|Parents(Xi))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values



Independence
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• 3 variables: Color (Red, Green), Shape (Circle, Square), Mark (A, S)

• Are shape and color independent?

– P (circle) = P (square) = P (red) = P (green) = 0.5

– But, P (circle | red) = 0.6 6= P (circle) and P (circle | green) =
0.4 6= P (circle)

– Similarly, P (green | square) = 0.6 6= P (green)

– Since background probs 6= conditional probs, shape and color are not
indep.



Independence (2)

• Are mark and color independent?

– P (s) = P (a) = 0.5 = P (s | red) = P (s | green) = P (a | red) =
P (a | green)

– Yes, they are independent. Odds of getting a given mark are the same
if we pick from the whole population or just from a particular color
class.

• Are mark and shape independent?

– P (s) = P (a) = 0.5 = P (s | square) = P (s | circle) = P (a |
circle) = P (a | square)

– Yes!

• Notice that independence is a symmetric property: If A is indep of B,
then B is indep of A.

– Proof: If A is indep of B, then, by definition, P (A | B) = P (A).

– We know that P (A ∧B) = P (A | B)P (B) = P (B | A)P (A)

– So P (A) and P (A | B) cancel in the rightmost equation.

– Yielding P (B) = P (B | A) → B is indep of A.



Conditional Independence
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•Mark is not independent of color. E.g. P (a) = 0.6 6= P (a | red) = 0.625

• And Mark is not indep of shape. P (a | circle) = 0.666.

• But Mark is conditionally independent of color, given shape:

– P (a | circle∧red) = P (a | circle∧green) = P (a | circle) = 0.666

– P (a | square ∧ red) = P (a | square ∧ green) = P (a | square) =
0.5



Conditional Independence and Causality

There may lie a causal relationship behind this:

Shape

Color Shape

Color

Mark

Mark



Conditional Independence and Causality (2)

But this only makes sense if the attributes have another meaning, such as:

• Shape: Square → Plant; Circle → Animal

• Color: Green → Brightly colored; Red → Tan or Dull colored

•Mark = Harvest/Slaughter time: S → Summer; A → Autumn

Animal 
or Plant

Green or 
Tan

Summer 
or 

Autumn



Conditional Independence and Causality (3)

1. Looking for independence and conditional independence in a large data
set with many attributes and data vectors is a difficult task.

2. But we need to find them in order to reduce the number of necessary prior
probabilities down to a reasonable size - i.e., linear (not exponential) in
the number of attributes.

3. Via our background knowledge about the domain, we can see the raw
data as more than just meaningless vectors of attribute values.

4. This will lead to good hypotheses about possible independences and
causal independences.

5. These can be easily checked against the raw data.



Back to the Dentist’s Office

Topology of network encodes conditional independence assertions:

Weather Cavity

Toothache Catch

•Weather is independent of the other variables.

• Toothache and Catch are conditionally independent given Cavity.

• Once you know that there is (or is not) a cavity, then knowing whether
or not there is a toothache does NOT give additional information as to
whether or not the probe will Catch.

• P (Catch | Toothache ∧ Cavity) = P (Catch | Cavity)

• P (Toothache | Catch ∧ Cavity) = P (Toothache | Cavity)



Classic Earthquake Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call



Bayesian Network for Earthquake Example
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Priors: 1(B) + 1(E) + 4(A) + 2 (J) + 2(M) = 10



Compactness

A CPT for Boolean Xi with k Boolean parents has B E

J

A

M

2k rows for the combinations of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1− p)

If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25 − 1 = 31)



Global semantics

Global semantics defines the full joint distribution B E

J

A

M

as the product of the local conditional distributions:

P(X1, . . . , Xn) = Πn
i = 1P(Xi|Parents(Xi))

e.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P (j|a)P (m|a)P (a|¬b,¬e)P (¬b)P (¬e)



Local semantics

• Local semantics: each node is conditionally independent of its nondescen-
dants, given its parents,

• So once you know parents’ values, knowledge of earlier ancestors’ values
is of no extra help in determining the value of X.

. . .

. . .U1

X
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Yn

Znj

Y1

Z1j

Theorem: Local semantics ⇔ global semantics



Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Markov blanket explained

• Parents - Make X cond indep of other ancestors.

• Children - Make X cond indep of other descendants.

• Children’s Parents - Must be included, since, X is conditionally DEPEN-
DENT upon Znj, given Yn

– P (X | Yn) 6= P (X | Yn ∧ Znj)

– E.g. If we know that the alarm went off, then knowing that there was
a burglary has a STRONG influence on our belief that there was an
earthquake (i.e. it drastically lowers P(Earthquake = T)).

– Otherwise, in the absence of alarm information (it could be on or off),
there is no relationship between Burglary and Earthquake.



Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1, . . . , Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, . . . , Xi−1 such that

P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

• Hence, all parents of Xi come BEFORE it in the variable list.

• This makes probability calculations much easier.

• This also guarantees the global semantics:

P(X1, . . . , Xn) = Πn
i = 1P(Xi|X1, . . . , Xi−1) (chain rule)

= Πn
i = 1P(Xi|Parents(Xi)) (by construction)



Reducing Priors

• Given: X1, . . . , Xn binary variables, we have 2n atomic events.

• If there is no independence among these variables, we need 2n− 1 priors.

• The Chain Rule alone does not reduce the number of priors.

• In fact, if each Xi has X1, . . . , Xi−1 as parents, then we need exactly:
2n−1 + 2n−2 + 2n−3 . . . + 1 = 2n − 1 priors!

• However, in most situations, independence and conditional independence,
will give many Xi with far less than i-1 parents.

• So the number of priors will reduce dramatically.



Net-making Decisions

Suppose we choose the ordering M,J,A,B,E.
We are free to choose any ordering among the variables, as long as all parents
come before their children and we have conditional probability tables (filled
in with prior probs) that connect each child to all of its parents.

MaryCalls

JohnCalls

• P (J |M) = P (J)?
Is P(John calling) independent of P(Mary calling)?

• Clearly not, since, on any given day, if Mary called, then the probability
that John called is much better than the background probability that he
called.



Net-making Decisions (2)

• The alarm is the hidden cause that links J and M.

• Given knowledge about the alarm, J and M become independent: If the
alarm goes off, then knowing that Mary called does not help determine
whether John called. In terms of the atomic events, look at ONLY the
days when the alarm goes off. On those days, you will see a weaker
correlation between J and M than the correlation that you get when you
look at ALL the days.

• But without alarm knowledge, the fact that Mary called is a very good
predictor that John called.

• This is easier to understand by looking at a sample of atomic events.



Atomic Earthquake-Example Events

Alarm Mary John Burglary Earthquake

T T T T F
F F F F F
T T F F T
F F T F F
F F F F F
F F F F F
T T T T F
T T T T F
F F F F T
T T T F T



John, Mary, Alarm Probabilities

From the raw data:

• P (JohnCalls = T ) = .5 and P (MaryCalls = T ) = .5

• P (JohnCalls = T |MaryCalls = T ) = .8

• Clearly, John calling is NOT independent of Mary calling.

• P (JohnCalls | Alarm = T ) = .8

• P (JohnCalls | Alarm = T ∧MaryCalls = T ) = .8

• So adding the condition that Mary called does not affect the probability
of John having called, given that the alarm went off.

• John calling and Mary calling are conditionally independent, given the
alarm.

• You often need to think in terms of the atomic events in order to assess
conditional independence, since thinking causally can sometimes confuse
the issue.



Looking for Conditional Independences

Only hook up nodes when the child is dependent upon the parent(s).
Method = Try to establish conditional independence. If not, hook up the
nodes.

MaryCalls

Alarm

JohnCalls

P (J |M) = P (J)? No
P (A|J, M) = P (A|J)? P (A|J, M) = P (A)?
From the data set:

• P (A = T |M = T ∧ J = T ) = 1.0

• P (A = T | J = T ) = 0.8 and P (A = T ) = 0.5

• So A is not conditionally independent of J (Given M), and it is not inde-
pendent of J ∧M



Adding the Burglary Node

MaryCalls

Alarm

Burglary

JohnCalls

P (J |M) = P (J)? No
P (A|J, M) = P (A|J)? P (A|J, M) = P (A)? No
P (B|A, J, M) = P (B|A)? Is B cond indep of J and M, given A?
P (B|A, J, M) = P (B)?
From the data set:

• P (B = T | A = T ∧ J = T ∧M = T ) = 0.75

• P (B = T | A = T ) = 0.6

• P (B = T ) = 0.3 So B is clearly not independent of A, J and M.

• Still, it is quite plausible, in a larger data set, that P (B|A, J,M) ≈
P (B|A)

•We would need to test with all possible values of A,J,M and B to verify
cond indep.



Adding the Earthquake Node

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J, M) = P (A|J)? P (A|J, M) = P (A)? No
P (B|A, J, M) = P (B|A)? Yes
P (B|A, J, M) = P (B)? No
P (E|B,A, J, M) = P (E|A)?
P (E|B,A, J, M) = P (E|A,B)?



Adding the Earthquake Node (2)

From the data set:

• P (E = T | B = F ∧ A = T ∧ J = T ∧M = T ) = 1.0

• P (E = T | A = T ) = 0.4

• P (E = T | A = T ∧B = F ) = 1.0

• So E is cond indep of J and M, given A and B.

• To verify conditional independence, we should verify with all values of all
vars to be sure.

• But with such a small data set, chances are that we would not get a
perfect indicator.



Complete Earthquake Bayesian Net

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J, M) = P (A|J)? P (A|J, M) = P (A)? No
P (B|A, J, M) = P (B|A)? Yes
P (B|A, J, M) = P (B)? No
P (E|B,A, J, M) = P (E|A)? No
P (E|B,A, J, M) = P (E|A,B)? Yes



Aftermath of the Earthquake

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

Deciding conditional independence and conditional probs is hard in noncausal
directions

Causal models and conditional independence seem hardwired for humans!

Network is less compact: 1(M) + 2(J) + 4(A) + 2(B) + 4(E) = 13 priors
needed. The original (causal) network needed only 10 priors!



Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

lights

no oil no gas starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

gas gauge

fuel line
blocked

oil light

battery
 meter

car won’t
    start dipstick



Example: Car insurance

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality
Antilock

Airbag CarValue HomeBase AntiTheft

Theft
OwnDamage

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

OtherCost OwnCost



Example: Nuclear Power Plant

Variables:

• T - core temperature (normal, high)

• G - gauge that records T (normal, high)

• Fg - Faulty gauge (true, false)

• A - alarm that sounds when gauge reading is high (on, off)

• Fa - faulty alarm (true, false)

Draw a Bayesian Network that captures the correct causal dependencies.
Draw the conditional probability tables for G and A given that:

• Probability that G gives correct temperature when it is working is x, and
when faulty, y.

• Alarm works correctly when not faulted. But when faulted, it never rings.



Nuclear Power Plant Bayesian Network

Temperature
(T)

Gauge
(G)

Faulty
Gauge
(Fg)

Faulty
Alarm
(Fa)

Alarm
(A)



Nuclear Power Plant CPTs

T=normal T=high
Fg ¬Fg Fg ¬Fg

G=normal y x 1-y 1-x
G=high 1-y 1-x y x

G=normal G=high
Fa ¬Fa Fa ¬Fa

Alarm = T 0 0 0 1
Alarm = F 1 1 1 0



Inference Using Bayesian Networks

♦ Exact inference by enumeration

♦ Approximate inference by stochastic simulation



Inference tasks

Simple queries: compute posterior marginal P(Xi|E= e)
e.g., P (NoGas|Gauge = empty, Lights = on, Starts= false)

Conjunctive queries: P(Xi, Xj|E= e) = P(Xi|E= e)P(Xj|Xi,E= e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?



Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network: B E

J

A

M

P(B|j, m)
= P(B, j, m)/P (j, m)
= αP(B, j,m)
= αΣeΣaP(B, e, a, j, m)

Rewrite full joint entries using product of CPT entries:
P(B|j, m)
= αΣeΣaP(B)P (e)P(a|B, e)P (j|a)P (m|a)
= αP(B)ΣeP (e)ΣaP(a|B, e)P (j|a)P (m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time



Enumeration algorithm

function Enumeration-Ask(X,e, bn) returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )← a distribution over X, initially empty

for each value xi of X do

extend e with value xi for X

Q(xi)←Enumerate-All(Vars[bn],e)

return Normalize(Q(X))

function Enumerate-All(vars,e) returns a real number

if Empty?(vars) then return 1.0

Y←First(vars)

if Y has value y in e

then return P (y | Pa(Y )) × Enumerate-All(Rest(vars),e)

else return
∑

y P (y | Pa(Y )) × Enumerate-All(Rest(vars),ey)

where ey is e extended with Y = y



Enumeration Example: Skiing (1)
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Enumeration Example: Skiing (2)

Ignore 4 factors (Wax, Terrain, Grip and Speed) just to keep this example
simple.
Query: P (Sun = Y es|Snow = Dry))
Same as:
P (Sun = Y es|Snow = Dry ∧ Temp = High)
+P (Sun = Y es|Snow = Dry ∧ Temp = Medium)
+P (Sun = Y es|Snow = Dry ∧ Temp = Low)

But we do not have these probabilities!
What we do have are tables for each of these probabilities:
1) P (Sun = Y es/No)
2) P (Temp = Low/Medium/High)
3) P (Snow = Wet/Med/Dry|Sun = Y/N∧Temp = Low/Med/High)



Enumeration Example: Skiing (3)

Enumeration-Ask called with:
X = Sun
e = ( Snow = Dry )
bn = the simplified Bayesian Net with only Sun, Temp and Snow.
VARS(bn) = (Sun, Temp, Snow) in THAT order: parents before kids.

Enumerate-All called 2 times from Enumerate-Ask, with e (the evidence)
having 2 different values:
1) (Snow = Dry, Sun = Yes)
2) (Snow = Dry, Sun = No)
This yields 2 results:
1) P (Snow = Dry ∧ Sun = Y es)
2) P (Snow = Dry ∧ Sun = No)
Note that: P (Snow = Dry ∧ Sun = Y es) + P (Snow = Dry ∧ Sun =
No) = P (Snow = Dry)
Since Sun only takes on these 2 values.



Enumeration Example: Skiing (4)

So when we normalize (i.e. when we divide each result by their sum), we are
dividing by
P (Snow = Dry)
And thus, we are computing:
1) P (Snow=Dry∧Sun=Y es)

P (Snow=Dry) = P (Sun = Y es|Snow = Dry)

2) P (Snow=Dry∧Sun=No)
P (Snow=Dry) = P (Sun = No|Snow = Dry)

And 1 is exactly the query we wanted to answer!

First call to EnumerateAll with e = (Snow = Dry, Sun = Yes):
Sun = first(vars) and Sun ∈ e, so the recursive calculation is:
P (Sun = Y )× EnumerateAll{(temp, snow), e + (Sun = Y es)}

Second call to EnumerateAll with e = (Snow = Dry, Sun = Yes):
Temp = first(vars) and Temp /∈ e, so the recursive calculation is:
ΣX∈{H,M,L} (P (Temp = X)× EnumerateAll{(snow), e + (Temp = X)})



Enumeration Example: Skiing (5)

3rd, 4th and 5th calls to EnumerateAll with
e = (Snow = Dry, Sun = Yes, Temp = X):
Snow = first(vars) and Snow ∈ e, so the recursive calculation is:
P (Snow = Dry)× EnumerateAll{{ }, e + (Snow = Dry)}

6th, 7th and 8th calls to EnumerateAll with
e = (Snow = Dry, Sun = Yes, Temp = X)
and vars = { } are just base cases,
so all return 1.0.



Enumeration Example: Skiing (6)

Viewing the recursive calls to Enumerate-All as a tree:

& ' () *+ , -

& ' ./ 0 1+ 2 - & ' ./ 0 1+ 3 - & ' ./ 0 1+ 4 -

555

5

& ' ( * 67 + 89: ( ) *

+ ,; ./ 0 1+ 2 -

& ' ( * 67 + 89: ( ) *

+ ,; ./ 0 1+ 3 -

& ' ( * 6 7 + 89: ( ) *

+ ,; ./ 0 1+ 4 -

*Note: all probs in tree are directly available from the tables of the Bayesian
Net.



Evaluation tree

Enumeration is inefficient: repeated computation
e.g., computes P (j|a)P (m|a) for each value of e

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

Solution: Use Variable-Elimination Algorithms (See book).



Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S

Coin

0.5
2) Compute an approximate posterior probability P̂

3) Show this converges to the true probability P

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic process

whose stationary distribution is the true posterior



Sampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn

inputs: bn, a belief network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements

for i = 1 to n do

xi← a random sample from P(Xi | Parents(Xi))

return x



Example
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Sampled Event = ( Cloudy = T, Sprinker = F, Rain = T, Wet-Grass = T)
Reset variables and sample again, and again, and...



Sampling from an empty network contd.

Probability that PriorSample generates a particular event
SPS(x1 . . . xn) = Πn

i = 1P (xi|Parents(Xi)) = P (x1 . . . xn)
i.e., the true prior probability

E.g., SPS(t, f, t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P (t, f, t, t)

Let NPS(x1 . . . xn) be the number of samples generated for event x1, . . . , xn

Then we have

lim
N→∞

P̂ (x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

= P (x1 . . . xn)

That is, estimates derived from PriorSample are consistent

Shorthand: P̂ (x1, . . . , xn) ≈ P (x1 . . . xn)



Rejection sampling

P̂(X|e) estimated from samples agreeing with e

function Rejection-Sampling(X,e, bn,N) returns an estimate of P (X|e)

local variables: N, a vector of counts over X, initially zero

for j = 1 to N do

x←Prior-Sample(bn)

if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x

return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

P̂(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉

Similar to a basic real-world empirical estimation procedure



Analysis of rejection sampling

P̂(X|e) = αNPS(X, e) (algorithm defn.)
= NPS(X, e)/NPS(e) (normalized by NPS(e))
≈ P(X, e)/P (e) (property of PriorSample)
= P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P (e) is small

P (e) drops off exponentially with number of evidence variables!



Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X,e, bn,N) returns an estimate of P (X|e)

local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do

x,w←Weighted-Sample(bn)

W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn,e) returns an event and a weight

x← an event with n elements; w← 1

for i = 1 to n do

if Xi has a value xi in e

then w←w × P (Xi = xi | Parents(Xi))

else xi← a random sample from P(Xi | Parents(Xi))

return x, w



Likelihood weighting example
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w = 1.0
Note: Only update the weight when an EVIDENCE variable is reached.
That weight replaces an actual sample.
Non-evidence vars are actually sampled, but that does not affect the weight.
So each variable contributes by either weighting or sampling, not both.
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w = 1.0× 0.1× 0.99 = 0.099



Likelihood weighting analysis

Sampling probability for WeightedSample is

SWS(z, e) = Πl
i = 1P (zi|Parents(Zi))

Note: pays attention to evidence in ancestors only

Cloudy

RainSprinkler

 Wet
Grass

⇒ somewhere “in between” prior and
posterior distribution

Weight for a given sample z, e is
w(z, e) = Πm

i = 1P (ei|Parents(Ei))

Weighted sampling probability is
SWS(z, e)w(z, e)

= Πl
i = 1P (zi|Parents(Zi)) Πm

i = 1P (ei|Parents(Ei))
= P (z, e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight.


