
Temporal probability models

Chapter 15



Outline

♦ Time and uncertainty

♦ Inference: filtering, prediction, smoothing

♦ Hidden Markov models

♦ Kalman filters (a brief mention)

♦ Dynamic Bayesian networks

♦ Particle filtering



Time and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

Xt = set of unobservable state variables at time t
e.g., BloodSugart, StomachContentst, etc.

Et = set of observable evidence variables at time t
e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

This assumes discrete time; step size depends on problem

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb



Reducing Causal Dependencies

• Only the essential causal relationships should be in our models. Else, too complex.

• Keys to reducing number of variable dependencies:

– Sensor Model - evidence is totally dependent upon current state. Removes all red links.

– Markov Assump - Current state = f(finite history of earlier states). Reduces blue links.

– Stationary Process Assump - Same causal mechs at each step.

X(t-1) X(t) X(t+1)

e(t-1) e(t) e(t+1)

X = state of heart, kidneys, lungs, liver, etc.

e = pulse rate, blood pressure, temperature, etc.

Sensor
Model

Transition
Model



Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: Xt depends on bounded subset of X0:t−1

First-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−1)
Second-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−2,Xt−1)

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order

Sensor Markov assumption: P(Et|X0:t,E0:t−1) = P(Et|Xt)

Stationary process: transition model P(Xt|Xt−1) and
sensor model P(Et|Xt) fixed for all t



Example

tRain

tUmbrella

Raint −1

Umbrellat −1

Raint +1

Umbrellat +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Tempt, Pressuret

Example: robot motion.
Augment position and velocity with Batteryt



Inference tasks

Filtering: P(Xt|e1:t)
belief state—input to the decision process of a rational agent

Prediction: P(Xt+k|e1:t) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xk|e1:t) for 0 ≤ k < t
better estimate of past states, essential for learning

Most likely explanation: arg maxx1:t P (x1:t|e1:t)
speech recognition, decoding with a noisy channel

• All are Abductive tasks: Given evidence, calc probs of the causes (states).

• All use Bayes Rule: Calc p(X) from E (evidence) using p(x → e) (sensor
model).

• All use the transition model: p(xt → xt+1).



Filtering Overview

X(2) X(t) X(t+k)

e(t-1) e(t) e(t+k)e(1) e(2)

X(1) X(t-1)X(0)

Sensor
Model

Transition Model

??

Given: Evidence from time 0 to present. (E.g., tiredness, fever, runny nose)
Compute: Probability of a given CURRENT state (E.g. Influenza?)



Filtering

Aim: devise a recursive state estimation algorithm:

P(Xt+1|e1:t+1) = f(et+1,P(Xt|e1:t))

P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

= αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t)

= αP(et+1|Xt+1)P(Xt+1|e1:t)

I.e., prediction + estimation. Prediction by summing out Xt:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)ΣxtP(Xt+1|xt, e1:t)P (xt|e1:t)

= αP(et+1|Xt+1)ΣxtP(Xt+1|xt)P (xt|e1:t)

f1:t+1 = Forward(f1:t, et+1) where f1:t =P(Xt|e1:t)
Time and space constant (independent of t)



Generalized Bayes’ Rule

P (Y | X, e) =
P (X | Y, e)P (Y | e)

P (X | e)

Proof:

P (Y | X, e) =
P (X, Y, e)

P (X, e)

=
P (X | Y, e)P (Y, e)

P (X, e)

=
P (X | Y, e)P (Y | e)P (e)

P (X | e)P (e)

=
P (X | Y, e)P (Y | e)

P (X | e)



Generalized Bayes’ Rule in Filtering

P(Xt+1|e1:t+1, et) =
P(et+1|Xt+1, e1:t)P(Xt+1|e1:t)

P(et+1|e1:t)
= αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t)

P(et+1|e1:t) is the correct normalizing constant because:

• In the course of generating the distribution ∀ xt+1 ∈ Xt+1,

• we go through all possible routes from e1:t to et+1, via the use of all
possible xt+1 in the numerator of the General Bayes’ Equation.

• So the sum of these numerators for all possible xt+1 is P(et+1|e1:t).

Big win: Now we are using the causal (sensor) model for et+1 (via P(et+1|Xt+1, e1:t)
which reduces to P(et+1|Xt+1))
Dealing with P(Xt+1|e1:t) is easy, since it is reduces to Markov transitions
and a recursive call.



Recursive Nature of Filtering

X(t+1)

e(t) e(t+1)

X(t)

P(Xt+1 I e1:t+1)

X(t+1)

e(t) e(t+1)

X(t)

P(et+1 I Xt+1)P(Xt I e1:t)

Forward
Message

P(Xt+1 I xt) 
Forall xt

Sensor Model

Markov Transition
Model

Recursion

e(t-1)



Filtering example

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

0.818
0.182

0.627
0.373

0.883
0.117

True
False

0.500
0.500

0.500
0.500

Markovian
Transition
Xt => Xt+1

Bayesian Update
of State Probs based
on Evidence



Forward Messaging

Transition
Model

Sensor
Model

For n k-valued state vars:
kn elems in state vector

Transition
Model

Evidence@t1 Evidence@t2

Sensor Model

Size(circlei) = probability
that atomic-state event xi

is explained by the
evidence from times 1 to i

For m j-valued evidence vars:
jm elems in evidence vector



Prediction Overview

X(2) X(t) X(t+k)

e(t-1) e(t)e(1) e(2)

X(1) X(t-1)X(0)

Sensor
Model

Transition Model

??

Given: Evidence (E.g., high sugar intake, sedentary lifestyle)
Compute: Probability of a FUTURE state (e.g. diabetes)



Prediction Recursion

X(t) X(t+1)

e(t-1) e(t)

X(t-1)

Forward
Message

X(t+k)X(t+2)

Transition
Model

P(Xt+k+1 | e1:t) = Σxt+k
P(Xt+k+1 | xt+k)P(xt+k | e1:t)

• 2nd term of the summation = Recursion

• Base case = forward message: P(xt | e1:t)



Smoothing Overview

X(k)

e(t)e(1) e(k)

X(1) X(t)X(0)

Sensor
Model

Transition Model

Given: Evidence (E.g., memory-loss today, loss of balance yesterday)
Compute: Probability of an EARLIER state (e.g. stroke 2 days ago)



Smoothing and Bi-Directional Recursion

X(k)

e(t)e(1) e(k)

X(1) X(t)X(0)

Sensor
Model

Transition Model

e(t-1)

Forward
Message

e(k+1)

Backward
Message

• Forward actually means that we recurse backwards in time, but then the
base-case probability is propagated forward from time 0 and modified by
the transition and sensor models. Here, the base case is P(X0 | e0) =
P(X0), since there is no evidence (by convention) at time 0.

• Backward involves forward recursion in time, with the eventual base-case
probability propagating backwards from time = t. Here, the base case is
P(et+1 | Xt) = 1, since the evidence at time t+1 is the empty set.



Smoothing

X 0 X 1

1E Ek tE

tXX k

Divide evidence e1:t into e1:k, ek+1:t:

P(Xk|e1:t) = P(Xk|e1:k, ek+1:t)

= αP(Xk|e1:k)P(ek+1:t|Xk, e1:k)

= αP(Xk|e1:k)P(ek+1:t|Xk)

= αf1:kbk+1:t

Backward message computed by a backwards recursion:

P(ek+1:t|Xk) = Σxk+1
P(ek+1:t|Xk,xk+1)P(xk+1|Xk)

= Σxk+1
P (ek+1:t|xk+1)P(xk+1|Xk)

= Σxk+1
P (ek+1|xk+1)P (ek+2:t|xk+1)P(xk+1|Xk)

3 parts of the final sum: Sensor Model, Recursive Step, Transition Model



Smoothing Recursion

X(k)

e(t)e(k)

Forward
Message

e(k+1)

p(ek+1:t I Xk)

Backward
Message

X(k-1)

e(t)e(k-1)

Forward
Message

P(xk-1 I e1:k-1)

e(k+2)

p(ek+2:t I Xk+1)

Backward
Message

X(k+1)X(k)

e(k) e(k+1)

p(ek I Xk) p(ek+1 I Xk+1)

Bi-directional       RecursionForall xk+1:
p(xk+1 I xk)P(Xk I xk-1) 

Forall xk-1



Backward Messaging

Transition
Model Sensor

Model Transition
Model

Evidence@t-1 Evidence@t

Sensor Model

Size(circlei) = probability
that atomic-state event xi

explains/causes the
remaining evidence



Smoothing example

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

True
False

0.818
0.182

0.627
0.373

0.883
0.117

0.500
0.500

0.500
0.500

1.000
1.000

0.690
0.410

0.883
0.117

forward

backward

smoothed
0.883
0.117

Forward–backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space O(t|f|)



Combining Forward and Backward Messages

Transition Sensor Transition Sensor

Forward
Messaging

p(Xk I e1:k) p(Xk+1 I e1:k+1)

p(ek+1:t I xk)

SensorTransitionSensor

p(ek+2:t I xk+1)

p(Xk I e1:t)

Transition

Sensor
Transition

1) Multiply 
2) Normalize

product
vector

Backward
Messaging



Most likely explanation

Most likely sequence 6= sequence of most likely states!!!!

Most likely path to each xt+1

= most likely path to some xt plus one more step

max
x1...xt

P(x1, . . . ,xt,Xt+1|e1:t+1)

= P(et+1|Xt+1) max
xt



P(Xt+1|xt) max
x1...xt−1

P (x1, . . . ,xt−1,xt|e1:t)




Identical to filtering, except f1:t replaced by

m1:t = max
x1...xt−1

P(x1, . . . ,xt−1,Xt|e1:t),

I.e., m1:t(i) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

m1:t+1 = P(et+1|Xt+1) max
xt

(P(Xt+1|xt)m1:t)



Viterbi example

Rain1 Rain2 Rain3 Rain4 Rain5

true

false

true

false

true

false

true

false

true

false

.8182 .5155 .0361 .0334 .0210

.1818 .0491 .1237 .0173 .0024

m 1:1 m 1:5m 1:4m 1:3m 1:2

state
space
paths

most
likely
paths

umbrella true truetruefalsetrue



Hidden Markov models

Xt is a single, discrete variable (usually Et is too)
Domain of Xt is {1, . . . , S}

Transition matrix Tij = P (Xt = j|Xt−1 = i), e.g.,









0.7 0.3
0.3 0.7









Sensor matrix Ot for each time step, diagonal elements P (et|Xt = i)

e.g., with U1 = true, O1 =









0.9 0
0 0.2









Forward and backward messages as column vectors:

f1:t+1 = αOt+1T
>f1:t

bk+1:t = TOk+1bk+2:t

Forward-backward algorithm needs time O(S2t) and space O(St)



Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
>f1:t

O−1

t+1f1:t+1 = αT>f1:t

α′(T>)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi
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Country dance algorithm
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Dynamic Bayesian networks (DBNs)

Xt, Et contain arbitrarily many variables in a replicated Bayes net

Velocity
Gauge GPSBattery

Gauge

Battery
Level

Motor
RPMs

Acceleration

Velocity

Position

Time t

Velocity
Gauge GPSBattery

Gauge

Battery
Level

Motor
RPMs

Acceleration

Velocity

Position

Transition
Model

Sensor
Model

Time t+1

Internal
Model



DBN Requirements

To build a DBN, you need:

• Prior probabilities for the internal state variables: X0 values.

• Transition model: P(Xt+1 | Xt).

• Sensor Model: P(Et | Xt).

Given this, we can do filtering, predictive, smoothing and best-explanation
tasks.
However, this can be expensive.
Each conditional prob query invokes the Bayesian Reasoner, which may:

• Generate an exact answer via enumeration.

• Generate an approximate answer via sampling.



DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

X t Xt+1

tY t+1Y

tZ t+1Z

Sparse dependencies ⇒ exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20× 23 = 160 parameters, HMM has 220 × 220 ≈ 1012



Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm
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Problem: inference cost for each update grows with t

Rollup filtering: add slice t + 1, “sum out” slice t using variable elimination

Largest factor is O(dn+1), update cost O(dn+2)
(cf. HMM update cost O(d2n))



Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

Rain1

Umbrella1

Rain0

Umbrella2

Rain3

Umbrella3

Rain4

Umbrella4

Rain5

Umbrella5

Rain2

LW samples pay no attention to the evidence!
⇒ fraction “agreeing” falls exponentially with t
⇒ number of samples required grows exponentially with t
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Particle filtering

Basic idea: ensure that the population of particles (i.e., sample events cov-
ering all state variables) tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for et: how well the states
explain the evidence.

true

false

(a) Propagate (b) Weight (c) Resample

Raint Raint +1Raint +1Raint +1

Here, evidence at t+1 is not(umbrella)
Widely used for tracking nonlinear systems, esp. in vision
Also used for simultaneous localization and mapping in mobile robots 105-
dimensional state space



Particle filtering Algorithm

1. Generate N sample events over all the state variables, using prior probs
X0 as basis.

2. t = 0;

3. For each sample, xt, propagate it forward to xt+1 using the Transition
Model, P(Xt+1 | Xt).

4. weight(xt+1) = P(et+1 | xt+1). How well does the sample agree with
evidence?

5. Resample the population based on the weights of samples at t+1:

• Choose N new sample events from the current pool of N samples.

• Highly-weighted samples will be chosen (hence replicated) many times.

• Low-weight samples may not be chosen much (if at all).

6. If at final final time step: Stop, Base state probs on particle ratios.

7. ELSE: t = t + 1, goto step 3



Particle filtering contd.

Assume consistent at time t: N(xt|e1:t)/N = P (xt|e1:t)

Propagate forward: populations of xt+1 are

N(xt+1|e1:t) = ΣxtP (xt+1|xt)N(xt|e1:t)

Weight samples by their likelihood for et+1:

W (xt+1|e1:t+1) = P (et+1|xt+1)N(xt+1|e1:t)

Resample to obtain populations proportional to W :

N(xt+1|e1:t+1)/N = αW (xt+1|e1:t+1) = αP (et+1|xt+1)N(xt+1|e1:t)

= αP (et+1|xt+1)ΣxtP (xt+1|xt)N(xt|e1:t)

= α′P (et+1|xt+1)ΣxtP (xt+1|xt)P (xt|e1:t)

= P (xt+1|e1:t+1)



Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
– transition modelP(Xt|Xt−1)
– sensor model P(Et|Xt)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n3) update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs



Island algorithm

Idea: run forward-backward storing ft, bt at only k − 1 points
Call recursively (depth-first) on k subtasks

O(k|f| logk t) space, O(k logk t) more time



Online fixed-lag smoothing

t−d t−d+1 t t+1

f
b

f
b

Obvious method runs forward–backward for d steps each time

Recursively compute f1:t−d+1, bt−d+2:t+1 from f1:t−d, bt−d+1:t ?

Forward message OK, backward message not directly obtainable



Online fixed-lag smoothing contd.

Define Bj:k = Πk
i = jTOi, so

bt−d+1:t = Bt−d+1:t1

bt−d+2:t+1 = Bt−d+2:t+11

Now we can get a recursive update for B:

Bt−d+2:t+1 = O−1

t−d+1T
−1Bt−d+1:tTOt+1

Hence update cost is constant, independent of lag d



Approximate inference in DBNs

Particle filtering (Gordon, 1994; Kanazawa, Koller, and Russell, 1995; Blake
and Isard, 1996)

Factored approximation (Boyen and Koller, 1999)

Loopy propagation (Pearl, 1988; Yedidia, Freeman, and Weiss, 2000)

Variational approximation (Ghahramani and Jordan, 1997)

Decayed MCMC (unpublished)



Evidence reversal

Better to propose new samples conditioned on the new evidence
Minimizes the variance of the posterior estimates (Kong & Liu, 1996)
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Example: DBN for speech recognition

articulators
tongue, lips

P(OBS | 2) = 1end-of-word observation

deterministic, fixed

stochastic, learned

deterministic, fixed

phoneme
index

transition

phoneme

0 1 0

o

P(OBS | not 2) = 0

1 1 1 2 2

n nn

0

o

observation stochastic, learned

a a b bu u r ra u stochastic, learned

Also easy to add variables for, e.g., gender, accent, speed.
Zweig and Russell (1998) show up to 40% error reduction over HMMs


