
Learning from Observations

Chapter 18, Sections 1–4

C
h
a
p
te

r

Outline

♦ Learning agents

♦ Inductive learning

♦ Decision tree learning

(Next lecture covers neural networks)

C
h
a
p
te

r

Learning

Learning is essential for unknown environments,
i.e., when designer lacks omniscience

Learning is useful as a system construction method,
i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve performance

C
h
a
p
te

r

Learning agents

Performance standard

Agent

E
nvironm

ent
Sensors

Effectors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

experiments

C
h
a
p
te

r

Performance -vs- Learning Element

• Performance element is what we have called agent up to now

• Critic/LearningElement/ProblemGenerator handle improvement

• Performance standard is fixed;

– can’t adjust performance standard to flatter own behavior

– no standard *in the environment*: ordinary chess and suicide chess
LOOK identical. Essentially, certain kinds of percepts are “hardwired”
as good/bad (e.g., pain, hunger)

• Learning element may use knowledge already acquired in the perf. element

• Learning may require experimentation - actions an agent might not nor-
mally consider such as dropping rocks for the Tower of Pisa

C
h
a
p
te

r

Learning element

Design of learning element is dictated by
♦ type of performance element
♦ functional component to be learned
♦ representation of that functional component
♦ type of available feedback

Example scenarios:

Performance element

Alpha−beta search

Logical agent

Simple reflex agent

Component

Eval. fn.

Transition model

Transition model

Representation

Weighted linear function

Successor−state axioms

Neural net

Dynamic Bayes netUtility−based agent

Percept−action fn

Feedback

Outcome

Outcome

Win/loss

Correct action

Supervised learning: correct answers for each instance are provided
Reinforcement learning: occasional rewards of type good/bad

C
h
a
p
te

r

Inductive learning (a.k.a. Science)

Simplest form: learn a function from examples (tabula rasa)

f is the target function

An example is a pair x, f(x), e.g.,
O O X

X
X

, +1

Problem: find a(n) hypothesis h
such that h ≈ f
given a training set of examples

(This is a highly simplified model of real learning:

– Ignores prior knowledge

– Assumes a deterministic, observable “environment”

– Assumes examples are given

– Assumes that the agent wants to learn f—why?)

C
h
a
p
te

r

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

C
h
a
p
te

r

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

C
h
a
p
te

r

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

C
h
a
p
te

r

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

C
h
a
p
te

r

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

C
h
a
p
te

r

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Ockham’s razor: maximize a combination of consistency and simplicity

C
h
a
p
te

r

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where I will/won’t wait for a table:

Example Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)

C
h
a
p
te

r

Decision trees

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

C
h
a
p
te

r

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T T

Trivially, ∃ a consistent decision tree for any training set
w/ one path to leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples

Prefer to find more compact decision trees: Ask the fewest number of
questions (i.e. query the fewest attributes) to reach a decision about a
classification or an action to take.

C
h
a
p
te

r

Hypothesis Space Size

How many distinct decision trees with n Boolean attributes??

• = number of Boolean functions

• = number of distinct truth tables with 2n rows: 22n

– Each row represents a situation.

– So there are S = 2n situations.

– Each situation can be classified as True or False.

– So there are 2S = 22n
different ways to classify the situations.

– E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

• This is a general result for any decision-making system with:

– A fixed number of situations.

– A fixed set of actions/classifications for each situation.

• The strategy in a decision table = its 2n actions.

C
h
a
p
te

r

Hypothesis Space Size (2)

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??

Each attribute can be in (positive), in (negative), or out
⇒ 3n distinct conjunctive hypotheses

More expressive hypothesis space
– increases chance that target function can be expressed
– increases number of hypotheses consistent w/ training set
⇒ may get worse predictions

C
h
a
p
te

r

Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification

else if attributes is empty then return Mode(examples)

else

best←Choose-Attribute(attributes, examples)

tree← a new decision tree with root test best

for each value vi of best do

examplesi←{elements of examples with best = vi}

subtree←DTL(examplesi,attributes− best,Mode(examples))

add a branch to tree with label vi and subtree subtree

return tree

C
h
a
p
te

r

Choosing an attribute

Key Point: a good attribute splits the examples into subsets that are as close
as possible to all positive and all negative.
If the split is perfect, then no further questions need to be asked.

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

C
h
a
p
te

r

Information and Entropy

Information answers questions

The more clueless I am about the answer initially, the more information is
contained in the answer

Scale: 1 bit = answer to Boolean question with prior 〈0.5, 0.5〉

Information in an answer when prior is 〈P1, . . . , Pn〉 is

H(〈P1, . . . , Pn〉) = Σn
i =1 − Pi log2 Pi

(also called entropy of the prior)

•Maximum entropy occurs when Pi = Pj ∀i, j

• In such a perfectly even distribution, H(〈P1, . . . , Pn〉) = log2 n

• Conversely, if Pk = 1 and Pi = 0 ∀i 6= k, H(〈P1, . . . , Pn〉) = 0

C
h
a
p
te

r

Information and Entropy (2)

High Entropy
Maximum Disorder

All states equally likely.
A lot of info is still needed
to discriminate among

alternatives.

Low Entropy
Minimum Disorder

One state
clearly dominates.

Only a little additional
info is needed to decide
among the alternatives.

Medium Entropy
Clear separation
into high- and
low-probability
alternatives

like
lih
oo
d

States

C
h
a
p
te

r

Information and Entropy (3)

Suppose we have p positive and n negative examples at the root
⇒ H(〈p/(p+n), n/(p+n)〉) bits needed to classify a new example

E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

An attribute splits the examples E into subsets Ei, each of which (we hope)
needs less information to complete the classification

Let Ei have pi positive and ni negative examples
⇒ H(〈pi/(pi+ni), ni/(pi+ni)〉) bits needed to classify a new example
⇒ expected number of bits per example over all branches is

Σi
pi + ni

p + n
H(〈pi/(pi + ni), ni/(pi + ni)〉)

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

⇒ choose the attribute that minimizes the remaining information needed

C
h
a
p
te

r

Restaurant Example Revisited

Decision tree learned from the 12 examples:

No Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree—a more complex hypothesis isn’t jus-
tified by small amount of data

C
h
a
p
te

r

Colored Shapes

Build an efficient decision tree for sorting the positive and negative examples.
I.e., Minimize # questions needed to correctly classify any of the 16.

P P NP N

P NP P NP

P NP N P

Attributes: Color (Red, Blue, Green), Size (Big, Small), Shape (Circle,
Star, Diamond)
Counts: Red: 5, Blue: 5, Green: 6 Big: 10, Small: 6 Circle: 5, Star: 6,
Diamond: 5C

h
a
p
te

r

Best First Question?

•What is the best attribute to ask about, first?

• Try each one, and see how the P and N examples get partitioned by each
question.

P

P

N

P

N

P
N

P

P
N

P

P

N

P

N

P

Color?

C
h
a
p
te

r

Trying Other Questions

P

P

N

P

N P
N

P

P

N

P
P

N

P

N
P

Shape?

PP
N

P N

P

N

P P

N

PP

N

P
N
P

Size?

C
h
a
p
te

r

Expected Remaining Information Needs

Color?

• Red: 5

16
(−0.8 log2 0.8 +−0.2 log2 0.2) = .226

• Green: 6

16
(−0.666 log2 0.666 +−0.333 log2 0.333) = .344

• Blue: 5

16
(−0.4 log2 0.4 +−0.6 log2 0.6) = .303

• Total: .873

Shape?

• Circle: 5

16
(−0.6 log2 0.6 +−0.4 log2 0.4) = .303

• Star: 6

16
(−0.666 log2 0.666 +−0.333 log2 0.333) = .344

• Diamond: 5

16
(−0.6 log2 0.6 +−0.4 log2 0.4) = .303

• Total: .950

Size?

• Large: 10

16
(−0.8 log2 0.8 +−0.2 log2 0.2) = .451

• Small: 6

16
(−0.333 log2 0.333 +−0.666 log2 0.666) = .344

• Total: .795 Yields partitions with best separation of P and N.

C
h
a
p
te

r

Recursion!!

Same analysis on each branch, using instance subset + remaining questions.

P

PP

P N

PP P

N

P

Size?
Large

Shape?

P

P

PP

N

P P

PN

P

Size?
Large

Color?

- vs -

C
h
a
p
te

r

Expected Remaining Info Needs

Size = Large, then Shape?

• Circle: 3
10

(−1.0 log2 1.0 +−0.0 log2 0.0) = 0

• Star: 4
10

(−0.75 log2 0.75 +−0.25 log2 0.25) = .325

• Diamond: 3
10

(−0.666 log2 0.666 +−0.333 log2 0.333) = .275

• Total: .600 So on this branch, ask Shape? next.

Size = Large, then Color?

• Red: 2
10(−1.0 log2 1.0 +−0.0 log2 0.0) = 0

• Green: 5
10(−0.8 log2 0.8 +−0.2 log2 0.2) = .361

• Blue: 3
10(−0.666 log2 0.666 +−0.333 log2 0.333) = .275

• Total: .636

C
h
a
p
te

r

Recursion For Size = Small

N
N

P NNP

Size? Small Color?

NN PN N P

Size? Small Shape?

- vs -

C
h
a
p
te

r

Expected Remaining Info Needs

Size = Small, then Shape?

• Circle: 2
6
(−0.0 log2 0.0 +−1.0 log2 1.0) = 0

• Star: 2
6
(−0.5 log2 0.5 +−0.5 log2 0.5) = .333

• Diamond: 2
6
(−0.5 log2 0.5 +−0.5 log2 0.5) = .333

• Total: .666

Size = Small, then Color?

• Red: 3
6(−0.666 log2 0.666 +−0.333 log2 0.333) = .459

• Green: 1
6(−0.0 log2 0.0 +−1.0 log2 1.0) = 0

• Blue: 2
6(−0.0 log2 0.0 +−1.0 log2 1.0) = 0

• Total: .459 On this branch, ask Color? next.

C
h
a
p
te

r

The Complete Decision Tree

Size?
Small

Color?Shape?
Large

Color? Color?

P N

N N

NP P

P

Circle Star Diamond

?

Red
Green

BlueRed
Green

Blue

Shape?

P

Blue
Green

Red

P

Circle
Star

Diamond

Ambiguous Training Set: 2 large
green diamonds, one P and one NNot trained to handle this case, since

no instances were large red diamonds

?

C
h
a
p
te

r

Boosting

•Many learning problems are very complex.

• A single perfect hypothesis is hard (or impossible) to create.

• So create a population of different hypotheses, where:

– Each is generated from the same training set.

– But the examples are weighted, and weights change between hypothesis-
creation rounds.

• During testing, each hypothesis gets to vote on the correct answer.

• Votes are weighted by the credibility of the hypothesis (which is derived
from its accuracy on the training data)

+

+

+

+

+

++
+

++

+
+

+

+

–
–
–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

– –
–

–

–

–

–

–

–
 –

–

–

–

–

–

–

–

–

–

–

–

–

–

–

C
h
a
p
te

r

Basic Boosting Process

Gen
Hypo

Weighted
Training
Set weightsattributes

Eval
Hypo

Hypothesis
Ensemble

+ weight

C
h
a
p
te

r

Weighted Examples in Boosting

P N PN NP

Size? Small Shape?

P P
.05 .03 .02 .1 .1 .01 .02 .02

Total weight of subtree examples = 0.35
Weighted Expected Information Needs for Shape?

• Circle: 0.1
0.35(−0.666 log2 0.666 +−0.333 log2 0.333) = .262

• Star: 0.2
0.35(−0.5 log2 0.5 +−0.5 log2 0.5) = .571

• Diamond: 0.05
0.35(−0.666 log2 0.666 +−0.333 log2 0.333) = .131

• Total: 0.964

C
h
a
p
te

r

Weighted Examples in Boosting: Alternative 2

P N PN NP

Size? Small Shape?

P P
.05 .03 .02 .1 .1 .01 .02 .02

Total weight of subtree examples = 0.35
Here, we use weights in entropy calculations also.

• Circle: 0.1
0.35(−0.8 log2 0.8 +−0.2 log2 0.2) = .206

• Star: 0.2
0.35(−0.5 log2 0.5 +−0.5 log2 0.5) = .571

• Diamond: 0.05
0.35(−0.6 log2 0.6 +−0.4 log2 0.4) = .139

• Total: 0.916

C
h
a
p
te

r

Evolving Example Weights in Boosting

h

h1 = h2 = h3 = h4 =

Given hypothesis H and training examples {...(xi, yi)...} with weights wi.

error ← 0

∀i : If H(xi) 6= yi then error ← error + wi

∀i : If H(xi) = yi then wi← wi(
error

1−error)

C
h
a
p
te

r

Total Error and Weight Updates

• The updated weights of the training examples are normalized after each
hypothesis evaluation.

• So they always sum to 1.

• Using this update function, wi ← wi(
error

1−error) for instances that are cor-
rectly solved by hypothesis H:

– If error = 0.5, then wi does not change.

– If error < 0.5, then wi decreases. Hence, after normalization, weights
of unsolved examples will increase, thus increasing their importance.

– If error > 0.5, then wi increases. Hence, after normalization, weights
of unsolved examples will decrease. Here, there is so much error that
the solved examples need to be emphasized.

C
h
a
p
te

r

The Ensemble Classifier

weights: 0.25 0.1 0.3 0.2

Test
Case

Positive Positive Negative Positive Negative

0.15

Voting Result:
Positive: 0.25 + 0.1 + 0.2 = 0.55
Negative: 0.3 + 0.15 = 0.45

Positive

C
h
a
p
te

r

Training and Test Sets

• Given a data set, S, consisting of many instances.

• Each instance has attributes plus an answer.

– Robotics: attributes = sensor readings, answer = correct action.

– Medicine: attributes = symptoms, answer = disease.

– Classification: attributes = object features, answer = object class.

• Divide S into Strain and Stest. Often with 75% or more of S in Strain.

• Use Strain as input to the hypothesis generator.

• Each s ∈ Strain may be processed MANY times during training, i.e., the
formation and refinement of an h.

• To test h, find h(s)∀s ∈ Stest. Hopefully, h will get most of these correct,
even though it has not seen them before. I.e., h should generalize from
the training examples.

• Overtraining: h becomes overly specialized for s ∈ Strain so that it
cannot handle much in Stest.

C
h
a
p
te

r

Performance measurement

How do we know that h ≈ f? (Hume’s Problem of Induction)

1) Use theorems of computational/statistical learning theory

2) Try h on a new test set of examples
(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

%
 c

or
re

ct
 o

n
te

st
 s

et

Training set sizeC
h
a
p
te

r

Performance measurement (2)

Learning curve depends on
– realizable (can express target function) vs. non-realizable

non-realizability can be due to missing attributes
or restricted hypothesis class (e.g., thresholded linear function)

– redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

of examples

1

nonrealizable

redundant

realizable

C
h
a
p
te

r

Computational Learning Theory

• Although a learning system L may appear magical at times, it is not.

• In many cases, we can carefully analyze the situations in which L can and
should perform well, along with those where it will probably fail.

• Computational Learning Theory (CLT) helps formalize these chances of
success by doing general combinatorial analyses of hypothesis spaces and
instance spaces.

f*
e

Hbad
+
f*

-

h
+

-

-

-

-

-

h

C
h
a
p
te

r

PAC Hypothesis

• Probably Approximately Correct (PAC): Correct on enough train-
ing instances that we have sufficient statistical confidence that it will also
perform correctly on the test instances.

• Stationary Assumption: Training and test sets drawn from the same
distribution over the example space. I.e., no deception (where L is trained
on things irrelevant to testing).

Notation:

• X = set of all examples.

• D = distribution from which examples are drawn.

• H = set of possible hypotheses.

• N = number of examples in training set.

• f(x) = the true function that L tries to learn.

∀h ∈ H : error(h) = P (h(x) 6= f(x) | x drawn from D)

C
h
a
p
te

r

Avoiding Getting Fooled

• Find the probability p that a bad hypothesis, h, can actually perform
perfectly on a set of N training instances.

• Set N sufficiently high so as to reduce p and insure that every consistent
hypothesis (i.e. one that correctly handles all training cases) is a PAC
hypothesis.

• Assume error(h) > ε. So h ∈ Hbad.

• Then P (h is consistent with a particular training instance) ≤ (1− ε).

• Then P (h is consistent with N instances) ≤ (1− ε)N .

• So P (Hbad contains a consistent hypothesis) ≤ | Hbad | (1− ε)N .

• And | Hbad | (1− ε)N ≤ | H | (1− ε)N

•We want to pick an error threshold, δ and insure that | H | (1−ε)N ≤ δ.

C
h
a
p
te

r

Avoiding Getting Fooled (2)

• Since 1− ε ≤ e−ε, | H | (1− ε)N ≤| H | e−εN

• Now solve | H | e−εN ≤ δ for N:

– Taking logs of both sides: ln | H | −εN(ln e) ≤ ln δ

– Rearranging: −εN ≤ ln δ − ln | H |

– Dividing by −ε, we get: N ≥ 1
ε
(ln | H | − ln δ)

– So: N ≥ 1
ε
(ln | H | + ln 1

δ
)

• So when N ≥ this threshold, | H | (1− ε)N ≤ δ.

• Or: 1 - | H | (1− ε)N ≥ 1− δ.

• In other words: If L returns a hypothesis (h) that is consistent with N ≥
threshold instances, then there is a (1 - δ) probability that error(h) ≤ ε
(i.e. that h is within a pre-specified error bound).

• So for any H, we can select a desired ε and δ, and then compute the N
that will give us that level of assurance.

• Note that for higher ε, there is less chance of being fooled, so N ↓.

C
h
a
p
te

r

CLT with Boolean Literals

• Given a set of n variables.

• The space of possible conjunctive hypotheses involving those literals has
3n possible hypotheses.

• Since, for any variable, v, a hypothesis either contains v or not(v), or it
makes no reference to v.

Insuring a PAC hypothesis in Boolean-Literal Space.

• Assume a space of with conjunctions of up to 10 variables, so | H |= 310.

• Assume that we want a 95% certainty that L will produce a consistent
hypothesis whose error is no more than 0.1.

• Thus, ε = 0.1 and δ = 1− 0.95 = 0.05

• So: N ≥ 1
0.1

(ln 310 + ln 1
.05

) = 10(10 ln 3 + ln 20) ≈ 140.

• Conclusion, by using 140 random instances, we have 95% certainty that
our final hypothesis has no more than a 10% chance of misclassifying an
example. With 280 instances, error(h) ≤ 0.05.C

h
a
p
te

r

Summary

Learning needed for unknown environments, lazy designers

Learning agent = performance element + learning element

Learning method depends on type of performance element, available feed-
back, type of component to be improved, and its representation

For supervised learning, the aim is to find a simple hypothesis approximately
consistent with training examples

Decision tree learning using information gain

Learning performance = prediction accuracy measured on test set

C
h
a
p
te

r

