
Statistical learning Methods

Chapter 20, Sections 1–3
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Outline

♦ Bayesian learning

♦ Maximum likelihood and linear regression
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Full Bayesian learning

View learning as Bayesian updating of probability distribution
over the hypothesis space

Prior P(H), data e= e1, . . . , eN

Given the data so far, each hypothesis has a posterior probability:

P (hi|e) = αP (e|hi)P (hi)

Where:

α =
1

P (e)
=

1

ΣiP (e|hi)P (hi)

For diagnosis, just pick the hypothesis with the maximum a-posteriori prob-
ability (MAP).
This is called hMAP .
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MAP Learning

hMap = arg max
hi∈H

P (hi|e)

= arg max
hi∈H

P (e|hi)P (hi)

ΣiP (e|hi)P (hi)

= arg max
hi∈H

P (e|hi)P (hi)

This follows from a) Bayes Rule, and b) Common denominator for all terms
we are maximizing over.

In addition, if each hypothesis (hi) has the same a-priori probability, then:

hMap = arg max
hi∈H

P (e|hi) = hML

Where hML is the Maximum-Likelihood hypothesis; i.e. the one that makes
the evidence most likely.
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Prediction Using Likelihood Weighting

To predict the most likely next observation of X, use a likelihood-weighted
average over the hypotheses:

P(X|e) =
Σi P(X|e, hi)P (e, hi)

P (e)

=
Σi P(X|e, hi)P (hi|e)P (e)

P (e)

= Σi P(X|e, hi)P (hi|e)

= Σi P(X|hi)P (hi|e) X is cond. indep. of e, given hi
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Marble Example

Suppose there are five kinds of bags of marbles:
10% are h1: 100% blue marbles
20% are h2: 75% blue marbles + 25% red marbles
40% are h3: 50% blue marbles + 50% red marbles
20% are h4: 25% blue marbles + 75% red marbles
10% are h5: 100% red marbles

Then we observe marbles drawn from JUST ONE of the bags:

Abduction or Diagnosis: What kind of bag is it?
Prediction: What color will the next marble be?
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Abduction: Which Bag?

After seeing the first 3 red marbles, find posterior probs for each hypothesis?

P (h2 | 3 red marbles) = αP (3 red marbles | h2)P (h2)

= α(.25)3(.2) = α(.003125)

Similarly:

P (h1 | 3 red marbles) = α(0)3(.1) = α(0)

P (h3 | 3 red marbles) = α(.5)3(.4) = α(.05)

P (h4 | 3 red marbles) = α(.75)3(.2) = α(.084)

P (h5 | 3 red marbles) = α(1)3(.1) = α(.1)
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Abduction: Which Bag? (2)

The normalizing constant is just the inverse of the sum of the numerators:
α = 1

.003125+0+.05+.084+.1
= 1

.237125
= 4.2172

So:

P (h1 | 3 red marbles) = 0

P (h2 | 3 red marbles) = .013

P (h3 | 3 red marbles) = .211

P (h4 | 3 red marbles) = .354

P (h5 | 3 red marbles) = .422

Hence, hMAP = h5

Note: Since we are maximizing, we didn’t need to compute α.
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Posterior probability of hypotheses
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Prediction: Color of Next Marble?

• After seeing 3 red marbles (3R), compute p(4th marble = red) (P(R4)) and p(4th

marble = blue) (P(B4)).

• Here, the hypothesized bags serve as intermediaries that link the past evidence (3 red

marbles) to the future (4th marble).

From our earlier derivation of the likelihood of new evidence:

P(X|e) = Σi P(X|hi)P (hi|e)

Applying to this example and using the posterior probs for the 5 hypotheses (given 3R):

P (R4 | 3R) = Σi P(R4|hi)P (hi|3R)

= (0)(0) + (.25)(.013) + (.5)(.211) + (.75)(.354) + (1)(.422) = .79625

P (B4 | 3R) = Σi P(B4|hi)P (hi|3R)

= (1)(0) + (.75)(.013) + (.5)(.211) + (.25)(.354) + (0)(.422) = .20375

Note: P (B4 | 3R) = 1 − P (R4 | 3R).C
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Prediction probability
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As we see more red marbles, P (h5 | e) ↑, and this increases our belief that
the next marble will be red.
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MAP and MDL

Maximum a posteriori (MAP) learning: choose hMAP maximizing P (hi|e)

arg max
hi∈H

P (e|hi)P (hi) = arg max
hi∈H

log2 P (e|hi) + log2 P (hi)

= arg min
hi∈H

− log2 P (e|hi) − log2 P (hi)

= hMDL Minimal Description Length Hypothesis

• − log2 P (hi): Bits to encode hypothesis

• − log2 P (e|hi): Bits to encode extra data, given the hypothesis: the exceptions.

Information Theory:

• An optimal encoding of information is one where the length of the code for a particular

item is f(− log2 P (i)).

• Hence, use short codes for highly probable items, and long codes for less-probable items.

So, by maximizing the a-posterior probability, we are minimizing the descriptive length under

an optimal encoding scheme: hMAP = hMDL
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Information-Exchange Scenario

• The sender (S) and receiver (R) both already have information about a
particular problem set. I.e., they have a set of attribute instances that
need to be classified.

• S needs to transfer a hypothesized answer (h) to R.

• R can then use h to compute the classes for some (or all) of the instances.

• The answer = h + any exceptions, i.e. instances whose class is not
computed from h but is just listed (..(instance-index class-index) ...).

• S & R may also both have an enumerated space of possible hypotheses,
H.

• Then S merely transmits the index, k, of the best hypothesis, hk ∈ H,
along with any exceptions.

• If S & R have worked with these types of problems before, then they may
have an a-priori probability distribution over all hi ∈ H.

• Then they can devise an optimal coding where higher probability hi have
shorter encodings than lower probability hi, where length ≈ − log2 p(hi).
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Simplifying MAP Search

• Summing over the hypothesis space is often intractable

• E.g. 226

= 18, 446, 744, 073, 709, 551, 616 Boolean functions of 6 vars

For deterministic hypotheses, P (e|hi) is 1 if consistent, 0 otherwise
⇒ MAP = simplest consistent hypothesis (cf. science)

• So if we have deterministic hypotheses, then we should begin our search
for hMAP with shorter hypotheses.

• As soon as we find one that is consistent with all the data, then we have
hMAP .

• So, only in the very worst case do we need to consider the whole hypoth-
esis space.
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ML approximation for MAP

• For large data sets, prior becomes irrelevant

• Maximum likelihood (ML) learning: choose hML maximizing P (e|hi)

• In short, get the best fit to the data (ignoring prior probabilities of hy-
potheses).

• Same as MAP with assump that p(hi) = p(hj)∀i, j

• This is reasonable if all hypotheses are of the same complexity.

• ML is the “standard” (non-Bayesian) statistical learning method
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Example: linear regression

Data: pairs (x1, y1), . . . , (xN , yN)

Hypotheses: straight lines y = ax + b with Gaussian noise
Want to choose parameters θ = (a, b) to maximize likelihood of data

x

f(x)
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Linear regression contd.

Data assumed i.i.d. (independently and identically distributed)
⇒ likelihood P (e|hi) = Πj P (ej|hi)

Maximizing likelihood P (e|hi) ⇔ maximizing log likelihood

L = log P (e|hi) = log Πj P (ej|hi) = Σj log P (ej|hi)

For a continuous hypothesis space, set ∂L/∂θ = 0 and solve for θ

For Gaussian noise, P (ej|hi) = α exp
(

−(yj − (axj + b))2/2σ2
)

, so

L = Σj log P (ej|hi) = −α′Σj (yj − (axj + b))2

so maximizing L = minimizing sum of squared errors
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Linear regression contd.

To find the maximum, set derivatives to zero:

∂L

∂a
= −α′Σj 2(yj − (axj + b)) · (−xj) = 0

∂L

∂b
= −α′Σj 2(yj − (axj + b)) · (−1) = 0

Solutions are

a =
Σj xjΣj yj − NΣj xjyj

(

Σj xj

)2
− NΣj x2

j

; b =
(

Σj yj − aΣj xj

)

/N
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Learning with Complete Data

Complete → Each training instance has a value for each variable in the
underlying probability model.

Two main types

1. Learning the parameters of a model. E.g. the values in a Bayesian
Network Conditional Probability Table.

2. Learning structure of a model. E.g. topology of a Bayesian Net.

Returning to the Earthquake example:

• Assume that we want to learn P (Mary Calls = T | Earthquake = T) from
a large set of atomic events (e).

• We can do this by simply counting the events with Earthquake = T, and
then finding the fraction of those with Mary Calls = T.

• It turns out that this also agrees with the results of ML analysis.
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Maximum-Likelihood Parameter Learning

• Let θ = P (Mary Calls = T | Earthquake = T)

• Then we have an infinite number of hypotheses, hθ, for all possible values
of θ.

• To compute the hθ that best explains e (i.e. hML), we need to maximize
the likelihood of e:

P (e | hθ) = Πn
i=1P (ei | hθ)

• This assumes conditional independence of the evidence, given hθ.

• When maximizing, it is convenient to maximize the log, since that reduces
a product to a sum.

arg max
hθ∈H

Πn
i=1P (ei | hθ) = arg max

hθ∈H
Σn

i=1 log P (ei | hθ)
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Maximum-Likelihood Parameter Learning (2)

• Let f(e, θ) = Σn
i=1 log P (ei | hθ)

• Then we find the θ that maximizes f(e, θ) by setting the derivative to 0:

df(e, θ)

dθ
= 0

• and solving for θ.

• P (ei | hθ) may or may not be easy to differentiate and solve.

• But the optimal θ, i.e. the hML, is exactly the same value as we would
get by counting the atomic events!

• See section 20.2 (pp 716-718) for a more concrete example.
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Naive Bayes Models

Diagnosis example from chapter 13 notes:

P(Cause | Effect1, . . . , Effectn)

= αP(Effect1, . . . , Effectn|Cause)P(Cause)

= αP(Cause)ΠiP(Effecti|Cause)∗

*By conditional independence of the effects (given the cause),

Called naive, since the effects are often assumed conditionally independent,
even though their relationships may not be well understood.
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Naive Bayesian Learning Methods

This also works well for concept learning. In fact, it is the most common
Bayesian method for machine learning:

P(Class | Attribute1, . . . , Attributen)

= αP(Attribute1, . . . , Attributen|Class)P(Class)

= αP(Class)ΠiP(Attributei|Class)∗

*Here, the attributes are assumed conditionally independent, given the class.

• Given attributes, choose the hMAP class.

• When all classes have equal prior probs (quite common), then hML =
hMAP .

• No search needed.

• Handles noise very well

• Boosted version is one of best general-purpose learning algorithms.
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Learning Bayesian Net Topologies

• What are the key variables?

• How are they connected?

– What vars are independent of all others?

– What vars are conditionally dependent upon what other vars?

– What vars are cond indep of others, given a 3rd set of vars?

• This is a difficult search in a space of acyclic graphs.

• Testing of generated topologies:

– Are conditional independences in topology actually true in the data set?
The numbers will not work out exactly, so use statistical confidence
levels.

– Penalize overly-complex networks. The likelihood of evidence given
a model never decreases if extra links are added to that model, so
maximum-likelihood nets can be bloated with unecessary links
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Learning from Incomplete Data

• Hidden Variables: Some key factors in a situation may not be captured
by the model variables.

• Find these hidden factors, and make variables for them.

• This can GREATLY reduce the needed prior probabilities.

Smoking Diet Exercise

Symptom 1 Symptom 2 Symptom 3

(a) (b)

HeartDisease

Smoking Diet Exercise

Symptom 1 Symptom 2 Symptom 3

2 2 2

54

6 6 6

2 2 2

54 162 486

• In above network for heart diagnosis, each variable has 3 possible values.

• Finding the hidden variable → 708 priors reduced to 78!!
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Parameter Learning for Hidden Variables

Heart Strength 
(H)

Blood Pressure 
(BP) Pulse Rate (P) Oxygen Uptake 

(O2)

Strength
P(BP = X)

Low

Medium

High

Low   Med    High
?       ?         ?
?       ?         ?
?       ?         ?

Strength
P(O2 = X)

Low

Medium

High

Low   Med    High
?       ?         ?
?       ?         ?
?       ?         ?

BP = high,  P =  low,  O2 = high
BP = high,  P =  high,  O2 = low
BP = med,  P =  med,  O2 = high
:   :   :   :   :   :   :   :   :   :   :   :

Evidence

P(Strength = X)

Low   Med    High
?       ?         ?

Given: a hypothesized hidden var + evidence (atomic events over the effects/symptoms).

Compute: The probs in tables connecting the hidden var to the effect vars.
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Expectation Maximization

Parameters:
P(effects I causes) & P(causes)

P(BP = low I H = med)
P(P = med I H = low) ...

P(H = low)
P(H = med) ...

Weighted Evidence:
P(causes I evidence) 

P(H = high I event#1)
P(H = med I event#1)
P(H = low I event#1) 
:  :    :    :    :   :    :

P(H = high I event#n)

E Step:  For each evidence event (E), use the parameters
 (and Bayes Rule) to compute the probability distribution

over all the possible causes of E (i.e. weight the evidence w.r.t. each cause)

M Step: Update the estimates of the
parameters based on the weighted evidence
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The Expectation (E) Step

P (causei | ek) =
P (ek | causei)P (causei)

p(ek)

= αP (causei)ΠjP (ek,j | causei)

By the conditional indep of the effects, given the cause. Or, in classification tasks, the cond

indep of the attributes, given the class.

In the heart example, let e1 = (BP = high, P = med, O2 = low).

P (H = low | e1) =
P (e1 | H = low)P (H = low)

p(e1)
= αP (H = low)P (BP = high | H = low)

P (P = med | H = low)P (O2 = low | H = low)]

Do same calc for each evidence event and each possible cause (i.e., 3 values of H)
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The Maximization (M) Step

1. Recompute the a-priori probability estimates based on evidence.

P (causei) =
1

N
ΣkP (causei | ek)

The values in the sum were all computed on the E step.
From the heart example:

P (H = high) =
1

N
ΣN

k=1P (H = high | ek)

P (H = med) =
1

N
ΣN

k=1P (H = med | ek)

P (H = low) =
1

N
ΣN

k=1P (H = low | ek)

Sum the probabilities of the cause over all the evidence.
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The Maximization (M) Step (2)

2. Recompute the conditional probability estimates based on evidence.

P (effectj | causei) =
P (effectj ∧ causei)

P (causei)

=
1

NΣek∈SP (causei | ek)
1

N
ΣkP (causei | ek)

=
Σek∈SP (causei | ek)

ΣkP (causei | ek)

Where S = {all ei in which effectj is true }
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M Step for Heart Example

P (O2 = high | H = low) =
P (O2 = high ∧ H = low)

P (H = low)

=
1

NΣek∈SP (H = low | ek)
1

NΣkP (H = low | ek)

=
Σek∈SP (H = low | ek)

ΣkP (H = low | ek)

Where S = {all ei in which O2 = high }

P (BP = low | H = medium) =
Σek∈S∗P (H = medium | ek)

ΣkP (H = medium | ek)

Where S∗ = {all ei in which BP = low }
Do same calc for all conditional probabilities being estimated.
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Mixtures of Distributions
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Parameters: Means and Variances for the 3 unknown distributions.
Evidence: The data points

• Initialize: Assign random values to the parameters

• E-step: For each data point, compute the probability that it comes from
each distribution.

• M-step: Update parameters based on probability weightings of data points.C
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E Step

Arrow Lengths = Probabilities 
that the point comes from 
each of the 3 distributions.

• The hypothesized distributions are competing for the data points.

• Each hypothesis gives membership weights to the data points.

• Every point’s weights (3 in this case) are normalized.

• So weights = the relative likelihood of distribution/class membership.C
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M Step

Same update for
each hypothesis (star)

• Each hypothesis (distribution mean and variance) is updated based on:

– The locations of the data points.

– Their weighting toward that particular hypothesis.

• Hypotheses are pulled toward the data points with varying force.C
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EM Generality

EM is widely applicable in situations where there are many data points and
a model with one or more hidden factors.

Typical Tasks:

• Diagnosis

– Data = patient records of symptoms

– Params = Prior probs for the values of a hidden factor (HF) + P(symptom
I HF = v) ∀ symptoms and v.

• Classification

– Data = unclassified instances (list of attributes, but without class/answer).

– Params = Prior probs of classes (Ci) + P(attribute I Ci) ∀ attributes
and Ci.

• Distribution Discovery

– Data = points originating from any one of the distributions.

– Params = mean and variance of each distribution.
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Summary

Full Bayesian learning gives best possible predictions but is intractable

MAP learning balances complexity with accuracy on training data

Maximum likelihood assumes uniform prior, OK for large data sets

ML for continuous spaces using gradient (etc.) of log likelihood

Regression with Gaussian noise → minimize sum-of-squared errors
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