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Bayesian methods

- Background - probability
- Naive Bayes
- Bayesian Networks



Bayesian Learning

[Read Ch. 6]
[Suggested exercises: 6.1, 6.2, 6.6]

e Bayes Theorem

e MAP, ML hypotheses

e MAP learners

e Minimum description length principle
e Bayes optimal classifier

e Naive Bayes learner

e EExample: Learning over text data

e Bayesian belief networks

e Expectation Maximization algorithm



Two Roles for Bayesian Methods

Provides practical learning algorithms:
e Naive Bayes learning
e Bayesian belief network learning

e Combine prior knowledge (prior probabilities)
with observed data

e Requires prior probabilities

Provides useful conceptual framework

e Provides “gold standard” for evaluating other
learning algorithms

e Additional insight into Occam’s razor



Bayes Theorem

P(h|D) =~ @?gj (h)

e P(h) = prior probability of hypothesis h

e P(D) = prior probab1l1ty of trammg data D



Choosing Hypotheses

P(D[h)P(h)
P(D)
Generally want the most probable hypothesis given

the training data
Mazimum a posterior: hypothesis hys4p:

P(h|D) =

hirap = argr}fleaﬁcP(MD)
_ P(D|h)P(h)
=R
= argr}fleaﬁcP(DM)P(h)

If assume P(h;) = P(h;) then can further simplify,

and choose the Mazimum likelihood (ML)
hypothesis

hyr = arg %@leaﬁl{ P(D|h;)



Bayes Theorem

Does patient have cancer or not?

A patient takes a lab test and the result
comes back positive. The test returns a
correct positive result in only 98% of the
cases in which the disease is actually present,
and a correct negative result in only 97% of
the cases in which the disease is not present.
Furthermore, .008 of the entire population
have this cancer.

P(cancer) = P(—cancer) =
P(+|cancer) = P(—|cancer) =
P(+|—cancer) = P(—|=cancer) =



Basic Formulas for Probabilities

e Product Rule: probability P(A A B) of a
conjunction of two events A and B:

P(A A B) = P(A|B)P(B) = P(B|A)P(A)

o Sum Rule: probability of a disjunction of two
events A and B:

P(Av B)=P(A)+ P(B) — P(ANA B)

o Theorem of total probability: if events Aq,..., A,
are mutually exclusive with =" ; P(A;) = 1, then

P(B) = ¥ P(B|4;)P(A)



Brute Force MAP Hypothesis Learner

1. For each hypothesis h in H, calculate the
posterior probability
P(D|h)P(h)
P(D)

2. Output the hypothesis hy;4p with the highest
posterior probability

P(h|D) =

harap = argmax P(h|D)
heH



Relation to Concept Learning

Consider our usual concept learning task

e instance space X, hypothesis space H, training
examples D

e consider the FINDS learning algorithm (outputs
most specific hypothesis from the version space

VSHJ))

What would Bayes rule produce as the MAP
hypothesis?

Does FindS output a MAP hypothesis??



Relation to Concept Learning

Assume fixed set of instances (x1,...,x,,)
Assume D is the set of classifications

D = {c(x1),...,c(xm))
Choose P(D|h):



Relation to Concept Learning

Assume fixed set of instances (x1,...,x,,)
Assume D is the set of classifications

D = {c(x1),...,c(xm))
Choose P(D|h)

e P(D|h) =1 if h consistent with D
e P(D|h) = 0 otherwise

Choose P(h) to be uniform distribution
e P(h) = + for all hin H

|H|
Then,

1

50| if h is consistent with D

P(h|D) =

0 otherwise



Evolution of Posterior Probabilities

P(h) P(hD1) P(h|D1,D2)

hypotheses hypotheses hypotheses
(a) (b) (c)



Characterizing Learning Algorithms

Equivalent MAP Learners

Inductive system

Training examples D

Hypothesis space H

L

Candidate
Elimination
Algorithm

Output hypotheses

-

Equivalent Bayesian inference system

Training examples D

Hypothesis space H

L

P(h) uniform
P(D|h) = 0 if inconsistent
=1if consistent>

Brute force
MAP learner

Output hypotheses

A

/

Prior assumptions
made explicit

-



Learning to Predict Probabilities

Consider predicting survival probability from
patient data

Training examples (x;,d;), where d; is 1 or 0

Want to train neural network to output a
probability given z; (not a 0 or 1)

In this case can show

hyrp = argmax ,?:1 diInh(x;) + (1 —d;)In(1 — h(z;))
heH 1=

Weight update rule for a sigmoid unit:
Wik < Wji + ijk

where .
Awjp, =1 X (di = h(z)) zijt



Minimum Description Length Principle

Occam’s razor: prefer the shortest hypothesis

MDL: prefer the hypothesis A that minimizes
hMDL = arhgrgin Lcl<h> + LCQ<D|h>
c

where L¢(x) is the description length of x under
encoding C

Example: H = decision trees, D = training data
labels

o Lc,(h) is # bits to describe tree h
o Lc,(Dlh) is # bits to describe D given h

— Note L¢,(D]h) = 0 if examples classified
perfectly by h. Need only describe exceptions

e Hence hjy/pr trades off tree size for training
errors



Minimum Description Length Principle

hyrap = argr}fleaé}[cP(DM)P(h)
= argmax log, P(D|h) + log, P(h)
= argmin —log, P(D|h) —log, P(h) (1)
Interesting fact from information theory:

The optimal (shortest expected coding
length) code for an event with probability p is
— log, p bits.

So interpret (1):
e —log, P(h) is length of h under optimal code

e —log, P(D|h) is length of D given h under
optimal code

— prefer the hypothesis that minimizes

length(h) + length(misclassi fications)



Most Probable Classification of New Instances

So far we’ve sought the most probable hypothesis
given the data D (i.e., hysap)

Given new instance x, what is its most probable
classification?

e h)rap(x) is not the most probable classification!

Consider:
e Three possible hypotheses:
P(h.1|D) = .4, P(hs|D) = .3, P(hs|D) = .3
e Given new instance x,
hi(x) =+, ho(x) = —, hs(x) = —

e What’s most probable classification of x7



Bayes Optimal Classifier

Bayes optimal classification:

argmax > P(v;|h;)P(h:|D)

U]'EV h,eH
Example:
P<h1 D) :°47 P<_ hl) :Oa P<+ hl)
P<h2 D) :°37 P<_ h2> :]—7 P<+ h2>
P(hs|D) = .3, P(=|hs) =1, P(+|hs)
therefore
> P(+|h;))P(h;|D) = 4
h,eH
P - hl P hl D = .6
5 P(=Ih)P(h|D)
and

argmax T P(uj{h) P(hi|D) = -

U]'EV h,eH



Gibbs Classifier

Bayes optimal classifier provides best result, but
can be expensive if many hypotheses.
Gibbs algorithm:

1. Choose one hypothesis at random, according to
P(h|D)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn
at random from H according to priors on H. Then:

E[@TTOTGZ'()()S] S 2E[€TTOTBayesOptimal]

Suppose correct, uniform prior distribution over H,
then

e Pick any hypothesis from VS, with uniform
probability

e Its expected error no worse than twice Bayes
optimal



Naive Bayes Classifier

Along with decision trees, neural networks, nearest
nbr, one of the most practical learning methods.

When to use
e Moderate or large training set available

e Attributes that describe instances are
conditionally independent given classification

Successful applications:
e Diagnosis

e Classifying text documents



Naive Bayes Classifier

Assume target function f: X — V, where each
instance = described by attributes (a1, as...a,).
Most probable value of f(x) is:
vyrap = argmax P(vilai,as...a,)
U]'EV

P(ay,az ... aylv;)P(v;)

UprAp — argimax

vev P(ay,as...a,)
= argmax P(ay,az ... a,|v;)P(v;)
U]'GV

Naive Bayes assumption:
P(aj,ay...a,lvj) =1 P(a;|v))
which gives

Naive Bayes classifier: vyp = argmax P(v;) II P(a;|v;)
U]'EV !



Naive Bayes Algorithm

Naive _Bayes Learn(examples)

For each target value v;

A

P(v;) < estimate P(v;)
For each attribute value a; of each attribute a
P(a;i|v;) + estimate P(a;|v;)

Classify_New Instance(x)

vxp = argmax P(v;) T P(ai|v)
U]'EV a;€x



Naive Bayes: Example

Consider PlayTennis again, and new instance
(Outlk = sun, Temp = cool, Humid = high, Wind = strong
Want to compute:

vyp = argmax P(v;) II P(a;|v;)
U]'EV l

P(y) P(sunly) P(coolly) P(high|y) P(strongly) = .005
P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

— UNB =N



Naive Bayes: Subtleties

1. Conditional independence assumption is often
violated

P(ay,az...a,lv;) =1 P(ai|v))

e ...but it works surprisingly well anyway. Note
don’t need estimated posteriors P(v;|x) to be
correct; need only that

argmax P(v;) 1 P(a;|v;) = argmax P(v;)P(ay . .., a,|v;)
v;eV l v;eV

e see [Domingos & Pazzani, 1996] for analysis

e Naive Bayes posteriors often unrealistically
close to 1 or O



Naive Bayes: Subtleties

2. what if none of the training instances with
target value v; have attribute value a;7 Then

P(a;|v;) = 0, and...
P(v;) 11 P(aiv;) = 0
Typical solution is Bayesian estimate for P(a;|v;)

ne+ mp
n—+m

P(ai |Uj> <
where

e 1 is number of training examples for which
U = vy,

e n. number of examples for which v = v; and
a = a;

e p is prior estimate for p(CLi|Uj>

e m is weight given to prior (i.e. number of
“virtual” examples)



Learning to Classify Text

Why?
e LLearn which news articles are of interest

e Learn to classify web pages by topic

Naive Bayes is among most effective algorithms

What attributes shall we use to represent text
documents??



Learning to Classify Text

Target concept Interesting? : Document — {+, —}
1. Represent each document by vector of words
e one attribute per word position in document

2. Learning: Use training examples to estimate

° P<-|—>
. P(-)
e P(doc|+)
o P(doc|—)

Naive Bayes conditional independence assumption
length(doc)
P(doc|v;) = 'H1 P(a; = wi|vj)
where P(a; = wy|v;) is probability that word in
position ¢ 18 wy, given v;

one more assumption:
P(a; = wilvj) = P(awm = wilvj), Vi,m



LEARN_NAIVE_BAYES_TEXT(Ezamples, V)

1. collect all words and other tokens that occur in
Examples

e Vocabulary < all distinct words and other
tokens in Examples

2. calculate the required P(v;) and P(wyg|v;)
probability terms

e For each target value v; in V' do

— docs; < subset of Exzamples for which the
target value is v;

B ' |docs ;|
P(U]> — |Examples|

—Text; < a single document created by
concatenating all members of docs;

—n + total number of words in Text; (counting
duplicate words multiple times)

— for each word wy, in Vocabulary

* n; <+ number of times word w;, occurs in
Text;

% P(wk|vj) — njt1

n+|Vocabulary|




CLASSIFY_NAIVE_BAYES_TEXT(Doc)

e positions < all word positions in Doc that
contain tokens found in Vocabulary

e Return vypg, where

vyp = argmax P(v;) I P(a;|v))
vieV 1E€Epositions



Twenty NewsGroups

Given 1000 training documents from each group
Learn to classify new documents according to
which newsgroup it came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med

talk.politics.misc
talk.politics.guns

Naive Bayes: 89% classification accuracy



Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard.e
From: xxx@yyy.zzz.edu (John Doe)

Subject: Re: This year’s biggest and worst (opinic
Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most
obvious candidate for pleasant surprise is Alex
Zhitnik. He came highly touted as a defensive
defenseman, but he’s clearly much more than that.
Great skater and hard shot (though wish he were
more accurate). In fact, he pretty much allowed
the Kings to trade away that huge defensive
liability Paul Coffey. Kelly Hrudey is only the
biggest disappointment if you thought he was any
good to begin with. But, at best, he’s only a
mediocre goaltender. A better choice would be
Tomas Sandstrom, though not through any fault of
his own, but because some thugs in Toronto decided



Learning Curve for 20 Newsgroups
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Bayesian Belief Networks

Interesting because:

e Naive Bayes assumption of conditional
independence too restrictive

e But it’s intractable without some such
assumptions...

e Bayesian Belief networks describe conditional
independence among subsets of variables

— allows combining prior knowledge about
(in)dependencies among variables with observed
training data

(also called Bayes Nets)



Conditional Independence

Definition: X is conditionally independent of
Y given Z if the probability distribution
governing X is independent of the value of Y
given the value of Z; that is, if

Vi, yj,21) P(X =2|Y =y, Z = z1) = P(X = x| Z = %
more compactly, we write

P(X|Y,Z) = P(X|Z)

Example: Thunder is conditionally independent of
Rain, given Lightning

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Naive Bayes uses cond. indep. to justify
P(X,Y|Z) = P(X|Y,Z)P(Y|Z)
= P(X[Z)P(Y|Z)



Bayesian Belief Network

SB S-B -S,B -S,-B
C 04 01 038 0.2
-C 06 09 0.2 0.8

Network represents a set of conditional
independence assertions:

e Each node is asserted to be conditionally
independent of its nondescendants, given its
immediate predecessors.

e Directed acyclic graph



Bayesian Belief Network

SB S-B -S,B -S,-B
C 04 01 038 0.2
-C 06 09 0.2 0.8

Represents joint probability distribution over all
variables

e c.g., P(Storm, BusTourGroup, ..., ForestFire)
e in general,
Plyi, ..., yn) = z‘ﬁ[1 P(y;|Parents(Y;))
where Parents(Y;) denotes immediate
predecessors of Y; in graph

e S0, joint distribution is fully defined by graph,
plus the P(y;|Parents(Y;))



Inference in Bayesian Networks

How can one infer the (probabilities of) values of
one or more network variables, given observed
values of others?

e Bayes net contains all information needed for
this inference

e If only one variable with unknown value, easy to
infer it

e In general case, problem is NP hard

In practice, can succeed in many cases

e Exact inference methods work well for some
network structures

e Monte Carlo methods “simulate” the network
randomly to calculate approximate solutions



Learning of Bayesian Networks

Several variants of this learning task

e Network structure might be known or unknown

e Training examples might provide values of all
network variables, or just some

If structure known and observe all variables

e Then it’s easy as training a Naive Bayes classifier
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Generating Networks:

et tTalTze Network
r epeat
. Propose sone Change to the structure

. Fit Paraneters to the new structure

. Eval uate the new network according to
sonme neasure (li ke BIC, Al C, ML)

. |f the New network is Better than the
previ ous, then Keep the Change

until FI ni shed




Learning Bayes Nets

Suppose structure known, variables partially
observable

e.g., observe ForestFire, Storm, BusTourGroup,
Thunder, but not Lightning, Campfire...

e Similar to training neural network with hidden
units

e In fact, can learn network conditional
probability tables using gradient ascent!

e Converge to network h that (locally) maximizes
P(D|h)



Gradient Ascent for Bayes Nets

Let w; ;. denote one entry in the conditional
probability table for variable Y; in the network

w;ir = P(Y; = yij|Parents(Y;) = the list w;;. of values)

e.g., it Y; = Campfire, then u,;; might be
(Storm =T, BusTourGroup = F)

Perform gradient ascent by repeatedly

1. update all w;;; using training data D

P i1y WUy d
Wijk $= Wijk T 1 3 h<yl‘; +d)
€ ijk

2. then, renormalize the w;;;, to assure
® 2, Wijk = 1
o0 < wir <1



More on Learning Bayes Nets

EM algorithm can also be used. Repeatedly:

1. Calculate probabilities of unobserved variables,
assuming h

2. Calculate new w;j; to maximize E[ln P(D|h)]
where D now includes both observed and
(calculated probabilities of ) unobserved variables

When structure unknown...

e Algorithms use greedy search to add/substract
edges and nodes

e Active research topic



Expectation Maximization (EM)

When to use:
e Data is only partially observable

e Unsupervised clustering (target value
unobservable)

e Supervised learning (some instance attributes
unobservable)

Some uses:
e Train Bayesian Beliet Networks
e Unsupervised clustering (AUTOCLASS)
e Learning Hidden Markov Models



Summary: Bayesian Belief Networks

e Combine prior knowledge with observed data

e Impact of prior knowledge (when correct!) is to
lower the sample complexity

e Active research area

— Extend from boolean to real-valued variables
— Parameterized distributions instead of tables

— Extend to first-order instead of propositional
systems

— More effective inference methods
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