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Bayesian methods

- Background - probability

- Naive Bayes

- Bayesian Networks



Bayesian Learning

[Read Ch. 6]
[Suggested exercises: 6.1, 6.2, 6.6]

� Bayes Theorem
�MAP, ML hypotheses

�MAP learners

�Minimum description length principle

� Bayes optimal classi�er

� Naive Bayes learner
� Example: Learning over text data

� Bayesian belief networks

� Expectation Maximization algorithm
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Two Roles for Bayesian Methods

Provides practical learning algorithms:

� Naive Bayes learning
� Bayesian belief network learning

� Combine prior knowledge (prior probabilities)
with observed data

� Requires prior probabilities

Provides useful conceptual framework

� Provides \gold standard" for evaluating other
learning algorithms

� Additional insight into Occam's razor
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Bayes Theorem

P (hjD) =
P (Djh)P (h)

P (D)

� P (h) = prior probability of hypothesis h

� P (D) = prior probability of training data D

� P (hjD) = probability of h given D

� P (Djh) = probability of D given h
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Choosing Hypotheses

P (hjD) =
P (Djh)P (h)

P (D)

Generally want the most probable hypothesis given
the training data
Maximum a posteriori hypothesis hMAP :

hMAP = argmax
h2H

P (hjD)

= argmax
h2H

P (Djh)P (h)
P (D)

= argmax
h2H

P (Djh)P (h)

If assume P (hi) = P (hj) then can further simplify,
and choose the Maximum likelihood (ML)
hypothesis

hML = argmax
hi2H

P (Djhi)
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Bayes Theorem

Does patient have cancer or not?

A patient takes a lab test and the result
comes back positive. The test returns a
correct positive result in only 98% of the
cases in which the disease is actually present,
and a correct negative result in only 97% of
the cases in which the disease is not present.
Furthermore, :008 of the entire population
have this cancer.

P (cancer) = P (:cancer) =
P (+jcancer) = P (�jcancer) =
P (+j:cancer) = P (�j:cancer) =
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Basic Formulas for Probabilities

� Product Rule: probability P (A ^ B) of a
conjunction of two events A and B:

P (A ^ B) = P (AjB)P (B) = P (BjA)P (A)
� Sum Rule: probability of a disjunction of two
events A and B:

P (A _B) = P (A) + P (B) � P (A ^B)
� Theorem of total probability: if events A1; : : : ; An

are mutually exclusive with Pn
i=1P (Ai) = 1, then

P (B) =
nX

i=1
P (BjAi)P (Ai)
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Brute Force MAP Hypothesis Learner

1. For each hypothesis h in H, calculate the
posterior probability

P (hjD) =
P (Djh)P (h)

P (D)

2. Output the hypothesis hMAP with the highest
posterior probability

hMAP = argmax
h2H

P (hjD)
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Relation to Concept Learning

Consider our usual concept learning task

� instance space X, hypothesis space H, training
examples D

� consider the FindS learning algorithm (outputs
most speci�c hypothesis from the version space
V SH;D)

What would Bayes rule produce as the MAP
hypothesis?

Does FindS output a MAP hypothesis??
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Relation to Concept Learning

Assume �xed set of instances hx1; : : : ; xmi
Assume D is the set of classi�cations
D = hc(x1); : : : ; c(xm)i
Choose P (Djh):
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Relation to Concept Learning

Assume �xed set of instances hx1; : : : ; xmi
Assume D is the set of classi�cations
D = hc(x1); : : : ; c(xm)i
Choose P (Djh)
� P (Djh) = 1 if h consistent with D

� P (Djh) = 0 otherwise

Choose P (h) to be uniform distribution

� P (h) = 1
jHj for all h in H

Then,

P (hjD) =

8>>>>>>><
>>>>>>>:

1
jV SH;Dj if h is consistent with D

0 otherwise
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Evolution of Posterior Probabilities

hypotheses hypotheses hypotheses

P(h|D1,D2)P(h|D1)P h )(

a( ) b( ) c( )
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Characterizing Learning Algorithms by

Equivalent MAP Learners

Inductive system

Output hypotheses

Output hypotheses

Brute force
MAP learner

Candidate
Elimination
Algorithm 

Prior assumptions
 made explicit

P(h) uniform
P(D|h) = 0 if inconsistent,
            = 1 if consistent

Equivalent Bayesian inference system

Training examples D

Hypothesis space H 

Hypothesis space H 

Training examples D

136 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Learning to Predict Probabilities

Consider predicting survival probability from
patient data

Training examples hxi; dii, where di is 1 or 0

Want to train neural network to output a
probability given xi (not a 0 or 1)

In this case can show

hML = argmax
h2H

mX

i=1
di ln h(xi) + (1� di) ln(1� h(xi))

Weight update rule for a sigmoid unit:

wjk  wjk +�wjk

where
�wjk = �

mX

i=1
(di � h(xi)) xijk
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Minimum Description Length Principle

Occam's razor: prefer the shortest hypothesis

MDL: prefer the hypothesis h that minimizes

hMDL = argmin
h2H

LC1(h) + LC2(Djh)
where LC(x) is the description length of x under
encoding C

Example: H = decision trees, D = training data
labels

� LC1(h) is # bits to describe tree h

� LC2(Djh) is # bits to describe D given h

{ Note LC2(Djh) = 0 if examples classi�ed
perfectly by h. Need only describe exceptions

� Hence hMDL trades o� tree size for training
errors
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Minimum Description Length Principle

hMAP = argmax
h2H

P (Djh)P (h)
= argmax

h2H
log2 P (Djh) + log2P (h)

= argmin
h2H
� log2P (Djh) � log2P (h) (1)

Interesting fact from information theory:

The optimal (shortest expected coding
length) code for an event with probability p is
� log2 p bits.

So interpret (1):

� � log2 P (h) is length of h under optimal code

� � log2 P (Djh) is length of D given h under
optimal code

! prefer the hypothesis that minimizes

length(h) + length(misclassifications)
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Most Probable Classi�cation of New Instances

So far we've sought the most probable hypothesis
given the data D (i.e., hMAP)

Given new instance x, what is its most probable
classi�cation?

� hMAP(x) is not the most probable classi�cation!

Consider:

� Three possible hypotheses:
P (h1jD) = :4; P (h2jD) = :3; P (h3jD) = :3

� Given new instance x,

h1(x) = +; h2(x) = �; h3(x) = �
�What's most probable classi�cation of x?
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Bayes Optimal Classi�er

Bayes optimal classi�cation:

argmax
vj2V

X

hi2H
P (vjjhi)P (hijD)

Example:

P (h1jD) = :4; P (�jh1) = 0; P (+jh1) = 1

P (h2jD) = :3; P (�jh2) = 1; P (+jh2) = 0

P (h3jD) = :3; P (�jh3) = 1; P (+jh3) = 0

therefore
X

hi2H
P (+jhi)P (hijD) = :4

X

hi2H
P (�jhi)P (hijD) = :6

and

argmax
vj2V

X

hi2H
P (vjjhi)P (hijD) = �
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Gibbs Classi�er

Bayes optimal classi�er provides best result, but
can be expensive if many hypotheses.
Gibbs algorithm:

1. Choose one hypothesis at random, according to
P (hjD)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn
at random from H according to priors on H. Then:

E[errorGibbs] � 2E[errorBayesOptimal]

Suppose correct, uniform prior distribution over H,
then

� Pick any hypothesis from VS, with uniform
probability

� Its expected error no worse than twice Bayes
optimal
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Naive Bayes Classi�er

Along with decision trees, neural networks, nearest
nbr, one of the most practical learning methods.

When to use

�Moderate or large training set available

� Attributes that describe instances are
conditionally independent given classi�cation

Successful applications:

� Diagnosis
� Classifying text documents
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Naive Bayes Classi�er

Assume target function f : X ! V , where each
instance x described by attributes ha1; a2 : : : ani.
Most probable value of f(x) is:

vMAP = argmax
vj2V

P (vjja1; a2 : : : an)

vMAP = argmax
vj2V

P (a1; a2 : : : anjvj)P (vj)
P (a1; a2 : : : an)

= argmax
vj2V

P (a1; a2 : : : anjvj)P (vj)

Naive Bayes assumption:

P (a1; a2 : : : anjvj) = Y

i
P (aijvj)

which gives

Naive Bayes classi�er: vNB = argmax
vj2V

P (vj)
Y

i
P (aijvj)
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Naive Bayes Algorithm

Naive Bayes Learn(examples)

For each target value vj

P̂ (vj) estimate P (vj)

For each attribute value ai of each attribute a

P̂ (aijvj) estimate P (aijvj)

Classify New Instance(x)

vNB = argmax
vj2V

P̂ (vj)
Y

ai2x
P̂ (aijvj)

147 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Naive Bayes: Example

Consider PlayTennis again, and new instance

hOutlk = sun; Temp = cool;Humid = high;Wind = strong

Want to compute:

vNB = argmax
vj2V

P (vj)
Y

i
P (aijvj)

P (y) P (sunjy) P (cooljy) P (highjy) P (strongjy) = :005

P (n) P (sunjn) P (cooljn) P (highjn) P (strongjn) = :021

! vNB = n
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Naive Bayes: Subtleties

1. Conditional independence assumption is often
violated

P (a1; a2 : : : anjvj) = Y

i
P (aijvj)

� ...but it works surprisingly well anyway. Note
don't need estimated posteriors P̂ (vjjx) to be
correct; need only that

argmax
vj2V

P̂ (vj)
Y

i
P̂ (aijvj) = argmax

vj2V
P (vj)P (a1 : : : ; anjvj)

� see [Domingos & Pazzani, 1996] for analysis

� Naive Bayes posteriors often unrealistically
close to 1 or 0
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Naive Bayes: Subtleties

2. what if none of the training instances with
target value vj have attribute value ai? Then

P̂ (aijvj) = 0, and...

P̂ (vj)
Y

i
P̂ (aijvj) = 0

Typical solution is Bayesian estimate for P̂ (aijvj)
P̂ (aijvj) nc+mp

n+m

where

� n is number of training examples for which
v = vj,

� nc number of examples for which v = vj and
a = ai

� p is prior estimate for P̂ (aijvj)
�m is weight given to prior (i.e. number of
\virtual" examples)

150 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Learning to Classify Text

Why?

� Learn which news articles are of interest

� Learn to classify web pages by topic

Naive Bayes is among most e�ective algorithms

What attributes shall we use to represent text
documents??
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Learning to Classify Text

Target concept Interesting? : Document! f+;�g
1. Represent each document by vector of words

� one attribute per word position in document

2. Learning: Use training examples to estimate

� P (+)
� P (�)
� P (docj+)
� P (docj�)

Naive Bayes conditional independence assumption

P (docjvj) =
length(doc)Y

i=1
P (ai = wkjvj)

where P (ai = wkjvj) is probability that word in
position i is wk, given vj

one more assumption:
P (ai = wkjvj) = P (am = wkjvj); 8i;m
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Learn naive Bayes text(Examples; V )

1. collect all words and other tokens that occur in
Examples

� V ocabulary  all distinct words and other
tokens in Examples

2. calculate the required P (vj) and P (wkjvj)
probability terms

� For each target value vj in V do

{ docsj  subset of Examples for which the
target value is vj

{ P (vj) jdocsjj
jExamplesj

{ Textj  a single document created by
concatenating all members of docsj

{ n total number of words in Textj (counting
duplicate words multiple times)

{ for each word wk in V ocabulary

� nk  number of times word wk occurs in
Textj
� P (wkjvj) nk+1

n+jV ocabularyj
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Classify naive Bayes text(Doc)

� positions all word positions in Doc that
contain tokens found in V ocabulary

� Return vNB, where

vNB = argmax
vj2V

P (vj)
Y

i2positions
P (aijvj)
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Twenty NewsGroups

Given 1000 training documents from each group
Learn to classify new documents according to
which newsgroup it came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey

alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics

talk.politics.mideast sci.med
talk.politics.misc
talk.politics.guns

Naive Bayes: 89% classi�cation accuracy
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Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard.e

From: xxx@yyy.zzz.edu (John Doe)

Subject: Re: This year's biggest and worst (opinio

Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most

obvious candidate for pleasant surprise is Alex

Zhitnik. He came highly touted as a defensive

defenseman, but he's clearly much more than that.

Great skater and hard shot (though wish he were

more accurate). In fact, he pretty much allowed

the Kings to trade away that huge defensive

liability Paul Coffey. Kelly Hrudey is only the

biggest disappointment if you thought he was any

good to begin with. But, at best, he's only a

mediocre goaltender. A better choice would be

Tomas Sandstrom, though not through any fault of

his own, but because some thugs in Toronto decided
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Learning Curve for 20 Newsgroups
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Bayesian Belief Networks

Interesting because:

� Naive Bayes assumption of conditional
independence too restrictive

� But it's intractable without some such
assumptions...

� Bayesian Belief networks describe conditional
independence among subsets of variables

! allows combining prior knowledge about
(in)dependencies among variables with observed
training data

(also called Bayes Nets)
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Conditional Independence

De�nition: X is conditionally independent of
Y given Z if the probability distribution
governing X is independent of the value of Y
given the value of Z; that is, if

(8xi; yj; zk) P (X = xijY = yj; Z = zk) = P (X = xijZ = zk

more compactly, we write

P (XjY; Z) = P (XjZ)

Example: Thunder is conditionally independent of
Rain, given Lightning

P (ThunderjRain; Lightning) = P (ThunderjLightning)

Naive Bayes uses cond. indep. to justify

P (X; Y jZ) = P (XjY; Z)P (Y jZ)
= P (XjZ)P (Y jZ)
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Bayesian Belief Network

Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4
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0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Network represents a set of conditional
independence assertions:

� Each node is asserted to be conditionally
independent of its nondescendants, given its
immediate predecessors.

� Directed acyclic graph
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Bayesian Belief Network

Storm

CampfireLightning

Thunder ForestFire

Campfire
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Represents joint probability distribution over all
variables

� e.g., P (Storm;BusTourGroup; : : : ; ForestF ire)

� in general,

P (y1; : : : ; yn) =
nY

i=1
P (yijParents(Yi))

where Parents(Yi) denotes immediate
predecessors of Yi in graph

� so, joint distribution is fully de�ned by graph,
plus the P (yijParents(Yi))
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Inference in Bayesian Networks

How can one infer the (probabilities of) values of
one or more network variables, given observed
values of others?

� Bayes net contains all information needed for
this inference

� If only one variable with unknown value, easy to
infer it

� In general case, problem is NP hard

In practice, can succeed in many cases

� Exact inference methods work well for some
network structures

�Monte Carlo methods \simulate" the network
randomly to calculate approximate solutions
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Learning of Bayesian Networks

Several variants of this learning task

� Network structure might be known or unknown

� Training examples might provide values of all
network variables, or just some

If structure known and observe all variables

� Then it's easy as training a Naive Bayes classi�er
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• Initialize Network

repeat

•    Propose some Change to the structure

•    Fit Parameters to the new structure

•    Evaluate the new network according to
        some measure (like BIC, AIC, MDL)

•    If the New network is Better than the
        previous, then Keep the Change

until Finished



Learning Bayes Nets

Suppose structure known, variables partially
observable

e.g., observe ForestFire, Storm, BusTourGroup,
Thunder, but not Lightning, Camp�re...

� Similar to training neural network with hidden
units

� In fact, can learn network conditional
probability tables using gradient ascent!

� Converge to network h that (locally) maximizes
P (Djh)
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Gradient Ascent for Bayes Nets

Let wijk denote one entry in the conditional
probability table for variable Yi in the network

wijk = P (Yi = yijjParents(Yi) = the list uik of values)

e.g., if Yi = Campfire, then uik might be
hStorm = T;BusTourGroup = F i
Perform gradient ascent by repeatedly

1. update all wijk using training data D

wijk  wijk + �
X

d2D

Ph(yij; uikjd)
wijk

2. then, renormalize the wijk to assure

� Pj wijk = 1

� 0 � wijk � 1
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More on Learning Bayes Nets

EM algorithm can also be used. Repeatedly:

1. Calculate probabilities of unobserved variables,
assuming h

2. Calculate new wijk to maximize E[lnP (Djh)]
where D now includes both observed and
(calculated probabilities of) unobserved variables

When structure unknown...

� Algorithms use greedy search to add/substract
edges and nodes

� Active research topic
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Expectation Maximization (EM)

When to use:

� Data is only partially observable

� Unsupervised clustering (target value
unobservable)

� Supervised learning (some instance attributes
unobservable)

Some uses:

� Train Bayesian Belief Networks

� Unsupervised clustering (AUTOCLASS)

� Learning Hidden Markov Models
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Summary: Bayesian Belief Networks

� Combine prior knowledge with observed data

� Impact of prior knowledge (when correct!) is to
lower the sample complexity

� Active research area

{ Extend from boolean to real-valued variables

{ Parameterized distributions instead of tables

{ Extend to �rst-order instead of propositional
systems

{More e�ective inference methods

{ ...
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NOEMIE
‘An Environment for Improving the Industrial

Feedback Process’

Expected Result: A tool, A methodology, A demonstrator
Core method: Combining CBR and DM

DB       DW      DM      CBR      RAMS      UI
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