
Downloading These Slides

https://folk.idi.ntnu.no/keithd/downloads/deep-evann.pdf

Keith L. Downing Evolving Deep Neural Networks



Evolving Deep Neural Networks

Keith L. Downing

The Norwegian University of Science and Technology (NTNU)
Trondheim, Norway
keithd@idi.ntnu.no

June 4, 2019

Keith L. Downing Evolving Deep Neural Networks



Intelligence Emerging (2015)

Connecting GOFAI and Bio-AI

GOFAI: Search and Representation

Bio-AI: Complex Adaptive Systems (CAS) + Emergence

Understanding intelligence as the interplay between emergence, search
and representation across multiple time scales: evolution, development
and learning.
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Brains as Complex Systems

4 important principles of complex systems (Mitchell, 2006) and
examples from neuroscience (in red).

1 Global information encoded as patterns over the individual components.
Distributed representations in neural networks

2 Prevalent randomness (often magnified by positive feedback).
Considerable neural firing is random; widespread neural oscillations
result from positive feedback.

3 Parallel and continuous exploration and exploitation at the lower levels.
Neurons migrate during development and then grow exploratory axons.

4 Continual interaction between bottom-up and top-down mechanisms.
Perception at neural level = mixture of bottom-up (stimulus-driven) and
top-down (expectation-driven) activation.
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Multiple Levels of Search and Emergence

Evolution Development

Learning Thinking Evolution

Development

Learning

Thought

Search and emergence at one timescale support and constrain more search
and emergence at other scales.
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POE Systems

3 main levels of adaptivity (often via emergent processes)

1 Phylogenetic or Evolutionary - Characterized by the use of
an EA and thus having clearly definable genotypic and
phenotypic levels, genetic operators, fitness functions, etc.

2 Ontogenetic or Developmental - Involving a non-trivial
genotype-to-phenotype translation. In most cases, the
genotype is a recipe that, through some recursive growth
process, produces the phenotype.

3 Epigenetic or Learning - During actual performance
testing, the system is able to modify itself in some manner
that effects future behavior.

Keith L. Downing Evolving Deep Neural Networks



Intelligence from Persistence, not Planning

Search drives much of the emergence that produces intelligence.

This is dumb, trial-and-error search akin to many forms of local search
in AI, wherein solutions are randomly generated, tested and filtered.

Evolution has produced organic components that are adaptive and
persistent, not a-priori tuned or optimized. They excel at searching for
satisfactory states and configurations; bodies and brains don’t just click
into place.

Examples

Filopodia extend and retract in neuronal migration.
Axonal growth toward targets.
General grow-to-fit nature of the nervous system.
Randomly firing neurons that fortuitously correlate, then
bond (via Hebbian Learning) to enable a wide range of
cognitive phenomena.
Neural activation states that wander into attractors during
perception, attention, repetitive activity, etc.
Trial-and-error (reinforcement) learning performed by the
basal ganglia.
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Even Lightning Searches!

Lightning: Raging Planet

Lightning: snotr

Migrating Neurons

Axonal Growth Cones (Microscopy)

Axonal Growth (Animation)
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https://www.youtube.com/watch?v=6MUYsIjTKvk
https://www.youtube.com/watch?v=dukkO7c2eUE
https://www.youtube.com/watch?v=SczOfOXY17U
https://www.youtube.com/watch?v=3R9SOtcSEuA&ebc=ANyPxKr-vA9GQA9bckcBkS-EkLWl0QcQfCeMgIo2hLX_uGFu2uh1INtX4Zn4-BuS0oEhPMwP6Oc6EMqMPbuSxLneekH0ZiBFiw
https://www.youtube.com/watch?v=ZWACm6BkDVo


Random Mutation + Selection

Incremental Search Local Search

Fail

Fail

Solution

Best Choice

Generate successors
 by randomly choosing 
a queen and moving it

 to a random new
location

2 attacks 3 attacks 3 attacks

4 attacks

K-Queens: Incremental Search (K = 30). Local Search (K = millions)
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Generate-and-Test View of Problem Solving

Generator

TesterHs Hs

Generator

TesterHs Hs

Standard AI and OR Problem Solvers

Nature and Bio-Inspired AI

Intelligent generators in Classic AI (GOFAI), but not in nature nor in Bio-AI.
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Artificial Neural Networks (ANNs)

A natural representation for investigating emergent intelligence

Simple, homogeneous substrate
Same, basic, neural signals carry information of
perceptual, cognitive and motor nature - - no need for
special representations for each aspect of intelligence.
Relatively unbiased. Adapt to represent the salient aspects
of a situation.
Built for learning.
Straightforward to develop (from a genomic recipe) and
evolve (via evolutionary algorithms).
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Evolving Artificial Neural Networks (EANNs)

...0 0 1 0 0 1 ...

...1 1 1 0 0 0 ...

...0 0 0 1 0 1...

Genotypes

Phenotypes

Environment

7.85 9.43 3.21

Evaluations

...1 0 0 1 0 0...

...1 1 0 0 0 0 ...

...0 0 1 0 0 0 ...
Genetic

Operators

Generation G Generation G+1
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Genotypic Encodings

Direct - Position (in chromosome) and bits determine a phenotypic trait,
independent of all other genes.

Indirect Bijective - Genes may interact in determining traits.
Chromosomal position and/or bits may only be relative indicators.

Indirect Generative - Genes encode parameters for development.

1110001101011011.....

Direct Encoding

Schedule the 3rd exam
for the 10th time slot.

....1110001101011011.....

Indirect (Uncompressed) Encoding

Schedule the next unscheduled exam
for the 10th of the unfilled time slots.

111010100011

Generative (Developmental) Encoding

7 5 12
Exam 1 => Slot 4
Exam 2 => Slot 8

.........
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Two Early Direct Encodings

0 0 1 0 0
0 0 0 0 0
0 1 0 0 1
1 1 0 0 0
0 0 1 1 0

To

From
1  2  3  4  5

1
2
3
4
5

0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0

Genotype

Phenotype

1 2

3 4

5

?
?

Weights learned by
  back-propagation

Connection
Table

Miller et. al. (1989)

?

??
Recurrent connections

ignored

?

Montana & Davis (1989)

+.45  -.32  +.89  +.55  -.07 +.61

+.89-.32+.45 +.55

Genotype

Phenotype

Net assumed to be
 fully connected

-.07

1 2

3 4

5
+.61
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Evolving Individual Neurons: the SANE Approach

3210

A B C

0 1

0.2
-0.6 0.5

1.2-1.00.4

8  0.2  311  -1.0  150  0.4

Index

Weight

2  0.5  33  -0.6  130  1.2

Genome for Node A

Genome for Node C

Index < 127 => Input
Else => Output

Genotype => Phenotype Mapping

Moriarty & Mikkulainen (1997). Still a direct representation.

Keith L. Downing Evolving Deep Neural Networks



Cooperative Coevolution of Neurons in SANE

Generation K 
Neurons

Create
Networks

Assign
fitness to 
neurons

Evaluate
Networks

Selection, 
mutation & 

recombination 
of neurons

Generation K+1 
Neurons

Neuron fitness is based on the ability to combine well (i.e. cooperate
with) other neurons in forming a good neural network.
Circumvents competing conventions by never linking neurons together
on a chromosome; it just allows good combinations to form dynamically
during fitness testing.
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Neurevolution of Augmenting Topologies (NEAT)

2
Input

Nodes

Connections 1 => 5
W: 0.3

1
Input

5 
Hidden

3
Output

4
Hidden

Genotype

2 => 4
W: 0.7

1 => 3
W: 0.5

5 => 3
W: -0.6

4 => 3
W: -0.1

2 => 5
W: 0.9

1

3

2

54

4 => 5
W: 0.2

0.3 0.7 0.9

0.2

-0.6-0.1
0.5

Phenotype

Input

Hidden

Output

Stanley and Miikkulainen (2002)
Historical tags + speciation allow gradual complexification.
Classic version restricted to one hidden layer but many connection schemes
Extremely popular (direct encoding) approach to EANNs.
Basis for NERO war game (Stanley et. al., 2005).
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Cartesian Genetic Programming (Miller, 2000, 2011)

i w s i w s

F1 C1 F2 C2 Fn Cn O1 Ok

2 0.3 1  4 0.7 11 1 -0.4 1  3 0.9 12 1 65 0.6 1  4 1.0 1

1

3

2

4
6

5

0.3

0.7

-0.4

0.9

1.0

0.6

Output

Input

Beats SANE, ESP and NEAT on several benchmarks. (Khan et. al., 2013)
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Complexification

Complexity

Viruses
Bacteria Insects

Reptiles

Amphibians

Birds
Fishes Mammals

Primates

Humans

???

Evolution does not necessarily favor increased complexity.

Evolution searches all over the complexity spectrum, but there seem to
be clear LOWER limits of complexity. Evolution found those early but
continues to stretch the upper limits. Full House, Stephen Jay Gould
(1996).

In EANNs, it’s hard to begin with large, complex genomes; all are unfit.

Can we allow genomes to gradually complexify? This entails dynamic
and variable chromosome sizes.
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Duplication and Differentiation

A B C

F G H

Genotype

Phenotype

A B C

F G H

A

F

Duplication

A B C

F G H

A'

U

Differentiation

Useless

A B C

F G H

A*

X

Useful NEW
Function

Further
Differentiation

A low-risk route to complexification, since key functionalities (e.g. F) are still
present during the exploratory period when variants of A arise and their
phenotypic consequences are tested.

Keith L. Downing Evolving Deep Neural Networks



Neural Complexification via Modularity, Duplication & Differentiation

Embryo

Hox Genes

Hox Genes: a conserved modular component

Evolving Brains (J. Allman, 1999)

Evolution by Gene Duplication (S. Ohno, 1970)
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Vertebrate Brain Archetype

Medulla

Cerebellum

Spinal Cord

Tectum

Diencephalon

Retina

Pallium

Olfactory

Bulb

Principles of Brain Evolution (G. Streidter, 2005)
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Standard EANNs: Pros & Cons

Advantages

No training (learning) needed.

Works with or without explicit test cases and explicit target outputs→
useful in supervised and unsupervised learning scenarios.

For fitness assessment, total error is easily replaced with other
performance measures.

Recurrent networks are no additional work.

Better at avoiding local error minima due to parallel nature of
evolutionary search.

Drawbacks
Requires a whole population of weight vectors.

Scales poorly: large networks→ large genotype weight vectors→
large search space. General problem with direct-encoded EAs.

No more biologically realistic than backpropagation, since animal
genomes do not encode all synaptic strengths.
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Developmental Representations

Advantages

Scale well: Large phenotypes generated from compact
genotypes.
More biologically realistic
Facilitate evolution of repetitive structure.
Can support gradual evolution of complexity.

Disadvantages
Low heritability - easy to disrupt via genetic operators.
May overconstrain search
Difficulty finding needle in a haystack optimal solutions.
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Evolving Tables

Direct Encoding Developmental Encoding

G. Hornby & J. Pollack (2001)
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A Classic Early Developmental Encoding

S AB
CD

A aa
bp

B pb
ba

Genotype  Fixed Auxiliary Rules

a 00
00

b 00
01

p 11
11

Development  

S

AB
CD

aapb
bpba
ppbb
abpb

Phenotype  

00001100
00001101
00110000
01110100
11110000
11110101
00001100
00011101

Connection Table  

1 2 3

5

?

?

?

?

Weights learned by
  backpropagation

6

7

4

8

Kitano’s (1990) encoding of ANNs as context-free grammars.

The first complete POE system
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Cellular Encoding (Gruau, 1993)

Ins

Outs

0

Embryo ANN

S

P S

P P E

AEE E

Read Head

GP Tree

E

Ins

Outs

0

S

P S

P P E

AEE E
1

E

...

Ins

Outs

0

S

P S

P P E

AEE E
1

2

E

3

4

5
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POE in an Alife Setting (Yeager, 1994)

Red, Green,
Blue Sensors

Run

Eat

Attack

Actions

Size, Strength, Max Speed, Tag, Mutation Rate, Lifespan

Genotype

Body

# Internal Neuron Groups, Neuron Group Sizes,
In each group: 

# Excitatory/Inhibitory Neurons, Connection Density,
Learning Rate

Connection Density in each Group

Brain

Phenotype
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Polyworld in 1994

Hebbian 
Learning

Agent

Resource
The PolyWorld Environment

Keith L. Downing Evolving Deep Neural Networks



Polyworld in 2011
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Weighted Function Graphs

X Y K

0.7 -1.3 0.9

2.3

-1.2

-0.5

0.2 3.1

-1.7

Keith L. Downing Evolving Deep Neural Networks



Compositional Pattern-Producing Network (CPPN)

K. Stanley (2006, 2007) - CPPNs

J. Secretan, K. Stanley, et. al. - PicBreeder (picbreeder.org)
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Developmental Encoding of ANN Weights

0 0 1 0 0 1 0 0 0 1 0 0 0 1 1

Genome

321

21

1

2

3

sine
3

2

1

3
abs

gauss

0.25

0.6

1.3

0.67

CPPN

1.2

HYPERNEAT (J. Gauci & K. Stanley, 2007, 2010)
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Evolving Artificial Genetic Regulatory Networks

0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0

Structural
Unit

Regulatory
Region

Regulatory
Unit

Regulatory
Region

Cell

GRN

Receptors

Signals
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Neural Networks from GRNs

N2

N3

N4

N1

??

??

Affinity
Match?

N5

P. Eggenberger (1997, 2003, 2004)

Keith L. Downing Evolving Deep Neural Networks



A Diversity of GRN Genotypes

S Ra Pa S Rb Pb S Rc Pc

Gene a Gene b Gene c

SRa,1 Pa,1 SEPa,2 Rb,1 Rb,2 EPb,1

Gene a Gene b

Rc,1

Mattiussi and Floreano (2007) Eggenberger (1997)

S Pa S T-PaPb S Pc

T-Pa

? ?

Regulate T-Pc

?

Gene bGene a Gene c
+Ra,1 Pa,1- Ra,2 Pa,2

- Rb,1 + Rb,2 Pb,1

Pc,1 Pc,2 Pc,3+Rc,1

Gene a

Gene b

Gene c

Reil (1999) Reisinger and Mikkulainen (2007)
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DEACANN (Downing, 2007)

10001011110100000110110111010011010

Translation

Displacement

Instantiation
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Neural Layer Properties

Axon

Mask

Dendrite

Mask

Axon

Mask

Soma

Mask

Axon

Sharing

Dendrite

Sharing

Neuromodulator

Sent

Neuromodulator

Accepted

Learning
 Rule & Rate

Excitatory or

Inhibitory

Time Constant

Developmental

 Growth LImit
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Scripted Evolving ANNs (Downing, 2012)

ANN
Generator

Proxy
ANN
Script

Visualizations
of ANN

Behavior

Evolutionary
Algorithm

Core

Time

Ac
tiv

at
io

n

EVANN
 Script

Generation

Fi
tn

es
s

Fitness
Testing

? ?

?

Local 
Vars
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Script Completion via Evolution

EVANN
 ScriptVariables

X

Y

g1

g2

g3X

Y

g4

Layers

X

Links

g1

g2

g3

g4

g4

4

6

12

3

7

Gene Map

1

1

6

2

8

Genotypes

12

3

Layers

7

Links

4

4

6

Proxy ANN Script

g4

Keith L. Downing Evolving Deep Neural Networks



Modularity, Duplication & Differentiation in SEVANN

Layer A

Layer B

Layer C

Link A => B

Link B => C

Link C => A

Module B + C

Layer A

Layer B

Layer C

Link A => B

Link B => C

Link C => A

Module B + C

Layer B2

Link A => B2

Link B2 => C

Module B2 + C

Duplication
Layer A

Layer B

Layer C

Link A => B

Link B => C

Link C => A

Module B + C

Layer D

Link A => D

Link D => C

Module D + C

Differentiation

Duplication→ a macro-mutation to the script of one individual, whose
accompanying bit-string chromosome must be expanded. It becomes a new
reproductively-isolated species.
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Model of Evolving Neural Aggregates (MENA)

S Ra Pa Rb Pb Rc Pc

Gene a Gene b Gene c

T S T S T

Regulate

Layer

Link

Environment
1011001

11001100001110

Regulate

Excite

Low

Neutral

High

Inhibit

String Match

Medium
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MENA

S SaT

Gene a Gene b

S SbT

Gene c

S ScT

Tag Size Type Func Params

Layer
Link

Modulator

Keith L. Downing Evolving Deep Neural Networks



MENA

0110

1100

0001

Link

1010

1010

1011

0111

Modulator

0000

1010

G1

G2

G3

G4
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The Spectrum of Evolutionary ANNs

Problem-Solving
Success

Direct Indirect Developmental

Genotype Encoding

Phenotypic
Adaptivity

SANE
(P)

NEAT
(P)

P - Phylogenetic
O - Ontogenetic
E   - Epigenetic

Kitano
(POE)

DEACANN
(POE)

SEVANN
(POE)

HyperNEAT
(PO)

Montana &
 Davis

(P)

Miller
(PE)

Bongard
(PO)

PolyWorld
(PE)

Adaptive
HyperNeat

(POE)

Static

Learning
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Training Artificial Neural Networks: Backpropagation

En
co

de
r

De
co

de
r

E = r3 - r*r*

r3d3

Training/Test Cases: {(d1, r1) (d2, r2) (d3, r3)....} 

dE/dW

Training

Test

Cases 

Neural 
Net

N times, with learning

1 time, without learning

Keith L. Downing Evolving Deep Neural Networks



Standard Backpropagation Assessment (pre 2012)

Advantages

Powerful tool for learning complex input-output mappings in diverse
problem domains.

Relatively simple algorithm with solid mathematical foundation.

Drawbacks
Requires a known, correct output for each input→ impractical for
training autonomous systems.

Requires many training rounds, often hundreds or thousands.

Can easily get stuck in local error minima during gradient descent.

Recurrent networks are a problem.

Biologically unrealistic

Therefore, EANNs are a good alternative.
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Deep Nets ≈ AI (post 2012)

Advantages

Powerful tool for learning complex input-output mappings in diverse
problem domains.

Relatively simple algorithm with solid mathematical foundation.

Easily handles recurrence (e.g. LSTMs)

Convolutional nets capture key biological aspects of image processing.

New optimizers (e.g. Adam) and activation functions (e.g. RELU)
combat premature convergence at local minima.

Huge amounts of labelled data generated online.

Predictions and bootstrapped estimates provide basis for targets
without explicit labelling, e.g. in Deep RL.

GPUs and TPUs allow speedy processing of big data.

Drawbacks
It’s hard to remember that Geoffrey is pronounced Jeff–ree”.

Keith L. Downing Evolving Deep Neural Networks



Everybody gets a Trophy

EANNs can take advantage of the same computational
improvements that lifted Deep NNs.

Evolutionary Algorithms have always been naturally parallelizable:
individuals evaluated independently (on different cores).

EANNs have always been good for designing controllers, e.g. for simple
robots, video-game bots, etc. The computational advances that enable
Deep RL (which designs control policies) also improve EANN
controllers.

Even for standard classification, EANNs can compete (or cooperate)
with Deep NNs, particularly when the topology of the NN is
non-obvious (and can be found via search).

Developmental encodings speed discovery of structured connectivity
and weight patterns.
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Parallel Evolutionary Computation

GA Individual

Processor

Fitness

Problems with Deep Nets as Genotypes
Large weight vectors: millions of values
Their storage and transmission is costly
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Natural Evolutionary Strategy (NES)
Wierstra, Schaul, Peters, and Schmidhuber (2008)

3
7
2

8

Generation K 

0.1
-0.2
.001

-.003

3
7
2

8

+

Fitness = 4

0.3
0.1
-.002

.002

3
7
2

8

+

Fitness = 2

-0.1
-0.1
-.003

.004

3
7
2

8

+

Fitness = 7

4(0.1) + 2(0.3) + 7(-0.1) = 0.3

4(-0.2) + 2(0.1) + 7(-0.1) = -1.3

4(—.003) + 2(.002) + 7(.004) = 0.02

4(.001) + 2(-.002) + 7(-.003) = -.021

Fitness-weighted mutations

3.3
5.7
1.979

8.02

Generation K+1 

Random
Mutation
Vector

* Only the basic idea.
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Parallel Natural Evolutionary Strategies

Salimans, Ho, Chen, Sidor and Sutskever (2017)

1

5

2

3

4

1 2 3
4 5=

ES Individual

Processor

Fitness

Seeds

Every processor has seeds 
for ALL individuals

So every processor can
construct the current mutation

vector for ALL individuals

Thus, fitness values are the
only data that need to be

frequently transferred
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Reproduction(Salimans et. al, 2017)

Deep-Net Parameter Update

Θt+1 = Θt + α
1

nσ

n

∑
k=1

Fk εk

Θt = deep-net parameter vector at time t

α = learning rate

n = number of individuals in the population

Fk = fitness of individual k in current generation

σ = standard deviation of Gaussian distribution sampled for all
mutations.

εk = most recent mutations of all parameters for individual k (based on
shared seeds). |εk |= |Θ|

By knowing all seeds, each individual can compute all mutations to all
individuals. When the fitness values for each individual are passed in, each
can then update it’s parameters based on ALL individuals’ fitness tests.
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Results (Salimans et. al., 2017)

Beats AC3 (Mnih et al., 2016) on 23 of 51 Atari Games.
Needs fewer steps to achieve maximum performance than
Trust Region Policy Optimization (TRPO) (Schulman et.
al., 2015) on 3 of 6 Open AI Gym robotic control tasks.
Open AI Gym’s 3D Humanoid Walker run on 1440 cores
(across 80 machines): Solved in 10 minutes. Typical Deep
RL solutions ≈ 10 hours. Maximally exploits parallelism.

Note: This is still considered gradient-based, since the magnitude and
direction of each parameter change during reproduction is a function of the
fitness value (Fk ).

Augmented Random Search (Mania et. al., 2018

NES with extra scaling, normalizing and filtering, but no neural nets.

Beats Salimans and many others on MuJoCo (Multi-joint Dynamics with
Contact) tasks
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Efficient Encoding of Deep-Net Genotypes
Such, Madhavan, Conti, Lehman, Stanley, Clune (2018)

S0

.01

.03

.00
-.02

:
:
:

Genotype
Encoding

Generation

Random #
Generator

Seed

S0

Mutation
Vector

S0,S1 S0,S1,…Sg

S1

.05
-.01
-.03
.04
:
:
:

Sg

-.01
-.01
.02
.03
:
:
:

.01

.03

.00
-.02

:
:
:

.05
-.01
-.03
.04
:
:
:

-.01
-.01
.02
.03
:
:
:

+ + + =
Full parameter set
for one individual
at generation g.

S0,S1,…Sg

Reconstructing the Neural Network

Vector Length

# NN
parameters

# generations

Keith L. Downing Evolving Deep Neural Networks



Reproduction (Such et. al, 2017)

Deep-Net Parameter Update

Θn = Θn−1 + σε(τn)

Θ = full deep-net parameter vector. Θn = child of Θn−1.

n = current generation.

τn = random number for generation n along one particular lineage.

σ = standard deviation of Gaussian distribution sampled for all
mutations.

ε(τn) = generator of |Θ| random mutations seeded with τn.

By keeping track of all seeds, Sn = [τ1..τn] in the genotype, any individual
parameter vector can be recreated on any processor, but only the Si need to
be transferred. These grow linearly with the generations and are independent
of network size.
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The Parallel GA (Such et. al., 2018)

GA Individual
(NN params) Processor

Fitness
Efficiently
Encoded

GA Individual

On each processor:
1) Generate complete parameter vector
2) Load parameters into a deep net
3) Run the net on a task to get fitness
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Results (Such et. al., 2018)

Atari Games
Played 13 games and compared results to DQN, A3C and NES.

GA won 4 of the 13; DQN won 3; NES (3); A3C (4)→ All seem
comparable

Many good solutions found in GA’s 1st generation, though GA finds
better solutions eventually. In the range of 1-10 generations, GA often
finds solutions that beat the best found by DQN and A3C.

Random search beats DQN on 3 games, ES on 3, and A3C on 6
games!

In general, GA finds solutions in hours that compare with those RL
finds in days.

Parallel Local Search (e.g. GAs) may be better than
gradient-based methods, particularly in tasks with long
episodes and sparse rewards..
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DL + SANE + NEAT = CoDeepNEAT
Evolving Deep Neural Networks. Miikkulainen, Liang, Meyerson, Rawal, Fink,
Francon, Raju, Shahrzad, Navruzyan, Duffy, Hodjat, (2017)

Convolution

Convolution

32, (5 x 5), S1

64, (3 x 3), S2

Max Pooling

(3 x 3), S3

Module Species # 1

Convolution

Max Pooling

Dense

32, (3 x 3), S1

(2 x 2), S2

200

Convolution

Avg Pooling

Dense

16, (5 x 5), S1

(2 x 2), S2

500

LSTM

LSTM

Dense

64

64

300

LSTM

Dense

Batch
Normalizer

80

200

Module Species # 2

Modules Evolve via NEAT, with each
NEAT node = Deep Net Layer
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CoDeepNEAT Blueprints

MS-4

MS-2

MS-1

MS-4

MS-1

Any member
of module
species 1

MS-3

MS-2

MS-1

MS-4

MS-1

Any member
of module
species 2

Blueprint Species # 1

MS-3

MS-2

MS-1

MS-4

MS-3

MS-2

MS-2

MS-1

MS-4

MS-4

MS-2

MS-1

MS-4

Blueprint Species # 2

Cooperative Co-evolution of modules with: a) other modules,
and b) blueprints.
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CoDeepNEAT Fitness Testing

MS-2

MS-1

MS-4

Randomly
Selected
Module

from 
Species 2

Randomly
Selected
Module

from 
Species 4

Randomly
Selected
Module

from 
Species 1

Fitness
Test

Instantiate

Blueprint

Complete Deep Net

F contributes to
fitness of all
3 modules 

and blueprint

F

For large data sets, a small number
of epochs may be used.  This still gives
useful relative fitness values by which to

compare the nets.
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CoDeepNEAT Results

CiFAR-10: Using 25 blueprints and 45 modules to yield 100
Convolutional nets per generation→ Evolved a deep net that yielded
7.3% test error (quite good, current best = 3.5%).

Penn Tree Bank (PTB) word prediction task - Evolved novel LSTM
topology that beat the standard LSTM topology by 5 %.

Image Captioning - Evolved a well-performing network on a
non-benchmark image set (used by a commercial magazine). Resulting
net uses multiple LSTM motifs and skip connections (popularized by
ResNet).

Omniglot - Evolved different architectures for each alphabet, with similar
architectures found for similar alphabets.

In general, it evolves sophisticated architectures for handling complex
data sets, many similar to those designed (painstakingly) by hand.
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Deep RL -vs- Evolving NNs for Control

Deep Reinforcement Learning

Use critic (state→ evaluation) and/or actor (state→ action) network(s).

After each move (or each episode), update weights based on:

Gain (e.g. reward(s)), and
Gradients ( ∂Loss

∂w or ∂P(act)
∂w )

= Intelligent weight changes

Evolving Neural Nets
After all of the episodes have been completed:

Calculate the fitness (F) of net (N) based on cumulative rewards.

Use F to influence the probablity of reproducing N, but

Randomly mutate and combine the weights of all reproduced nets.
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Deep RL using Policy Gradients

Basic Parameter Update of the Actor Neural Network

4θ = αGt
5θ Π(At | St ,θ)

Π(At | St ,θ)

The updates of each parameter w ∈ θ are:

directly proportional to the total episode return (Gt ), and

directly proportional to the effects of w upon the output probability
corresponding to the action actually taken, At , but

inversely proportional to that output probability

Gt approximated by Q(St ,At ) when updating after each step. A critic neural
net often learns Q(St ,At ).
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Gradients for Training RL Actor Nets

Targets
from MCTS

Actor

Action
Probabilities

Act Probs
Error

dW

dW

Goal: minimize error
by changing 

weights

dW

dW

Performance

Action
Probabilities

Goal: maximize
performance measure

by changing 
weights

Policy
Gradients

Error
Gradients

Actor
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REINFORCE as TD(λ ) Actor-Critic RL

θ = Actor NN weights; Φ = critic NN weights.

eθ = Actor weight eligiibilities; eΦ = Critic weight eligibilities.

Repeat Forever:

S← episode start state

D← 1 ; eθ ← 0 ; eΦ← 0

While S is not a final state:

Choose A based on policy Π(a | S,θ)
Do action A in S 7→ R,S′

δ ← R + γV (S′ | Φ)−V (S | Φ)
eθ ← γλθ eθ + D5θ ln(Π(A | S,θ))
eΦ← γλΦeΦ + D5ΦV (S | Φ)
θ ← θ + αθ δeθ

Φ← Φ + αΦδeΦ

D← γD
S← S′
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Credit Assignment in Backprop Nets

Zs F(S)SumY
State

V(S) or  (act | S)

w

Increased Eligibility of Recently Influential Weights
∂F (s)

∂w = ∂(Sum)
∂w × ∂Z

∂ (Sum)
× ∂F (s)

∂Z

∂F (s)
∂w = Y × ∂Z

∂(Sum)
× ∂F (s)

∂Z

In order for w to influence F(s), |Y |> 0 and |Z |> 0.

Thus, only then will w’s eligibility increase. Otherwise, it decays.
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Credit Assignment in the Brain

A B

X

Hebbian Learning
 (LTP - LTD)

Neuromodulator

Eligibility
Trace

Synaptic Tuning Requires:

1. High eligibility trace
2. Neuromodulator

Eligibility goes up after 
A-B firing correlation,
 but otherwise decays

Salient stimulus, 
eg. reward
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Computing TD error in the Basal Ganglia

Neocortex

Striatum

STN

Thalamus

GP

EP SNrActors Critic

Hyperdirect
Pathway

Direct
Pathway

Direct
Pathway

Indirect
Pathway

Inhibit

Excite

Striosome

Matriosome

Midbrain
&

Brainstem

SNc

Dopamine

Primary reinforcement
from the limbic system SNc

Striatum

Neocortex

Slow
Inhibitory
Pathway

r
 δt = r + V(St+1) - V(St)

δt

St+1

Fast
Excitatory
Pathway

St

V(s) ≈ firing strength, Fs, of the context detector for s, Cs.
Fs determined by strength of synapses entering Cs, which
dopamine-induced learning has modified.
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Policy Gradients and Bootstrapping

Performance
Measure

Act Act Act Act
End of

Episode

Accurate

Performance
Measure

Noisy

Credit
Assignment

Credit
Assignment

Keith L. Downing Evolving Deep Neural Networks



Evolving NN Controllers without Gradients

Performance
Measure

Act

End of
Task

Very
Accurate

Policy
Gradients

Invalid

Act

Episode 
End

Act

Episode 
End

Episode 
End

Rely on mutation and crossover
to produce new weights.
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The Future of Evolving Neural Networks

Standard Supervised Learning

Despite effectively exploiting parallelism, EAs for weight evolution still
have trouble competing with conventional gradient-based approaches.

Evolving NN topologies for gradient-based deep nets = fruitful
cooperation between EA and DL.

Developmental models could enhance topology evolution but probably
cannot make weight evolution more competitive with DL.

Deep Reinforcement Learning

Evolving parameters for agent policies seems very competitive with
policy-gradient methods. What about Monte Carlo Tree Search?

Long episodes and sparse rewards produce so many problems for DRL
that random mutation + selection may still be the best alternative to NN
parameter choice in some domains.

Biological approaches to RL (Neuromodulated learning, gradient-free)
still worth exploring.
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