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Charting a path from early artificial neural networks
 to the contemporary vision of the predictive brain, 
with rich forays into biology and evolution,
this book explains the buzz about brains as 
engines of prediction. 
(Andy Clark, University of Sussex)

Downing’s reach is omnidirectional.  He connects 
the roots and new growth of deep learning with math, 
neuroscience, and evolutionary biology, ethology and 
computer science to show how intelligence emerged
 in animals and is emerging in machines.  
(Josh Bongard, University of Vermont)
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The Brain = A Prediction Machine ??

The short punch line of this book is that brains are foretelling devices,
and their predictive powers emerge from the various rhythms they
perpetually generate...Rhythms of the Brain (Buzsaki, 2006)

The capacity to predict the outcome of future events – critical to
successful movement – is likely, the ultimate and most common of all
global brain functions...i of the Vortex (Llinas, 2001)

The mystery is, and remains, how mere matter manages to give rise to
thinking, imagining, dreaming, and the whole smorgasboard of
mentality, emotion and intelligent action....But there is an emerging
clue...The clue can be summed up in a single word: prediction. To deal
rapidly and fluently with an uncertain and noisy world, brains like ours
have become masters of prediction...Surfing Uncertainty (Clark,
2016)

...the core task of all brains... is to regulate the organism’s internal
milieu – by responding to needs and, better still, by anticipating
needs and preparing to satisfy them before they arise...
”Anticipatory regulation” replaces the more familiar ”homeostatic
regulation”...Principles of Neural Design (Sterling & Laughlin, 2015)
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Sensing and Acting in a Slow World

Time

State

Y

X

Environment

S A

Sense Act
Agent

S A

S A

Read X Respond to X

S A

S A

S A
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Life (and DEATH) in the Fast Lane

Time

State

Environment

S A

Sense Act

Agent

S A

X

Y

S A

S A

Read X Respond to X 

But Environment
is in Y !!

* For a mobile agent, relative frequency of environmental change increases.
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Predict to Survive

Time

State

Environment

X

Y

S A

Sense Act

Agent

P

Predict

S AP

S A

Read X 

Respond to Y* 

P

Y*

Predict Y* 

S AP

* Mobile agents need prediction.
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The Brain-Eating Sea Squirt

Larvae (Free Swimming)

Adult (Sessile)
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Implicit Prediction using Gradients

Swimming up a strong
attractant gradient

Tumbling in a weak
 attractant gradient

tk

tk+1

Gradient = A(tk+1) - A(tk) A(t) = attractant read by head sensor at time t.

Gradients are simple, cheap (and amazingly accurate)
predictors of future states: Future = Present + Gradient
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Gradient = Derivative

X

Y

x

y

x

y
gradient = 

Situation X Y
Bacterial Foraging Location Nutrients

Finance Time Stock Price
Thermostat Heat Temperature

Deep Learning Connection Weights Output Error
Evolutionary Computation Genotype Fitness
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Prediction via Gradients

Time (t)

Y
t

y
t

y
gradient = 

tk+1tktk-1

y(tk+1) = y(tk) + gradient( tk)

Prediction
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Gradient-Driven Behavior via Chemistry

Swim Tumble

Methylation
(of receptor)

Receptor

Bacterial
Cell Membrane

Kinase
Activity

Repellent
Attractant

Promotes

Inhibits
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Bacterial Response to the Gradient

Swimming up a positive
attractant gradient

Attractant

Time

Level Kinase

Swim

Tumble

Desensitization to a constant
attractant concentration

Attractant

Time

Level

Kinase

Swim

Tumble

Bacterium responds to the gradient of the attractant, not simply its
current value.

By moving, the bacterium encodes a spatial gradient as a temporal
gradient, which it can then detect using receptors in a single location.

Keith L. Downing Gradient Expectations: Predictive Neural Networks



Temporal Differentiation via Habituation

Neurons can detect gradients too!

A dA/dt

Excite
B habituates to the A(T) input, so it

only fires when A(T+d) exceeds A(T).

A(T+d) -  A(T)

Time

A

T+dT

dA/dt

B
Habituation

B

This is how (nematode worm) C. Elegans navigates. (Larsch et. al., 2015)
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Temporal Differentiation via Delayed Inhibition

A B dA/dt

Excite

Inhibit

Passage through the intermediate
neuron, B, delays the A(T) signal, 

which B inverts.

A(T+d) - A(T)

Time

A

T+dT

dA/dt

B
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Temporal Differentiation via Synaptic Depression

A dA/dt

ExciteSynapes from A to dA/dt become
temporarily depressed by A activation

A(T+d) -  A(T)

Time

A

T+dT

dA/dt

Synaptic
Depression

Tripp, B. and Eliasmith, C. (2010), Population Models of
Temporal Differentiation, Neural Computation, 22, pp. 621-659.
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Prediction via Averages

A simple average (over time or space) can give a good
prediction of a variable’s next state (St+△).

Time → History: St−k ,St−k+1, ...St−1,St
Space → current value of the same variable in nearby
regions, e.g. concentrations of a particular chemical in
neighboring cells.

Averaging → summing, integrating.
Averages in space or time can also determine the current
value St if it’s unknown. These are also called predictions
despite having a present rather than future tense.
Neurons often average: they aggregate and scale signals
over space and time (remember), and also leak (forget).
Averages can both contribute to gradients and combine
with gradients to support prediction.
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Predictions -vs- Goals

State

Time (t)

t

tt +P

St

Gt

Ag
Eg

Ec

AcAgc

Egc

Gt = Goal at time t.

St = System state at time t.

Pt+△t = Prediction (guess) at time t of state at time t +△t .

E = error of guess (g), control (c), control relative to guess (gc).

A = actions to reduce errror of guess (g), control (c), both (gc).
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Prediction ≈ Control

State

Time (t)

t

tt +P

St

Gt

t*

t
S

Prediction

Et+△t = Γ( ⃗G−St ) = kg(G−St )+kg
△(G−St )

△t︸ ︷︷ ︸
gradient−based

+ka

M

∑
j=0

wj (G−St−j△t )︸ ︷︷ ︸
average−based

(1)
PID Control

ut = kpet +kd
△et
△t

+ki

t

∑
j=0

ej (2)

Same neural circuits evolved for control could be reused for prediction.
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Redundancy Reduction in Visual Perception

When we begin to consider perception as an information-
handling process, it quickly becomes clear that much of the infor-
mation received by any higher organism is redundant. Sensory
events are highly interdependent in both space and time..... we
can make better-than-chance inferences with respect to the prior
and subsequent states of these receptors.. (Fred Attneave, 1954)

Efficient Coding - Oliver(1952) - similar, for telecom.

Predictive coding coined - Srinivasan et. al.(1982)
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Predictive Coding in Neural Circuits

Receptor 
Cell

Horizontal 
Cell

Excitation

Inhibition

Excite
Inhibit

Inhibitory
Interneuron

Polarized

Depolarized

Firing

Bottom-Up

Top-Down

Time 1: Prediction Time 2: Sensory Input

Time 3: Sending 
Sparse Signal 

Upward

X

Y

X

Y

X

Y

Srinivasan et. al. (1982) Hawkins(2015)
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Predictive Coding in Artificial Neural Networks

Prediction

Reality

Residual
(Error)

Excitatory Inhibitory

Activated Suppressed
TargetError

Prediction

Sensory
Input

TargetError

Prediction

TargetError

Prediction

High Layer

Low Layer

Error = Target - Prediction

Target at Layer K =
F(Weighted Layer K-1 Error)

Prediction at Layer K =  
F(Weighted Layer K+1 Target) 

WK

WK-1

F(.)

F(.)Uk+1

Uk

Excite

Inhibit

Connect

W Trainable
Weights

F(.) Activation
Function

U

F(.)

F(.)

ErrorPrediction

Target

Prediction

Target

Error

Error = Target - Prediction

Sensory
Input

Reduced signals further up
the neural hierarchy

Only unpredicted signals
travel upward.

Neural Essence Rao + Ballard (1999) General Model
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Predictive Coding Networks and Control

ξk+1 xk+1

ξk-1 xk-1

Uk+1

Wk

ξk xk

Uk
Wk-1

Layer K+1

Layer K

Layer K-1

Sensory
Input

ξ prediction
error

x target

excite

inhibit

s0

e0 p0

M0

C1 u1

e1 p1

M1

C2 u2

e2 p2

M2

C3 u3

g0

g1

g2

Dee*k-1 Z uk

Ie

Ck

gk-1

Layered Predictors Hierarchy of PID Controllers
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Prediction in Diverse Brain Regions

C2

u2
e2

p2

M2

C3

u3Layers 5 / 6

Layer 1

Layers 2/3

Layer 4

e1

u2

u3

M1

g2
g2

Column 3 Column 2 Column 1

CA3

DG

Sparse
Pattern

ECReality

Predicted
Sequence

Sub

Prediction
Error 

(Novelty)

CA1
-

+

Completed
Pattern

Neocortex
Reality

Basal
Ganglia

Dopamine

Prediction
Error

Prediction
Error

Neocortex Hippocampus

Neocortex

Striatum

STN

Thalamus

GP

EP SNrActors Critic

Hyperdirect
Pathway

Direct
Pathway

Direct
Pathway

Indirect
Pathway

Inhibit

Excite

Striosome

Matriosome

Midbrain
&

Brainstem

SNc

Dopamine

Primary reinforcement
from the limbic system

Granular
Cells

Parallel
Fibers

Predicted
State

- +

Sensory
Input

Efference
Copy

Motor Cortex
+

Spinal Cord

Goal
State

Inferior
Olive

Teaching
Signal

Brainstem
Sensory

Input

Efference Copy
Sensory Input

Goal State

Goal
State

-

Purkinje
Cells

Prediction
Error

Golgi
Cells

+

Adaptive
Filter

e

u Deep 
Cerebellum

Plant

Muscles

Inhibitory
Interneurons

Excite

Inhibit

Induce
LTD / LTP

e

Basal Ganglia Cerebellum
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Backpropagation: Cornerstone of Deep Learning

Data (Cases)

Green Square

Features Class

Red Pentagon

Pink Diamond

Complex Deep Learning
problems require LOTS

of data !!

Weight

Error
Gradient (G) =

Gradient Descent

Red Pentagon

“Red Diamond”

Error

G

Gradient enables prediction of future error resulting from a weight change.
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Gradients: Global and Ubiquitous
Input

Output

w

Error

Weight

Error
Gradient (G) =

Gradient Descent

Learning based on these long-distance gradients → recent AI success. But
not biologically plausible.

Keith L. Downing Gradient Expectations: Predictive Neural Networks



Descending the Error Gradient

High Error
 (Cost)

Low Error
 (Cost)

Weight modifications based on global (distant) network relationships −→
System descends global error gradient. Metric = Total Error
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Connectionism and Prediction: Energy Nets

Hopfield Net Boltzmann Machine

Helmholtz Machine Restricted
Boltzmann Machine

+ Stochasticity

+ Wake - Sleep

+ Contrastive Divergence

+ Many Hidden Layers

- Intralayer Links

+ Unidirectional Links

+ Recog - vs- Gen Links

+ Free Energy
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Alternating Phases: Interpretation + Prediction
Causes,
Classes

Hypotheses

Predictions,
Expectations,

Dreams

Perceptions,
Interpretations,

Features

Sensory Input,
Data,

Reality 

Wake-Sleep Training
Wake phase (based on data)

Sleep / Dream phase (based on model-generated patterns = predictions)

Different variations in Boltzmann, Restricted Boltzmann and Helmholtz
Machines.
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Energy Metrics for Neural Networks

High Conflict = High Energy

Postsynaptic
Neuron

Presynaptic
Neuron

Postsynaptic
Neuron

Presynaptic
Neuron

Inhibitory Connection
(Negative Weight)

Excitatory Connection
(Positive Weight)

High Activity

voltage

time

Low Conflict = Low Energy Low Activity

Energy = Conflict between:
- presynaptic activity

  - postsynaptic activity
  - synaptic relationship

Energy = ∑
pre,post

−XpreXpost Wpre→post
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Energy Gradients

Minimize energy instead of error.
Each weight’s contribution to energy is only local:

∂Energy
∂Wab

=
∂

∂Wab
∑
j ,k

−XjXkWjk =−XaXb

where Xj ,Xk ,Wj ,k ∈ [−1,1]
Learning = Adjusting weights to reduce energy.
Learning = Descending the energy gradient.

△Wab =−λ
∂Energy

∂Wab
= λXaXb

where λ = learning rate
This is very Hebbian, very biological..very ALIFE !!
Xa, Xb and Energy take many forms (in different models),
but learning remains Hebbian.
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Karl Friston’s Free Energy Principle (FEP)

Free Energy = Energy - Entropy

Free Energy = Complexity - AccuracyFree Energy = Surprise + Divergence

Perception Action

Choose actions that increase accuracyInvoke internal states that
minimize divergence

Basis = Variational Free Energy = F r
g(d) = ⟨Eg(s;d)⟩r −Hr (s|Θ)

Use following starting version for perception and action derivations:

F r
g(d) = ⟨−ln[pg(s,d)]⟩r + ⟨ln[pr (s|Θ)]⟩r
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Perception and The Free Energy Principle

Use this definition of Free Energy:

F r
g(d) =−ln[pg(d)]︸ ︷︷ ︸

Surprise

+DKL(pr (s|Θ),pg(s|d))︸ ︷︷ ︸
Divergence

Perception = Run system in recognition mode given sensory input, d.

Goal: Produce a distribution of internal states that best matches the
distribution of potential causes of d, (i.e. environmental states that
generate d).

Use system’s complete state distribution (s,d) during generative mode
as basis for the target distribution of causes: pg(s|d)
Focus on Θ in pr (s|Θ), where Θ = parameters of the system such as
synaptic strengths, neuromodulators.

Perception = choosing Θ to reduce divergence and thus reduce
variational free energy.

Bayesian Brain Hypothesis: Perception = modifying system parameters
to move the recognition distribution pr (s|Θ) closer to the posterior
distribution pg(s|d) found by inverting the generative model.
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Action and The Free Energy Principle

Use this definition of Free Energy:

F r
g(d) = DKL(pr (s|Θ),pg(s))︸ ︷︷ ︸

Complexity

−∑
s

pr (s|Θ)ln[pg(d |s)]︸ ︷︷ ︸
(Predictive)Accuracy

Action = Active Inference = Choose activities producing sensory inputs
(d) that are consistent with the current representation of the world.

Representation defined by pr (s|Θ) and pg(d |s).
Now, the input sensory state (d) is a function of the action (α):

F r
g(d) = DKL(pr (s|Θ),pg(s))︸ ︷︷ ︸

Complexity

−∑
s

pr (s|Θ)ln[pg(d(α)|s)]︸ ︷︷ ︸
(Predictive)Accuracy

Goal: Increase Predictive Accuracy by choosing actions that produce
sensory states that are highly probable under pr and pg .

In other words: Reduce Free Energy by reducing prediction error.
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Goal: Free Energy ↓ 7→ Energy ↓ - Entropy ↑

Environment

Correlation

Neural
Network

Energy Entropy
(of network states)(of network-environment coupling)

Network States

Prob High
Entropy

Joint (Network + Environment)
States

Prob

Low
Entropy

Low Free
Energy
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Free Energy in Neural Networks

NN adapts to achieve useful mappings between internal states (S) and
environmental states (D).

Mapping success = similarity between the prob. distr. of outputs
produced by the NN (pg(D)) and D’s natural prob. distr : p(D).

These probabilities stem from a measure of energy based directly on
the concept of surprisal from information theory.

This relationship between prob and energy is exactly the same as given
by the Boltzmann distribution.

The process of making pg(D) similar to p(D) = minimizing
Kullback-Leibler divergence: DKL(pg(D),p(D)).

This turns out to be equivalent to minimizing −ln(pg(D) =−lnZ , where
again, Z is from Boltzmann distr., and -lnZ = free energy.

Thus, adapting an NN = minimizing free energy.

Keith L. Downing Gradient Expectations: Predictive Neural Networks



Descending the Free-Energy Gradient

High  
Free Energy

Low
Free Energy

High Error

Low Error
Standard
Backprop

Weight modifications based on local network relationships −→ System
moves down the global free-energy gradient.
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Predictive Coding instead of Backprop

wqj Sj

dE

dSj
δj =

F(sj) → xj

j
q

xq
Target

Output

Error (E)
wjk

Sk  xk

k

wjl Sl  xl

l

wjm

Sm

m
 xm

dE

dSk
δk =

dE

dSl
δl =

dE

dSm
δm =

Replacing δ (a long-distance gradient) with ξ (a prediction error) yields
an energy network with respectable classification abilities.

Rafal Bogacz et. al. (2017, 2019, 2021) - they do the math...and code.
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Reinforcement Learning

Start

Goal

?

?
?

?
?

4 5

5

6

764

3

32 54

3

2

1

Value Function

Do series of actions (strategy) to get from start to goal.
Receive intermittent feedback (i.e. reward)
Over many trials, learn a good strategy.
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Prediction of Future Reward

3

4 753

2

21 -9-5

1

0

97-5-9

0

0 000

0

00 00

0

0

0000

Goal

Start

0

6 875

4

03 00

0

0

9000

0

6 873

2

01 00

0

0

90-5-9

Reach Goal + Backup Reward

Reach Deadend + Backup Penalty After Many Exploratory Rounds

V(s) = Value of state s
= Predicted cumulative reward from s to a goal state.
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Temporal Differencing (RL Variant)

S S'A

δ = + γ

Expected 
Future
Reward

Expected 
Future
Reward

Actual
Reward

0.9

=  2.6

△V(S) = λδ

where λ = learning rate, γ = discount factor, and δ = TD Error

Bootstrapped Prediction Improvement

Prediction of Sum Reward(tk → tFinal ) updated by

Prediction of Sum Reward(tk+1 → tFinal )

Adaptation driven by gradients of predictions.
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TD-Gammon (Tesauro, 1995): RL + NN

V(St)
St = state of 

the board

St

r1 + V(S1
t+1) r2 +V(S2

t+1) rk +V(Sk
+1)

S1
t+1

a1 a2

S2
t+1 Sk

t+1

ak

Max

r* + V(S*
t+1)  

 δt= r* + V(S*
t+1) - V(St)

δt

Do move
 a*Learn

Net learns value function, V(s), using Predicted-reward gradient: △V (s)
△w
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AlphaGo (DeepMind, 2016): RL + Deep Nets

Probability Distribution
over Actions

Value:  V(s)

Board
State (s)

Preprocess

Actor
Network

Critic
Network

13-Layered
Nets

Taking Tesauro’s (1995) work to a higher level with deep nets.

Keith L. Downing Gradient Expectations: Predictive Neural Networks



Gradients of Deep Reinforcement Learning

High
Cumulative

Reward

Low
Cumulative 

Reward

V(S)
V(S’)

TD Error

R

S

Learning via long gradients (△V (s)
△w ) modulated by TD Error.
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Biologically Realistic Deep RL

High
Cumulative

Reward

Low
Cumulative 

Reward

V(S)
V(S’)

TD Error

R

S

Hebbian learning modulated by TD Error.
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RL in the Basal Ganglia

Neocortex

Striatum

STN

Thalamus

GP

EP SNrActors Critic

Hyperdirect
Pathway

Direct
Pathway

Direct
Pathway

Indirect
Pathway

Inhibit

Excite

Striosome

Matriosome

Midbrain
&

Brainstem

SNc

Dopamine

Primary reinforcement
from the limbic system

Neural computation of TD Error: δ = V (St )+Rt −V (St−1)

Excitatory Inputs to SNc: V(St ) (hyperdirect path) + Rt (limbic system)

Inhibitory Inputs to SNc: V(St−1) via direct path.
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Temporal Differentiation via Delayed Inhibition

As shown earlier....

A B dA/dt

Excite

Inhibit

Passage through the intermediate
neuron, B, delays the A(T) signal, 

which B inverts.

A(T+d) - A(T)

Time

A

T+dT

dA/dt

B
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CTRNNs and MTRNNs

Continuous-time recurrent networks with multiple timescales.

!Big
Slow

!Small

Fast

!Medium

Prediction Prediction

Proprioception
Teleoception
(e.g. Vision)

Goal

PID
Controller

Action
Body

+
Environment

Sensory
Input

Prediction
Error

Learn

Prediction
Error

Learn

Tani et. al., 2016,2017,2020; Beer et. al., 1982,2003,2015
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Multiple Levels of Search and Emergence

Evolution Development

Learning Thinking

Search and emergence at one timescale support and constrain more search
and emergence at other scales.
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Simulation of Emergent Prediction
Goal: Simulate the emergence of predictive networks via
evolution, development and learning.

Primitives
Local gradients (derivatives)

Integration

Inhibition

Comparators

Multiple timescales

Modular mechanisms

Motivation for a relatively unrestricted design space

The brain shows that there are many, diverse designs for predictors. An
emergent AI system needs to freely explore.

The mixture of competition and cooperation in evolution, development
and learning may underlie the mixture of excitation and inhibition in
predictive circuits.
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POE Networks

POE = Phylogenetic (Evolving), Ontogenetic (Developing), Epigenetic
(Learning)

Generator

Specification

Hebbian
Development

Hebbian

Development

Development
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The D’Arcy System

A
B

WAB

WCB

WCD

Inhibitor

Excitor

Axons

Dendrites

Neuron 
Soma

A

D

B

C

C
D

Extension of van Ooyen et. al.’s (2003) model of activity-dependent
neurite growth to embody two key mechanisms: Neural Darwinism
(Edelman, 1987) and Displacement Theory (Deacon, 1998).

Overlapping development and learning with critical periods for each.

Evolution (for each neurite) of 2-d location, time constant, influence
(excite or inhibit), axonal and dendritic growth limits, neural density, etc.

Neural dynamics = CTRNN

Neuromodulatory neurites affect neuron-level learning updates.
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Predicting Prediction’s Future in AI

Yogi Berra - American baseball legend
It’s tough to make predictions...especially about the future.
The future ain’t what it used to be.

Everything is not prediction, but prediction is everywhere.
Can we exploit this in Bio-Inspired AI systems?

Energy nets (from 1980’s and 90’s) + Free-Energy Principle
(Friston, 2010) give theoretical optimism.
Bogacz et. al. give practical optimism.
Deep Learning’s success comes from big data, GPUs, etc.;
POE systems now exploit these as well.

Or is the emergent commonsense in Generative AI (e.g.
ChatGPT) the best route to AGI?
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Emergent Intelligence in Large Language Models

LLMs are trained to do a predictive task.
Prediction is a cheap way to do supervised learning, since
target = next word or token.
From this, sophisticated, intelligent behavior (and deep
understanding??) seems to have emerged!
Is prediction the foundation of emergent intelligence?
How far can we take this prediction-based emergent
intelligence toward AGI?
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Goal: Artificial General Intelligence (AGI)
Modern AI systems are very specific and brittle.

Task

Level
of

Success
AI

AI

AI

AI

AI

Chess Poetry DrivingGo

One Human

One System

A Different
 System

Finance
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Brittleness of DL and DRL

STOP

Deep Learning
Deep Reinforcement

Learning

Breakout
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Problem-Solving Search = Generation + Testing

Generator

Tester

Potential
Solutions S

Nature and Bio-Inspired AI

* Size of generator and tester indicates amount of
intelligence/constraint in them.

2015

Generator
Tester

Potential
Solutions S

Standard AI and OR Problem Solvers 2023Adaptive predictions 
enable

 intelligent generation
of alternatives.

Random generation
but ruthless testing.

Emergence

Prediction

Keith L. Downing Gradient Expectations: Predictive Neural Networks



Monte Carlo Tree Search + Gradient Descent

Targets for
Supervised

Learning

2539

Actor
+ 

Critic
Network

Action
Probabilities Monte Carlo

Search Tree

Act Probs Evaluation

R = 
Reward at end of a
completed game

- No rollouts
- Leaf nodes in MCTS
 are evaluated using 

the dual-purpose ANN 
to yield z values, which

are then backed up.So ANN training cases 
cannot be completed until

each game ends.

AlphaGo Zero = GOFAI + Neural Nets !!
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Google DeepMind’s AI Breakthroughs

AlphaGo - MCTS + Several NN’s (some trained on expert game data).
Bootstrapped intelligence via self-play. Beat world champion.

AlphaGo Zero - MCTS + one main NN. No expert data, only
bootstrapping from random to world-champion play. Beat AlphaGo 100
games to 0.

AlphaZero - Extended AlphaGo Zero to other games and became
world champion at all of them.

DeepNash - Deep Reinforcement Learning to play Stratego (an
imperfect information game) at world-class level. Only uses self-play.

AlphaFold - Essentially solved the protein-folding problem using deep
convolutional networks. Possibly AI’s greatest contribution to science !!

AlphaGeometry - Combines traditional AI geometry theorem proving
with LLMs to achieve near gold-medalist performance in International
Mathematics Olympiad.

** Most of these combine GOFAI with Deep Learning
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Geometry Theorem Proving: Construction = Creativity

P

D
C

B
A

Prove:  PB * PA  =  PC * PD

P

D
C

B
A

Construction

∡PDA ∼= ∡PBC (same subtended arc)

△PDA ∼△PBC (3 equal angles)
PB
PC = PD

PA (since similar triangles)

PB ⋆PA = PC ⋆PD (rearrangement) Q.E.D.
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Dual-Phase Problem Solving in Mathematics

Goals

ConstructionsDeductions

Premises

Deduction ∼ Recognition: Infer likely consequences of the data.

Construction ∼ Prediction: Make intelligent guesses as to which actions
(changes to the data) will help achieve the goal.
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AlphaGeometry: Deduction + Construction

Deductive
Geometry
Reasoner

Premises

Large
Language
Model
(LLM)

Deductive
Closure

New
Construct

Goal

Goal

Goal

Goal
Deduced?

No
Yes

Q.E.D.

Computing deductive closure ≈ a classification task: recognizing all
consequences of the given facts.
Construction = A Generating process.
Intelligent generation = a clear sign of understanding.
Friston’s Free Energy principles: construction == prediction == action(s) to
influence future observations so that they align with dominant causal
hypotheses. Now, it’s to align with the goal statement (to be proved).

Keith L. Downing Gradient Expectations: Predictive Neural Networks



Construction -vs- Recognition
Concept Recognition Construction

InCenter (of InCircle) Equidistant Sides Angle Bisectors
Circumcenter (of CircumCircle) Equidistant vertices Perpendicular Bisectors

Incenter

Normal
to Side

Angle 
Bisector

Circumcenter

Perpendicular
Bisector

Radius
to Vertex

When construction replaces prediction, the two phases may use different terms.
→ One phase is no longer the reverse of the other.

Keith L. Downing Gradient Expectations: Predictive Neural Networks


