
Developmental Tuning of Neural Networks using Weighted
Function Graphs

Keith L. Downing
Department of Computer Science

The Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

keithd@idi.ntnu.no

ABSTRACT
The Weighted Function Graph (WFG) is introduced as a
form of Compositional Pattern-Producing Network (CPPN)
that evolves using a very indirect genotype-phenotype map-
ping. Although CPPNs and WFGs have broad applicability
in evolving neural networks, the former are primarily used
as mappings from spatial coordinates to connection weights
or learning parameters. Conversely, this work uses WFGs to
encode developmental activation waves across adjacent lay-
ers of neurons, akin to those observed in developing brains,
which provide early patterning of synaptic change based on
correlated neural firing. This WFG-based developmental
tuning is then used to illustrate the Baldwin Effect in neural
networks that evolve, develop and learn.

Categories and Subject Descriptors
I.2.6[Learning]: Connectionism and Neural Nets
General Terms
Algorithms

1. INTRODUCTION
Stanley’s Compositional Pattern-Producing Networks (CPPNs)

[12] are elegant pattern-generating tools, often employed as
mappings from spatial coordinates to output properties, such
as pixel color intensity. When evolved interactively, CPPNs
can produce intricate pictures of high artistic quality [11].
In addition, in their HyperNEAT system [13], Stanley and
co-workers have used CPPNs to map the locations of pairs
of neurons to the weights of the connections between them,
thus enabling a compact CPPN to assign weights to the arcs
of arbitrarily large neural networks. The CPPN thus serves
as a developmental encoding for synaptic weights, and one
with inherent geometric properties that give rise to function-
ally significant topological patterns in ANN weight matrices
[9, 4].

This work, though highly inspired by the CPPN research,
moves in a different direction, one involving higher degrees
of both implicit/indirect coding and biological plausibility.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

First, the Weighted Function Graph (WFG) is an alter-
nate implementation of the CPPN, one that relies on a very
indirect mapping from a bit-string genotype to a network of
interconnected functions (with weights on the arcs between
them). Each gene merely codes for a function node and sev-
eral tags, which indirectly determine the other functions to
(from) which it will send (receive) weighted outputs. This
exhibits weak linkage of modular system components, one of
the key enablers of evolvability according to the popular new
evolutionary theory known as facilitated variation [6]. This
contrasts sharply with the highly direct encoding of CPPN
links and weights in Stanley’s NEAT[5], the evolutionary en-
gine behind CPPNs.

Second, the route from WFG to artificial neural network
(ANN) weights is more biologically plausible, and thus more
circuitous, in this research than in contemporary applica-
tions of CPPNs to evolving ANNs (EANNs). Here, the WFG
exploits the fundamental pattern-producing ability of the
CPPN to generate simulated waves of neural stimulation.
These waves spread across a neural layer, yielding complex,
often heterogeneous, activation time series for each of the
layer’s neurons. When these correlate with wave-induced ac-
tivations in neighboring layers, Hebbian-based synaptic tun-
ing of the inter-layer connections occurs.

For each neural layer in the EANN, genes code for di-
verse properties, including the components of a WFG. Thus,
each layer includes a wave-generating WFG employed dur-
ing development to help produce an initial pattern of synap-
tic strengths, which can be further tuned by standard ANN
learning upon exposure of the network to training situations.

This use of WFGs for neural development is motivated by
our long-standing interest in the Baldwin Effect [1, 16] and
recent attempts [2, 3] to understand the disruptive and facil-
itative roles that development plays in the Baldwinian inter-
actions between learning and evolution, particularly when
these pertain to neural structures, and thus to the evolu-
tion of intelligence. This paper continues that investigation
by using WFG-based neural development in a simple test of
the Baldwin Effect involving EANNs.

2. WEIGHTED FUNCTION GRAPHS
As shown in Figure 1, a WFG resembles a neural net-

work, but with each node housing one of a number of al-
ternative activation functions, as opposed to the standard
sigmoids, step functions and hyperbolic tangents of neural-
network nodes. For example, the WFG may include Gaus-
sians, absolute values, and sine waves (as well as the common

ANN activation functions). Each WFG connection includes
a weight, and all nodes compute the sum of their weighted in-
puts, which serves as input to the activation function, whose
result becomes the node’s output.

WFGs have no explicit layered organization (other than
pre-designed input and output nodes), so any node can send
outputs to any other node; and all nodes (except the in-
puts, depicted as boxes in Figure 1) can receive weighted
outputs. At each timestep, the nodes undergo asynchronous
activation, wherein each node simply sums the weighted out-
puts in its input buffer and feeds that sum to its activation
function to produce an output value, which is immediately
propagated to the input buffers of all post-synaptic neigh-
bors. After a user-determined number of update rounds, the
WFG’s outputs are gathered from the output nodes (e.g.,
the lower node in Figure 1).

X Y K

0.7 -1.3 0.9

2.3

-1.2

-0.5

0.2 3.1

-1.7

Figure 1: Simple example of a Weighted Function
Graph (WFG), with inputs coming from the 3 boxes
on the top, and output read from the lower of the 3
function nodes.

2.1 Evolving WFGs
WFGs are evolved via a simple bit-vector chromosome

consisting of multiple segments, one for each node in the
network, including inputs and outputs. Each segment con-
sists of 5 genes that encode:

• the activation function

• the afferent connection tag

• the efferent connection tag

• the afferent weight tag

• the efferent weight tag

The first is simply an index into a list of possible activation
functions, while, as shown in Figure 2, the afferent tags for
node N help determine a) which nodes can send input to N,
and b) the weights on those incoming arcs. Similarly, the

efferent tags influence a) the nodes to which N can send its
output, and b) the weights on those outgoing arcs. The two
afferent (efferent) tags constitute the afferent (efferent) mask
of each node.

More specifically, if the afferent connection tag of node
N matches the efferent connection tag of node M (above a
user-defined match threshold), then M will send an excita-
tory connection to N. Conversely, if the match is very poor,
and thus below a similar threshold, then M will send an in-
hibitory connection to N. For medium-strength tag matches,
no connection between M and N is created. Then, the strength
of an excitatory or inhibitory arc is positively correlated with
the matching degree of M’s efferent-weight- and N’s afferent-
weight tags.

For example, in Figure 2, the genotype encodes 4 nodes,
labelled A-D. Each has afferent and efferent connection tags
as shown (with weight tags omitted for clarity). The match
thresholds imply that efferent-to-afferent tags that share 75%
or more bits will produce an excitatory link between their
respective nodes, while sharing of 25% or less justifies an
inhibitory arc; otherwise, no connect is formed. So node A
forms an excitatory link to node C, due to the close match
between A’s efferent and C’s afferent mask. Similarly, B links
to A in an excitatory manner, as does C to itself. Conversely,
C inhibits both B and D due to very poor matches between
C’s efferent mask and the afferent masks of B and D; and
finally, D inhibits A. The absolute values of the weights on
each arc are then determined by comparisons of the efferent-
to-afferent weight tags, which are omitted from the figure.

WFGs have a pre-defined number of input and output
nodes, but the efferent and afferent tags, along with the ac-
tivation functions, of output nodes can evolve, as can the two
efferent tags of each input node. Since recurrent links are
permitted in WFGs, both types of tags are relevant for out-
put nodes, while input nodes are restricted to feed-forward
signalling. During WFG configuration, once all connections
are determined, nodes that either form no connections or,
more generally, do not lie along at least one pathway from
some input to some output node, are removed.

The indirect coding and tag-controlled configuration pro-
cess supports a balance between stability and flexibility of
interaction between nodes over evolutionary time, as a sin-
gle tag-bit mutation can lead to major topological changes,
although most mutations will cause little or no change. This
embodies the concept of weak linkage among modular com-
ponents, a key precursor to evolvability, as described in Ger-
hart and Kirschner’s theory of facilitated variation [6]. To
wit, modules whose interactions involve simple enabling sig-
nals (as opposed to complex, instructive signals) whose gen-
eral structure matters more than its precise details, are both
a) easy to reconfigure, since other modules may evolve to
produce a similar enabling signal, and b) robust to many
genetic mutations, since small changes to the signal often do
not affect its triggering ability.

This attempt at increased biological plausibility in line
with facilitated variation increases the indirect nature of the
genotype-phenotype mapping, thus increasing the difficulty
of finding needle-in-a-haystack solution WFGs, in problems
where only isolated solutions exist. However, the general en-
hancement of evolvability accrued by weak linkage has clear

advantages in artificial evolution, as shown in the Enzyme
Genetic Programming system [7].

1 0 1100 10

1 01 0

00001 00 1

Efferent MaskAfferent Mask

1 1110 1 0 1

Match Thresholds = 25% and 75%

Arc weights determined
by similar mask matches

between components.

0.85
-1.2

0.33

00101011.......... 10101000......01100000........
Genotype

A

B

C

D

A

B

C

1 0 0 0

1.7
D

-0.64

-0.9

Figure 2: WFGs evolve as sets of nodes, each
of which contains a function indicator along with
two masks, afferent and efferent, each consisting of
connection- and weight-influencing bits. The topol-
ogy and arc weights are determined by tag matches,
with nodes that fail to hook up being discarded. To
simplify the illustration, no inputs nor outputs are
included, and only the connection tags of each mask
are shown. The match thresholds for inhibitory and
excitatory connection formation are 25% and 75%,
respectively.

3. DEVELOPMENTAL SYNAPTIC TUNING
Neuroscientific studies indicate that spontaneous waves of

neural activity, modulated by cyclic-AMP (cAMP) concen-
trations, lead to early synaptic tuning during development,
prior to the exposure to normal sensory inputs. This has
shown to play an important role in the binocular segrega-
tion of connections from the retina to the lateral geniculate
nucleus (LGN) [14], while others [8] postulate similar wave-
induced synaptic tuning in the hippocampus, and a variety of
evidence (summarized in [10] indicates both a) the presence
of these waves throughout the brain during neural develop-

ment, and b) their instructive role in synaptic formation and
tuning.

These waves promote neural firing such that neurons in ad-
jacent regions/layers that happen to fire simultaneously (due
to the stimulation from their respective activation waves)
will have their synaptic connections modified, typically by
Hebbian means. Thus, early chemical waves strongly in-
fluence the patterning of neuronal connections, prior to the
molding effects of normal sensory stimuli. A comprehensive
model of this phenomena would include the chemical and
physical bases of reaction-diffusion processes, a reasonably
straightforward but computationally-intensive endeavor.

A host of interesting neural development models can be
found in [15], but this research attempts to incorporate the
basic neuroscientific mechanisms into a much more abstract
model. Fortunately, WFGs provide an efficient alternative
for compactly representing any number of pattern-producing
processes found in nature.

Just as a WFG can generate pictures by mapping Carte-
sian coordinates to pixel intensities, by supplementing these
coordinates with an input time step, they can produce a
time series of patterns, which can easily depict a dynamic
structure such as an activation wave, as shown in Figure 3.

X Y Time

t1

t2

t3

Figure 3: A WFG, when provided with Cartesian
coordinates and time as inputs, produces abstract
temporal activation patterns.

When neural layers are modeled as 2d surfaces, each neu-
ron (n) has a center coordinate, (xn,yn). Each layer also
houses a WFG, whose mapping abstractly represents a 2d
activation pattern that will spread across the layer during
development. Then, to compute the wave-induced activity
of n at time t, simply input xn,yn and t to the WFG and
interpret the output value as a local activation.

When adjacent layers in an ANN include a WFG, each can
be run to produce activation patterns. As shown in Figure
4, when neurons j and k in adjacent layers (J and K) have
correlated wave-induced activation, Hebbian-based synaptic
tuning on the j-k connection provides an early bias of the
network. When the activation waves reflect some aspect of
the sensory world (with its motor requirements) to which the
organism will eventually be exposed, then this preliminary
synaptic tuning should provide a useful head start for the
neural network and agent.

Hence, by including WFG parameters with the other layer-
specific genes in an evolving ANN, any pair of interconnected
layers with WFG-based development stimulation can achieve
an evolving prenatal bias of its synaptic weights.

t1

t2

t3

t1

t2

t3

dW = 0.2

dW = 0.1

dW = 0.005

Layer J Layer K

dW = 0.4

Figure 4: Two adjacent neural layers (J and K) ex-
posed to different WFG-generated activation waves
over 3 timsteps. Co-stimulated neurons in each layer
induce correlation-based synaptic changes (dW),
only a few of which are shown. All colored region
indicate some level of stimulation, with red (blue)
being most (least) intense.

4. A BALDWIN-EFFECT MODEL
To assess the viability of weighted function graphs as mod-

els of neural activation spreading during development, we use
a primitive test of the Baldwin Effect (B.E.).

As described in [1, 16, 3], B.E. concerns the ability of
learning to accelerate evolution via a two-stage process. In
phase I, individuals with phenotypic plasticity achieve higher
fitness than their innate traits could alone. This moves the
population distribution toward plastic individuals. In phase
II, some of these learned skills become innate by chance mu-
tations. Selection pressure favors this assimilation of plastic
features into the genome and developmental process when
a) the environment is reasonably static across the genera-
tions, and b) learning has a fitness cost, and c) the genotype-
phenotype mapping is not overly complex.

Although B.E. seems plausible for some phenotypic traits,
such as the size of muscles and the efficacy of physical skills,
its relationship to the evolution of intelligence is more tenu-
ous, given contemporary understanding of the brain, neural
development and synaptic change. If learning is generally
equated with synaptic change, then how can the modification
of a few of the (human) brain’s 100 trillion synapses be as-
similated into DNA consisting of approximately 25 thousand
genes? As [3] argues, an interpretation of neural Baldwin-
ism as a heterochronous shift seems more appropriate: B.E.
phase II involves the transfer of a certain degree of neuroge-
nesis, synaptogenesis and synaptic tuning from post-natal,
experience-driven learning to pre-natal development.

In [3], this heterochronous neural Baldwinism is illustrated
by a shift of the brunt of neurogenesis and synaptogenesis
from the post-natal (learning) to the pre-natal (developmen-
tal) phase of life, as summarized in Figure 5. In this work,
we turn to the third key factor, synaptic tuning, and ex-
plore the degree to which it can be assimilated into neural
development.

Neurogenesis

Synaptogenesis

LTP / LTD

"Development" "Learning"

Neurogenesis

Synaptogenesis

LTP / LTD

"Development" "Learning"

Phase I

Phase II
Reduced
effect of

environment
upon network

formation

Figure 5: The heterochronous view of the Baldwin
Effect (phases I and II) with respect to three key
mechanisms of brain formation. Long-term poten-
tiation (LTP) and long-term depression (LTD) are
two forms of synaptic tuning.

This investigation utilizes a simple two-layered neural net-

work, with both input and output layers housing evolved
WFGs that generate pre-natal (i.e. prior to the presenta-
tion of training cases to the network) activation waves, which
then facilitate developmental synaptic modification, as de-
picted in Figure 4.

The task of each network is simply to map binary input
patterns to output patterns, with input-output pairs gener-
ated randomly at the beginning of each evolutionary run.
The network’s fitness is inversely proportional to both a)
the total output error across all learning epochs, and b) the
learning effort, a simple function of the learning rate and
number of epochs, both evolvable parameters.

The general intuition is that networks will originally rely
on a high learning effort to reduce output error and thus
achieve high fitness, as exemplifies B.E. phase I. Then, as
WFGs evolve for the input and output layers, the resulting
developmental activation waves and concomitant prenatal
synaptic tuning should eventually bias synapses to reduce
output error prior to the presentation of any training cases.
Thus, learning effort (and its fitness cost) can decrease to
achieve B.E. phase II.

4.1 Modeling Details
In all of the scenarios discussed below, the neural net-

work consists of an input and output layer, fully connected
in a strictly feed-forward manner, with both containing 16
neurons. Each output neuron has a simple linear activation
function: the output equals the sum of the weighted inputs.

Synaptic weights are randomly initialized to values be-
tween -0.05 and +0.05, and after each round of synaptic
modification, either during development or learning, the ab-
solute values of all incoming weights to each output neuron
are normalized geometrically (i.e. so that the weight vector
has length 1). The binary input and output patterns are
sparse, consisting of one 1 and many 0’s.

Table 1 summarizes the 6 basic characteristics that are
evolved for each neural network. Each of the two WFG’s
consists of 14 genes of the type shown in Figure 2: 10 for
the internal nodes, 1 for the output node, and 3 for the
input nodes (coding for x, y and time). The function set
for evolved WFG’s consists of: identity, absolute value, sine,
gaussian, and the logistic (sigmoid) function, while WFG
connection weights are restricted to reals in [−5, 5]. Each of
the 16 input and output nodes has Cartesian coordinates to
use as inputs to the respective WFG during development.

Symbol Name Range
Development

Dr Developmental tuning rate [0, 0.5]
Ds Activation wave steps [0, 5]

WFGin WFG for input layer 0-10 internal nodes
WFGout WFG for output layer 0-10 internal nodes

Learning
Lr Learning rate [0, 0.5]
Le Learning epochs [1, 10]

Table 1: Genes in the genetic-algorithm chromosome
for all scenarios described in this article.

During both developmental and training-based synaptic

tuning, the standard correlational Hebbian rule of equation
1 applies:

4wi,j = λxixj (1)

where wi,j is the weight on the connection from neuron j
to neuron i, λ is either Dr or Lr (see Table 1), and xi and
xj are the outputs of neurons i and j, respectively.

Equation 2 expresses the output error of each neural net-
work:

E =
1

Le ‖ N ‖‖ C ‖
X

e

X
c∈C

X
n∈N

| xe,c
n − tcn | (2)

where N is the set of output neurons, C is the set of train-
ing cases, xe,c

n is the output of the nth neuron on case c
during epoch e, and tcn is the target output for neuron n on
case c.

Equation 3 provides the fitness function used in all sce-
narios:

f =
1√

E + ΘLeLr

(3)

where LeLr is the learning effort and Θ is the tuning tax,
typically 0.05.

The key genetic-algorithm parameters include a popula-
tion size of 20, full-generational replacement with a rank-
based selection mechanism and elitism of one individual, a
crossover rate of 0.8 and a mutation rate of 0.05 per bit.

5. RESULTS

5.1 Scenario 1
This scenario employs 10 training cases: sparse input and

target-output vectors containing exactly one 1 and 15 0’s.
The 50-generation run of Figure 6 illustrates a Baldwin Ef-
fect supported by WFG-based synaptic tuning. Early on, the
learning rate rises, thus decreasing output error and increas-
ing fitness, thereby achieving B.E. phase I. Then, around
generation 25, the learning effort drops dramatically, while
maximum fitness continues its slow rise, which ushers in B.E.
phase II. The drop in learning effort produces a slight rise
in output error, which trades off with learning effort in the
fitness function.

What enables learning effort to decrease without incur-
ring a major error increase is the WFG-based developmen-
tal process, which evolves into two activation patterns across
the input and output layers, as shown in Figures 7 and 8.
These reduce the output error (on the 10 training/test cases)
from 0.25 prior to developmental synaptic tuning to 0.17 af-
terwards (but prior to any learning). Since developmental
effort has no cost in the model, fitness can increase when
any significant amount of synaptic tuning is transfered from
learning to development, provided that output error does
not increase substantially as a side effect.

Because developmental tuning has no basis in the training
data, evolution must search for WFG-generated activation
waves that fortuitously bias the synapses to learn those pat-
terns. In examples such as this, the bias is significant: over
30%, and in some examples, it reaches as high as 60%.

In addition to the WFG’s, the four other evolved parame-
ters for this best-of-run individual appear in Table 2, which

0 10 20 30 40 50

Generation

1.0

1.5

2.0

2.5

3.0

V
a
lu

e

Evolution

Max-Fitness
Avg-Learning
Avg-Error

Figure 6: The evolutionary progression of best-
of-generation fitness, along with population-average
values for learning effort and output error, which is
scaled by 10 for ease of viewing. Note the initial
increase in learning effort (B.E. phase I) that even-
tually gives way to a decrease, while fitness continues
to rise (B.E. phase II).

reveals a high tuning rate for development, 0.251, compared
to the corresponding rate for learning, 0.1666.

Dr Ds Lr Le

0.251 5 0.1666 10

Table 2: Four evolved parameters for the most fit
individual of scenario 1.

Despite the use of elitism, a noticeable jitter appears in
the fitness plot of Figure 6. This stems from the random
initialization of network weights prior to developmental tun-
ing, which cannot always produce identically-biased synaptic
patterns (prior to learning) when given diverse initial-weight
distributions. However, in most cases, a top-fitness individ-
ual in generation k remains very highly fit when cloned into
generation k+1.

To test the generality of this result, 20 runs were per-
formed using different sparse data sets of size 10, with ex-
actly one 1 and 15 0’s in each vector. As shown in Figure 9,
fitness rises throughout the 50 generations, while error de-
clines. Learning effort begins high but gradually decreases as
developmental synaptic tuning evolves to help reduce output
error.

5.2 Scenario 2
In this scenario, 20 sparse input-output pairs (again con-

taining exactly one 1 apiece) are given to the network. The
population size (20) and all other parameters from scenario
1 are reused. The evolution in Figure 10 clearly shows a
gradually increasing fitness while learning effort begins high
but gradually declines. In this scenario, the learning decline
is less obvious in the population averages than in the (cas-
cading) best-of-generation learning trace.

0 2 4 6 8
X

0

2

4

6

8

Y

Devp-Wave

0 2 4 6 8
X

0

2

4

6

8

Y

Devp-Wave

0 2 4 6 8
X

0

2

4

6

8

Y

Devp-Wave

0 2 4 6 8
X

0

2

4

6

8

Y

Devp-Wave

Figure 7: Four seqential (left-to-right, top-to-
bottom) snapshots of a WFG-generated activation
sequence for the network’s input layer. Lighter col-
ors indicate higher activation.

Figure 11 shows results common to many of the (unpub-
lished) runs: a) the evolved WFG’s ignore the timestep and
produce the same pattern for each timestep, and b) the out-
put layer’s WFG produces a monotonic pattern of either
high or low activation in all spatial locations. However, this
mundane pair of patterns reduces output error by 44% prior
to any learning. The remaining phenotypic traits appear in
Table 3. Note that only 3 developmental steps and 5 learning
epochs were employed by this individual.

Dr Ds Lr Le

0.492 3 0.148 5

Table 3: Four evolved parameters for the most fit
individual of scenario 2.

6. REFERENCES
[1] J. M. Baldwin, A new factor in evolution, The

American Naturalist, 30 (1896), pp. 441–451.

[2] K. L. Downing, Development and the Baldwin effect,
Artificial Life, 10 (2004), pp. 39–63.

[3] , The Baldwin effect in developing neural
networks, in Proceedings of the 12th Genetic and
Evolutionary Computation Conference, Portland,
Oregon, 2010, ACM Press, pp. 555–562.

[4] J. Gauci and K. Stanley, Autonomous evolution of
topographic regularities in artificial neural networks,
Neural Computation, 22 (2010), pp. 1860–1898.

[5] Kenneth and R. Miikkulainen, Evolving neural
networks through augmenting topologies, Evolutionary
Computation, 10 (2002), pp. 99–127.

[6] M. W. Kirschner and J. C. Gerhart, The
Plausibility of Life: Resolving Darwin’s Dilemma, Yale
University Press, New Haven, CN, 2005.

0 2 4 6 8
X

0

2

4

6

8

Y

Devp-Wave

0 2 4 6 8
X

0

2

4

6

8

Y

Devp-Wave

0 2 4 6 8
X

0

2

4

6

8

Y

Devp-Wave

0 2 4 6 8
X

0

2

4

6

8

Y

Devp-Wave

Figure 8: Four seqential (left-to-right, top-to-
bottom) snapshots of a WFG-generated activation
sequence for the network’s output layer.

[7] M. A. Lones and A. M. Tyrrell, Biomimetic
representation in enzyme genetic programing, Genetic
Programming and Evolvable Machines, 3 (2002),
pp. 193–217.

[8] B. McNaughton, L. Battaglia, O. Jensen, E. I.
Moser, and M. B. Moser, Path integration and the
neural basis of the ’cognitive map’, Nature Reviews
Neuroscience, 7 (2006), pp. 663–678.

[9] S. Risi, J. Lehman, and K. Stanley, Evolving and
placement and density of neurons in the hyperneat
substrate, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2010), (2010), p. 8.

[10] D. Sanes, T. Reh, and W. Harris, Development of
the Nervous System, Elsevier Academic Press,
Burlington, MA, 2006.

[11] J. Secretan, N. Beato, D. D’Ambrosio,
A. Rodriguez, A. Campbell, J. Folsom-Kovarik,
and K. Stanley, Picbreeder: a case study in
collaborative evolutionary exploration of design space,
Evolutionary Computation, 0 (2011), p. to appear.

[12] K. Stanley, Compositional pattern producing
networks: a novel abstraction of development, Genetic
Programming and Evolvable Machines: Special Issue
on Developmental Systems, 8 (2007), pp. 131–162.

[13] K. Stanley, D. D’Ambrosio, and J. Gauci, A
hypercube-based encoding for evolving large-scale
neural networks, Artificial Life, 15 (2009), pp. 189–212.

[14] D. Stellwagen and C. Shatz, An instructive role
for retinal waves in the development of retinogeniculate
connectivity, Neuron, 33 (2002), pp. 357–367.

[15] A. van Ooyen, ed., Modeling Neural Development,
The MIT Press, Cambridge, MA, 2003.

[16] B. Weber and D. Depew, eds., Evolution and
Learning: The Baldwin Effect Reconsidered, The MIT
Press, Cambridge, MA, 2003.

0 10 20 30 40 50

Generation

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e

Evolution

Fitness
Learning
Error

Figure 9: Averages over 20 runs of the best-of-
generation network’s fitness, learning effort and out-
put error for networks trained on 10 sparse training
cases.

0 10 20 30 40 50

Generation

0.5

1.0

1.5

2.0

2.5

3.0

V
a
lu

e

Evolution

Max-Fitness
Avg-Learning
Avg-Error
Learning

Figure 10: The evolutionary progression of fitness
and learning effort for the best-of-generation indi-
viduals. Population averages for learning effort and
output error (scaled by 10) are also plotted.

0 2 4 6 8
X

0

2

4

6

8

Y

Devp-Wave

0 2 4 6 8
X

0

2

4

6

8

Y

Devp-Wave

Figure 11: Static (i.e. non-varying for all 3 devel-
opmental timesteps) WFG-generated activation pat-
terns for the input (left) and output (right) layers
of the neural network for the best-fit individual of
scenario 2. These simple patterns reduced the pre-
learning output error from 0.25 to 0.14, i.e. by 44%.

