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Abstract. This paper reviews the neuroscience literature to sculpt a
view of intelligence from the artificial life (ALife) perspective. Three key
themes are used to motivate a journey down the low road to cognition.
First, the origins of brain structures and dynamics exhibit considerable
emergence at phylogenic, epigenetic, and ontogenetic levels. Second, AL-
ife complexity measures have interesting parallels in theoretical neuro-
science. Finally, the cerebral internalization of sensory stimuli and motor
control explain, respectively, a) semantics in terms of differential com-
plexity, and b) how neural evolution has overcome the limitations of
simple emergence.

1 Introduction

The vast majority of Artificial Life (ALife) research involves large populations
of extremely simple components whose collective behavior yields emergent so-
phistication. Often, these local units mimic simple biological organisms such as
bacteria, or serve as very high-level abstractions of complex organisms - e.g., sim-
ulated economic agents whose intelligence is restricted to a few simple buying
and selling activities.

The realm of high-level intelligence is traditionally unpopular in ALife for
several reasons. First, intelligence issues are often philosophical quagmires where
unwary visitors may disappear without a trace (of publishable work). Second, the
field of Artificial Intelligence (AI) once boldly marched into that dark swamp,
spouting claims of human-like computers just around the corner, thus fueling
rampant media hype. AI only barely escaped (from both the swamp and the
media) and has now retooled considerably to focus on intelligent systems without
significant anthropomorphic claims. ALife researchers are wary of a similar fate,
via either intelligence work of their own or merely association with AI. Finally,
the concept of complex localized controllers (i.e., brains) runs contrary to the
ALife philosophy of emergent global regulation from simple components.

Although intelligence is truly one of life’s most perplexing riddles, contem-
porary neuroscience has made incredible strides in the past few decades, thus
burying many stale theories of mind that survived far too long due to lack of rea-
sonable evidence. In a very strong sense, the neurophysiological evidence yields
intelligence even more foreboding than before. Now that we understand many of



the local mechanisms such as neurotransmitter signaling, synaptic strengthen-
ing, neuronal migration and axonal growth, the distance from these primitives to
cognition seems all the more ominous. The old theories of a CPU-like humuncu-
lous that ran the show were much easier to work with, but the von Neumann
computer analogy was wrong, and, unfortunately, very misleading.

The relevance of intelligence for ALife is now obvious. Since no sophisticated
central controller runs the brain, intelligence itself emerges from the interactions
of billions of neurons distributed across many brain regions. Cognitive processes
such as prediction, memory, learning, etc. should thus, ultimately, find explana-
tions in the cooperative and competitive interactions among neural agents.

This paper examines neurophysiological evidence and theories in terms of two
common ALife concepts, emergence and complexity, before showing how natural
selection of brains combats the limitations of purely emergent behaviors at one
level through hierarchical organization and ascending control.

2 Emergence, Adaptation and Intelligence

Understanding intelligence from an emergent perspective involves both a) self-
organization of structural and dynamic patterns within a given organism, and
b) the crafting of sophisticated life forms through natural selection. Both mech-
anisms underlie life’s 3 key adaptive mechanisms: a) development, b) learning,
and c) evolution.

This paper reviews several basic mechanisms that are helpful in understand-
ing the phylogenic (evolutionary), ontogenetic (developmental) and epigenetic
(learning) aspects of emergent intelligence, and thus useful in tackling questions
such as:

1. How can brains capable of intelligent behavior evolve?
2. How are neural topologies grown from genetic instructions?
3. How do neurons interact to facilitate intelligence?

2.1 Basic Mechanisms for Emergent Intelligence

Duplication and Differentiation Something as complex as the brain can-
not emerge in one evolutionary step, although this does not preclude a mixture
of punctuated and gradual refinements over the millennia. Each incremental
change, whether positive, negative or neutral with respect to intelligence, can-
not compromise the species overall fitness. One simple means of guaranteeing a
relatively monotonic progression is to duplicate existing genes and then allow the
copies to gradually mutate until they achieve an intelligence-enhancing variant.
While the copy explores function space, the copied gene continues to perform its
normal role, thus providing protective fitness cover during exploration.

The classic illustration of this mechanism is the homeobox, a 180-base-pair
DNA sequence found in the homeotic genes. Similar sequences of homeotic
genes appear in organisms as simple as hydra and fruit flies and as complex as



chickens and humans [1]. The homeobox (along with other peripheral base pairs)
has clearly been duplicated many times throughout evolution, with peripheral
regions then differentiating to form more heterogeneous phenotypes. Incidentally,
several of the homeotic genes are involved in the development of the hindbrain,
the most primitive cerebral region.

During development, cellular duplication and differentiation are critical ac-
tivities. After fertilization, the zygote undergoes rapid cleavage divisions to form
the blastula, consisting of many identical copies of the original cell. Small asym-
metries in the blastula eventually lead to differential gene expression among the
cells, causing differences in inter-cellular chemical signaling, leading to further
differentiation and an ensuing escalation in complexity.

The blastula transforms into the 3-layered gastrula, Within its neuroecto-
derm, all cells have the potential to become neuroblasts (neuron precursors).
Random asymmetries lead to the formation of isolated neuroblasts, which then
send chemical signals that inhibit nearby neuroblast formation and promote epi-
dermal cells.

Migration and Extension Neuroblasts migrate to the center of the gastrula
to form the ventricular proliferation zone (VPZ), where they differentiate into
either neurons or glial cells. Neurons undergo further differentiation to their final
neural cell type before migrating back outward along the radial glial scaffolding.
The brain thus forms from the inside out, as neurons migrate past their temporal
predecessors to the periphery.

Since developmental timing effects in the VPZ can strongly influence even-
tual neural cell fates, a few simple (often genetically-controlled) timing effects
can greatly alter the final brain anatomy in terms of the number and thickness
of neural layers. Nonlinear competitive and cooperative interactions between the
neurons of these layers can then lead to vastly different connection topologies as
well. Essentially, neural development is a process poised on the edge of chaos,
where small changes to initial (timing) conditions can have large-scale repercus-
sions.

Once properly positioned, neurons sprout axonal and dendritic projections,
with the former often growing many centimeters in length. The vast complexity
of brain function stems largely from the ability of neurons to send direct, non-
diffuse, signals to other particular (often distant) neurons. In contrast, a network
in which neurons could merely broadcast signals within variable-sized radial
neighborhoods could probably never achieve the same level of sophistication as
the vertebrate nervous system.

As described in [19], 4 primary factors control axonal navigation: chemical
attractants and repellents that either diffuse within intercellular spaces or cling
to cell surfaces. Axons wind their way through fields of diffused attractants and
repellents, while bouncing off repellent-laden cells and growing along certain sur-
face attractants. Chemical signatures in the two neurons appear to determine
the targets to which growing axons become synaptically coupled. In general,
chemical signals direct axons into proper brain regions and to sub-populations



of compatible dendrites, but finer tuning of interneural connections involves com-
petitive and cooperative interactions based on correlated firing patterns.

Cooperation In 1949, Donald Hebb [6] predicted that:

When an axon of cell A is near enough to excite a cell B and re-
peatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells, such that A’s efficiency
as one of the cells firing B, is increased.

In short, neurons that fire together, wire together. Neurophysiological re-
search has revealed the underlying metabolic changes and largely confirmed
Hebb’s hypothesis [9]. This mechanism is central to both biological learning
and associative memory formation in various artificial neural networks [7].

Hebb’s rule embodies cooperation in at least two respects. First, and most
obviously, by (nearly) simultaneously firing, neurons A and B work together to
strengthen their intervening synapse. Second, and often overlooked in Hebb’s
quotation, is the clear implication that A is one of several neurons that actually
stimulate B. This cooperation among presynaptic neurons underlies classical
conditioning, wherein an initial C-B association essentially bootstraps an A-B
association.

For example, assume a basketball player normally dribbles to the right (DR)
when he sees the nearest defender moving to (the defender’s) right (MR). With
experience, he will notice that a defender quickly shifts his body weight to the
left leg (SL) before moving to his right (MR). Eventually, this will lead to a
hard-wired response wherein SL initiates DR: the dribbler moves right on seeing
the weight shift and without waiting for MR.

As simplified in Figure 1, assume 3 neurons (more likely, 3 possibly-overlapping
populations of neurons) that represent DR, MR and SL, respectively. Here, DR
is the post-synaptic neuron, while SL and MR are pre-synaptic (i.e. they send
signals across separate synapses to DR). Bootstrapping embodies cooperation
in the following sense. MR is normally sufficient to fire DR. In situations where
MR and SL fire almost simultaneously, MR still fires DR, but now SL and DR
are also almost simultaneous. Hence, the SL-DR synapse strengthens such that,
later, SL alone eventually suffices to fire DR. Essentially, MR has primed DR to
enable the SL-DR association.

Dropping down a level, coincidence detectors are essential prerequisites for
neural cooperation. In classical conditioning, NMDA receptors in the post-synaptic
neuron’s dendrites recognize the simultaneity of a) depolarization (firing) of the
post-synaptic neuron (e.g. DR), and b) neurotransmitter release by the axon
of the pre-synaptic neuron (e.g., SL). Only when both occur does the NMDA
receptor open its associated calcium channel, setting off a chain of events that
eventually enhance the SL-DR synapse [9].

In the pre-synaptic axon, adenyl cyclase (AC) detects the co-occurrence of
a) pre-synaptic neuronal firing, and b) a general signal of excitement in the form
of a neuromodulator (e.g. serotonin) broadcast to many parts of the brain by
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Fig. 1. Abstraction of neural circuitry involved in classical conditioning for learning to
dribble right when the opponent shifts his body weight to his left side.

the limbic system during emotional arousal. This is a key mechanism behind
operant conditioning, where proper actions are learned via punishment/reward.
For example, as our basketball player is learning to shoot free throws, different
sets of motor neurons correspond to particular shooting actions, since different
sets trigger different muscle fibers. If a particular free-throw is good (due to the
firings of the motor-neuron set M), then the emotional experience of success
leads to serotonin release (by broadcasting neurons in the limbic system). The
AC in the pre-synaptic axons of the M neurons will then detect the coincidence
of serotonin and recent depolarization, thus leading to prolonged neurotrans-
mitter release (via a complex, but well-understood [3] reaction sequence) at
those same M-neuron synapses in the future. In short, AC’s co-detection of suc-
cess/excitement and M-neuron activity enhances the cooperative firing of the M
neurons in the future.

This is one of many areas where a proposed ALife primitive is subsumed
by other ubiquitous mechanisms. However, since coincidence detection forces a
descent to the chemical level, where complexity quickly escalates, this paper will
remain at a higher level of abstraction. Also, the general success of artificial
neural networks (most of which abstract away all neural physics and chemistry)
indicates that lower levels are not necessarily essential for artificial intelligence.

Competition Whereas NMDA and AC underlie cooperation, chemical growth
factors known as neurotrophins incite intense competition among neurons. Ax-
ons are dependent upon neurotrophins for growth and maintenance; without
them, they wither away. During development, axons extend toward their tar-
gets, whose dendrites give off neurotrophins in inverse proportion to their activ-
ity. The limited supply of neurotrophins thus supports a restricted number of



presynaptic axons, with the rest atrophying away. The proper match of axons
to target dendrites (and thus a proper level of target activity) emerges from
a simple negative-feedback loop: low target activity stimulates neurotrophin re-
lease, which positively affects presynaptic axonal growth, and more axons provide
greater input to the target, increasing its activity.

Once the basic neural topology is established, neurotrophins also play an
important role in learning, but via slightly different dynamics. In the mature
brain, neurotrophins are released by depolarized dendrites and only taken up by
recently-depolarized pre-synaptic axons. Hence, only those axons that contribute
to the stimulation of the target neuron are rewarded with growth factor, while
the others lose out in this competition for the fruits of cooperation.

Competition for neural growth factors may explain the formation of topolog-
ical maps in the brain, i.e., regions that have an isomorphic relationship to some
aspect of the environment. For example, neurons in layers 5 and 6 of the V1 area
of the visual cortex respond maximally to lines at particular orientation angles
in the visual field [8]. Most significantly, a) neighboring cells respond to similar
angles, and b) horizontal transects represent a continuous sequence of monoton-
ically changing preference angles. In short, the neuron space is isomorphic with
orientation-angle space. A multitude of such maps exist in the brain, covering all
types of sensory input. In fact, many of the initial levels of perceptual process-
ing involve topological maps. Only in higher brain regions do the isomorphisms
disappear, as sensory channels converge with one another and with top-down
cognitive biases.

As detailed in [17], several different competition-based neural models suffice
to generate topological maps of visual orientation angles, via self-organization.
These include the classic Kohonen maps [11] in which post-synaptic neurons
compete for pre-synaptic firing patterns. Our preliminary modelling efforts in-
dicate that maps can also be generated by Kohonen-type networks based on a
simple model of neurotrophin release and uptake.

2.2 The Emergent Integrated Hierarchy of Intelligence

The above primitives interact to form complex cognitive systems whose overall
topology is convergent (i.e., high axonal feed-in from many regions), reentrant
(i.e. loop-forming) and hierarchical (i.e., a series of layers whose functionalities
vary along a spectrum from specific to general). For example, Figure 2 depicts
some of the connections between sensory topological maps and the hippocam-
pus, believed to be the center of long-term memory [9]. Many brain researchers
agree that two key features of higher intelligences are convergence and reen-
trance/recurrence [13, 5].

Convergence enables the integration of perceptual inputs. This helps provide
the holistic awareness of a situated and embodied self, which many consider
the basis of consciousness [4, 5, 14]. Many researchers point to the thalamus as
the center of consciousness, since it combines multi-modal sensory inputs with
memories and then feeds back to the sensory areas of the cerebral cortex, thus
forming a memory/contextual bias on further perception. Consciousness is then
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Fig. 2. Convergence and reentrance among the many hierarchical layers from the cor-
tical maps to the hippocampus

more than just a simple awareness of present self and environment, but a partial
integration of generalized-past and filtered-current experience.

Although convergence, recurrence and tight integration among components
appear to be fundamental emergent properties of the brain, they are normally es-
chewed by engineers, who prefer systems of loosely-coupled, largely-independent,
modules, since these are more amenable to top-down, divide-and-conquer design
strategies. Hence, if considerable convergence and recurrence are necessary hall-
marks of higher intelligence, then the design of truly artificial intelligences may
actually require bottom-up selectionist techniques, such as evolving artificial
neural networks.

In summary, the three adaptative mechanisms are essential prerequisites to
higher intelligence, and each is grounded in (at least) the above basic mech-
anisms. Duplication and differentiation are necessary for genotypic and pheno-
typic complexification, since natural selection severely punishes most exploratory
designs. They, along with migration and extension, are also fundamental tools
of neural development. Also, beyond their obvious evolutionary influences, co-
operation and competition are actively at work in development and learning.

Below this level lies a fascinating array of chemical devices, of which this
paper only scratches the surface. Above it come emergent structures such as
sensory maps, convergence zones and recurrent loops, whose integrated activity
spawns abstract mental phenomena such as memory, awareness, decision-making
and consciousness.



3 Complexity and Consciousness

Concepts such as intelligence and consciousness have successfully avoided precise
formalization for centuries. However, Edelman and Tononi [5, 18] provide a nice
break from the philosophical confusion via a statistical quantification of neural
complexity - and one which closely parallels classic ALife notions such as the
edge of chaos [10, 12] and self-organized criticality [2]. Also see [16].

The basic idea is quite simple: complex neural systems are those in which
different regions can be in a large number of different states, but these states are
highly correlated with the states of other regions. This motivates the expression:
differences that make a difference, i.e., the (many) states of particular regions
strongly influence the states of others.

Edelman and Tononi’s complexity involves mutual information (MI), which
is based on the comparative entropies (H) of two subsystems (A and B) and
their union:

MI(A, B) = H(A) + H(B) − H(A ∪ B) (1)

High entropy systems are those with many equiprobable states, so high mu-
tual information involves subsystems with many equiprobable states but with
few such states in the union, i.e. low H(A ∪ B), which directly reflects a high
correlation between A and B.

Then, the neural complexity (CN) of an n-neuron system (S) involves the
mutual information between every subsystem (sj) and its complement (S − sj),
summing over the average MI values for each size class (k):

CN(S) =

n/2∑

k=1

MI(sk
j , S − sk

j ) (2)

A complex neural system is therefore one containing many subsystems that
are both internally diverse and mutually integrated. Levels of diversity and inte-
gration show characteristic variations according to brain maturity [5], as shown
in Figure 3.

1. Young brains exhibit high integration but low diversity, producing activity
patterns in which many neurons in S synchronously change state, but lo-
cal regions show few activation patterns. Hence, the system appears to run
through low-period cycles of highly homogeneous states.

2. Old brains are weakly integrated but highly differentiated, leading to chaotic
activation patterns in which each region behaves independently.

3. Mature brains portray both high integration and differentiation, thus pro-
ducing long state cycles where each state has a structured (low entropy)
appearance, but these patterns gradually change in a continuous manner, as
a glider moves across a cellular-automata. They look alive!

In terms of the neural complexity metric:

CN(old) < CN(young) < CN(mature) (3)
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Fig. 3. Abstraction of neural topologies in young, mature and old brains, showing
degree of connectivity both within and between different regions.

The parallels to ALife complexity definitions are striking. Old brains mirror
a gaseous state, where chaos dominates. Young brains resemble a solid state,
where state cycles are short. However, in contrast to a Kaufmann solid [10],
where large regions are static, young brain cells do frequently change state, but
individual regions show only a few local patterns: they are frozen into a small
set of alternatives. Finally, the mature brain closely matches the liquid state, the
edge of chaos, and self-organized criticality in that it has long state cycles and
appears to exhibit both memory and information transfer as patterns gradually
form and retain much of their shape as they move about.

Neural complexity links to consciousness via a few additional concepts [5].
First, a functional cluster is a neural region with a higher cluster index than
any of its subset regions, where the cluster index (CI) is the ratio of a regions
internal to external interactivity:

CI(Si) =

∑m
j=1

H(si,j) − H(Si)

MI(Si, S − Si)
(4)

Here, the numerator denotes the integration (I(Si)) of subsystem Si: the
amount of entropy that Si’s m subsystems (si,j) lose due to their mutual inter-
actions. The denominator reflects Si’s contribution to S’s complexity.

A functional cluster whose interface with its complement (S − Si ) may
change on approximately a 1/10 second timescale is a dynamic core [5]. It is
hypothesized that the neurons involved in consciousness at a particular time are
members of a dynamic core that involves extensive reentrant looping between
the cerebral cortex and thalamus, and has high neural complexity, i.e., many
different states that make a difference outside the core.

Thus, consciousness is a process governed by the ever-changing neural con-
stituency of a thalamocortically-centered dynamic core. As in ALife systems,
a) the dynamics, not the substrate, define the phenomena, and b) the emerg-



ing global pattern exerts a strong influence upon the system, e.g., by biasing
perceptual interpretations, the focus of attention, memory retrieval, etc.

4 Encephalization

Traditional ALife complexity analyses concern the effects of external pertur-
bations upon internal dynamics, where the disturbance is small - such as the
addition of one sand grain to a pile or the flipping of one bit in a quiesced
boolean network - and the probability distribution over the sizes of the effects
differentiates between the stable, chaotic and complex regimes.

However, living organisms interact with a complex environment whose per-
turbations are both intricate and extensive; and the resulting imprint on internal
dynamics constitutes an adaptive response with real survival value. The view of
brain and surroundings as coupled autopoietic (i.e. constantly self-maintaining)
systems [15] captures this idea:

The plastic splendor of the nervous system does not lie in its pro-
duction of engrams or representations of things in the world; rather it
lies in its continuous transformation in line with transformations of the
environment . . . The functioning organism, including its nervous system,
selects the structural changes that permit it to continue operating, or it
disintegrates (pg. 170).

Basically, salient aspects of the environment are internalized in the neural
circuitry, or encephalized. To quantify this effect, Tononi et. al. [18] use CN to
define matching complexity, CM: the complexity of the system due to sensory
input, or, the degree to which internal correlations change due to external per-
turbations.

CM(S, P ) = CN(S) − CN(S − P ) − CNE(S, P ) (5)

The matching complexity between a neural system S and its outer perceptual
layer, P, is the total complexity of S reduced by both the complexity of S-P (the
intrinsic complexity) and the complexity at the interface between P and S-P (the
extrinsic complexity, CNE(S, P )). Thus, CM measures the change in internal
complexity due to the cascading effects of sensory input. This correlates well
with stimulus familiarity, as seen in the experiments of [18], where ANNs trained
on sample patterns and then exposed to similar new patterns show CM > 0,
while novel test patterns yield CM < 0. Apparently, the familiar pattern calls a
host of contextual information into play, producing much greater internal change
than does a novel stimulus. Although a novel perturbation might cause great
change to early levels of processing, its failure to link to previous experience
quickly arrests any signaling cascades. Since CM seems to correlate with this
memory/contextual factor, it implicitly measures the significance/meaning of a
stimulus for the observer. Thus, the central ALife concept of complexity may
provide insights into the philosophical conundrum of semantics.



In addition to sensory inputs, encephalization can also encompass motor out-
puts, as detailed by Llinas [14]. Here, motor activity patterns that were originally
emergent from the direct electrical couplings between muscle cells have, through
the course of evolution, become controlled by, first, spinal motor neurons, and
later, neurons of higher brain regions. This higher-level control increases the po-
tential complexity of the actions, since emergent oscillatory patterns - typically,
spatial waves of muscle contractions - cannot approach the intricacy needed for
walking a balance beam or playing the piano. But with a neural hierarchy, spatial
activation waves at the higher levels can, via tangled top-down connections, dif-
ferential propagation delays, etc., cause spatially diverse firing patterns at lower
levels.

Llinas [14] believes that muscle oscillations in primitive animals and in devel-
oping vertebrate embryos have become internalized/encephalized to the 40 Hz
activity of the thalamus. Since thalamic activity is a critical constituent of the
dynamic core, these 40 Hz oscillations serve as a binding signal for mental activ-
ity. In a strong sense, this 40Hz signal is the heartbeat of the brain, and it arose
via an evolutionary process that gradually translated emergent muscle-activation
patterns into a high-level dynamic that coordinates all activity: perceptual, mo-
tor and cognitive. Thought is encephalized motricity.

Basically, evolutionary emergence combatted the limited motor complexity
provided by simple emergence among locally-connected activators (i.e., muscle
cells) by designing the nervous system, which permits intricate communication
networks among non-adjacent cells. While primitive versions involve direct con-
nections between sensory and motor apparatus, the brains of more intelligent
organisms house many convergent and reentrant layers to realize high neural
(and hence behavioral) complexity. This hierarchy manifests an encephalization
of both environment and action, thus embedding reality for a selective survival
advantage.

5 Conclusion

The potential synergies between ALife and neuroscience are abundant, albeit
nonobvious. For instance, although a central controller is anathema to sciences
of emergence, it becomes a crown jewel when its self-organizing processes are
unveiled, as is now the case with many brain regions.

This paper has discussed several general mechanisms residing at an inter-
mediate conceptual level between the electrochemical and the psychological. In
all cases, these principles are quite well understood in terms of the lower levels,
so they provide well-grounded intellectual scaffolding for bottom-up attacks on
cognitive phenomena such as learning and memory.

Ideally, ALife systems could begin with these processes and derive intelli-
gence. AI was driven by similar optimism, but primitives such as logic and best-
first search had no obvious neural basis. Conversely, the staples of ALife (compe-
tition, cooperation, differentiation, etc.) do. In addition, ALife-related concepts



such as neural complexity (CN) and matching complexity (CM) provide elegant
metrics for cognitive emergence.

In general, the study of intelligence in terms of neural networks gives ALife
researchers a host of interesting opportunities: 1) to understand complex phe-
nomena such as memory, reasoning and semantics from an emergent perspective,
2) to recognize and formalize the limitations of behavioral emergence and the
improvements accrued by a nervous system, 3) to quantitatively analyze the in-
formational coupling between environments and brains as they coevolve, and 4)
to analyze similar informational correlations between motor patterns and their
proposed encephalizations in controlling neural circuitry.
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