
Development and the
Baldwin Effect

Keith L. Downing
Department of Computer

Science
The Norwegian University of

Science and Technology
Sem Selandsvei 7-9
7491 Trondheim, Norway
keithd@idi.ntnu.no

Keywords
Baldwin effect, development, ge-
netic algorithms, trilateral adapta-
tion

Abstract Baldwin’s classic hypothesis states that behavioral
plasticity can speed evolution by (a) smoothing the fitness
landscape and (b) indirect genetic assimilation of acquired
characteristics. This latter phase demands a strong correlation
between genotype and phenotype space. But the natural
world shows signs of this correlation at only a very coarse
level, since the intervening developmental process greatly
complicates the mapping from genetics to physiology and
ethology. Hence, development appears to preclude a strong
Baldwin effect. However, by adding a simple developmental
mechanism to Hinton and Nowlan’s classic model of the
Baldwin effect, and by allowing evolution to determine the
proper balance between direct and indirect mapping of
genome to phenotype, this research reveals several different
effects of development on the Baldwin effect, some
promoting and others inhibiting. Perhaps the most interesting
result is an evolved cooperation between direct blueprints
and indirect developmental recipes in searching for
unstructured and partially structured target patterns in large,
needle-in-the-haystack fitness landscapes.

1 Introduction

To fully understand the origins of any trait, particularly a cognitive one, requires an
investigation into the complex interplay between evolution and behavioral plasticity.
Such an analysis spans both the wide range of geological time and space; as well as
the gap between the microscales of genetics and the macroscales of ethology. While
research on the Baldwin effect [3, 9, 17, 29] has yielded useful insights into the potential
accelerating role of learning in evolution, both preconditions and caveats are plentiful,
making the biological case plausible at best.

In a nutshell, the Baldwin effect consists of two phases. In phase I, learning gives
a selective advantage to individuals with innate mental or physical abilities that place
them relatively close to optimal behavior. Essentially, learning makes up the difference,
allowing these individuals to achieve optimal behavior in the course of their lifetimes.
Other individuals may also learn, but if their innate abilities are too distant from the
optima, then a lifetime of plasticity is still not enough. So learning smooths the fitness
landscape by giving some suboptimal individuals a fighting chance.

In phase II, learned optimal behaviors become innate by chance genetic events
(mutation, inversion, and crossover). This only happens to genomes that survive the
wait through many generations: those with the selective advantage incurred by learning
plus fortuitous innate proximity to the optima. The natural-born talents then have a
selective advantage over their predecessors, since they do not have to spend time and

c© 2004 Massachusetts Institute of Technology Artificial Life 10: 39–63 (2004)

K. L. Downing Development and the Baldwin Effect

resources learning. The hypothesis of eventual dominance of the natural-born talents
assumes that (a) the environment is nearly static, and (b) learning has a cost, which it
normally does [17].

Another critical precondition for phase II appears to be a strong correlation between
genotype and phenotype space [17]. Otherwise, the changes accomplished by pheno-
typic plasticity have little chance of eventually becoming encoded in the genome via
chance genetic operations, or, if they do, they may happen to random individuals as
opposed to those poised and waiting nearby in genotype space. Unfortunately, nature
promises no such correlation, particularly when the phenotype space encompasses
mental activities. The transition from genome to fully functioning brain is extremely
intricate, even in very simple animals.

In short, the developmental process that governs the transition from genome to
embryo to juvenile poses serious, possibly insurmountable, problems for the Baldwin
effect. Development converts a linear string of DNA into a three-dimensional organism
by a fascinating process, but one that severely confounds the genotype-phenotype
mapping.

However, correlations do exist between the spatial locations of (a) homeobox genes
on the chromosomes of all animals from Drosophila to humans, and (b) body parts
(such as an insect’s thoracic and abdominal segments) [30]. In fact, some homeobox
gene locations even correlate with regions of the hindbrain, which is the evolutionarily
most primitive brain region. However, each neural module consists of thousands or
millions of neurons whose heterogeneous activation patterns determine the animal’s
overt behavior. No single pattern or group of similar patterns, hence no single behavior,
maps directly to a gene. Hence, learned behaviors have no obvious possibilities for
assimilation into the genome. To illustrate the absurdity of any strong cognitive Baldwin
effect, consider the human brain, which consists of roughly 1011 neurons. Using the
gross oversimplification that these neurons have but two states (on and off) gives a
neural state space of size 2100000000000. This maps very poorly to the human genome,
which has a mere 30–40 thousand genes.

Despite this major impediment, mental Baldwinism could be rescued via an ac-
ceptable refinement: although learning makes very specific behavioral changes, there
could be corresponding genetic changes for that same general type of behavior. Thus,
while a chess player learns specific opening moves, general board formations, and
effective move sequences, these are manifest in synaptic changes to localized parts of
brain regions such as the basal ganglia. Then, the coarse genetic correlate might be
the modification of a few genes whose phenotypic consequences are slight changes
in postnatal concentrations of particular neurotransmitters and neuroreceptors across
the entire basal ganglia. Thus, the child may have innate talent for activities requiring
good sequence memory, but no immediate prowess at chess. Similarly, the words of
human language have no direct genetic correlates, but the ability to acquire language
may have genetic components [23]. In fact, Pinker and Bloom claim that the Baldwin
effect is instrumental in the emergence of both language and Chomsky’s proposed lan-
guage acquisition device [5]. Interestingly enough, simple ALife experiments reveal an
evolving predisposition toward language [21, 4].

Unlike Lamarckianism [16], which implies the biologically improbable encoding of
acquired traits directly and immediately (i.e., within the learning organism’s lifetime)
into the genome, Baldwinism remains a viable biological possibility. However, regard-
less of biological blessing or condemnation, both Lamarckianism and Baldwinism are
useful tools for evolutionary computation [11, 2, 6], since they supplement evolution
with learning to improve overall search. Furthermore, evolutionary algorithms have
increasingly exploited indirect genomic representations, which are converted to phe-
notypes by an (often complex) developmental process. These are particularly useful for

40 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

difficult search problems such as circuit design [15]. So, even if biological research even-
tually shows that development so dramatically corrupts the genotype-phenotype map-
ping as to soundly dismiss the Baldwin effect, there will remain a need to understand the
interactions between development and the Baldwin effect in artificial adaptive systems.

This article begins that investigation back at the roots of the artificial Baldwin ef-
fect: the classic experiments of Hinton and Nowlan [9]. In their work, the genotype-
phenotype mapping was 1-to-1, with no developmental process. Our work enhances
their genome with a simple developmental mechanism, in the form of a restricted Tur-
ing machine. Evolution is then free to exploit development completely, partially, or not
at all in searching for a target phenotype. The resulting system thereby combines evo-
lution, development, and learning in a very abstract framework, suitable for exploring
general principles of trilaterally adaptive systems.

2 Related Work

The evolutionary computation and ALife literature is replete with systems that combine
evolutionary algorithms (EAs) with learning. Classifier systems [10, 24] introduced ge-
netic algorithms (GAs) and bucket-brigade learning as early as the 1970s, but more than
a decade passed before other EA-learning hybrids appeared. Montana and Davis [19]
were the first to use GAs to evolve weights for artificial neural networks (ANNs). This
technique has become very popular because it offers a major speedup over standard
backpropagation on many types of problems. It is also widespread in fields such as
evolutionary robotics [22], where (a) ANNs are the dominant controller, and (b) super-
vised learning (via backpropagation) is inappropriate. Ackley and Littman [1] evolved
ANN weights for simulated organisms and became the first to observe the Baldwin
effect in an ALife context. For an extensive review of evolving ANNs, see [31].

In another direction, genetic programming (GP) [14] has been combined with rein-
forcement learning (RL) [28] in attempts to improve RL [12] and/or GP [6]. This area has
yet to be fully explored.

Also, the use of indirect-coded genomes that require developmental translation into
phenotypes is widespread in evolutionary computation. Kitano [13] evolved graph-
generating grammars for ANN topologies. Since the ANNs could then learn by back-
propagation, Kitano was the first to combine evolution, development, and learning.
Another classic is Gruau’s cellular encoding [7], which evolves GP genomes for growing
ANN topologies and determining connection weights. In truly extraordinary fashion,
Karl Sims [25] pioneered the use of ALife in computer graphics by evolving simple
graphs that governed the development of three-dimensional animat morphologies and
their ANN controllers. With the advent of off-the-shelf physical simulators, many others
have begun to follow in Sims’ footsteps.

Clearly, combinations of evolution, development, and learning have a long history in
the EA and ALife communities. But few systems combine all three adaptive mechanisms,
and those that do generally use ANNs, since (a) their graphlike structure is relatively
easy to grow from an embryonic genome, and (b) many well-established learning
algorithms can be used to update weights during training. However, on performance
tests, the most promising developmental approaches to ANN evolution lag well behind
distinctly nonbiological systems such as SANE [20] and NEAT [26].

Basically, few relevant problem domains have been best served by trilateral adapta-
tion. The more common discussions are over the relative merits of direct versus indirect
coding, with no subsequent learning, or whether to include local search as a primitive
learning method for directly coded phenotypes. Still, to fully understand intelligence
and its emergence, a trilaterally adaptive system using neuronlike structures may be
one of the few realistic alternatives.

Artificial Life Volume 10, Number 1 41

K. L. Downing Development and the Baldwin Effect

Several researchers [17, 8, 18, 21] have expressed deep concern over the corrupting
influence of development on the Baldwin effect. Although few have done trilaterally
adaptive simulations to test their hypotheses, Gruau and Whitley [8] did find a negative
effect of cellular-encoding-based development on Baldwinian evolution, as expected.
To date, no positive influences have been documented.

Finally, Stanley and Miikkulainen [27] give a comprehensive overview of artificial
embryogeny, covering a plethora of embryogenic systems and composing a useful
new biologically based classification of them. However, by virtue of its simplicity and
nonbiological nature, the developmental mechanism considered in this article has no
useful place in their classification scheme. Their discussions of the evolution and em-
bryogenesis of complex forms provide a nice parallel to the introduction of this article,
although they do not touch on the Baldwin effect. Still, their five fundamental dimen-
sions of development (cell fate, targeting, heterochrony, canalization, and complexifi-
cation) merit further consideration when looking deeper into the genotype-phenotype
mapping problem and its consequences for the Baldwin effect.

3 TRIDAP

Summarized in Figure 1, the trilaterally adaptive system (TRIDAP) uses a standard
genetic algorithm [10] with a linear bit-vector genome. Its goal is to find a particular
target string of 0’s and 1’s. Hinton and Nowlan [9] use the rough analogy between these
strings and connection patterns of nodes in a neural network. The genome encodes
a Turing-based developmental process, which runs on an initial tape, also encoded in
the genome. The final, developed tape can further improve itself through learning,
with the actual amount determined by evolution and development.

3.1 The Chromosome
Each chromosome contains four key regions: (1) ratio, (2) TM (Turing machine), (3)
intron, and (4) tape. Only the ratio region has a fixed size: 3k, which encode three
integers: r1, r2, and r3. If a chromosome has a length of N bits, and each ratio is
encoded with k bits, then N − 3k bits remain to encode the TM, intron, and tape
regions. The ratio integers determine the fraction of those N − 3k bits that are allotted
to these three remaining regions. As a simple example, if the ratio integers are (8,5,7),
then the TM gets the first 8/(8+5+7) = 40% of the N −3k bits, the introns get the middle
25%, and the tape gets the final 35%. For the examples in this article, N = 300 or 500,
and k = 5. Also, all genes use standard binary encoding.

The variable-length tape region is interpreted as a list of m-bit segments, each of
which encodes an integer between 0 and 2m − 1. These integers are partitioned into
three nearly equal groups, such that each m-bit segment encodes the integers 0, 1, and
2, with nearly equal probability (given suitably large m). On the translated tape, 0 and
1 denote simple binary values, while 2 denotes a wildcard, which is used to support the
local search or bit guessing that corresponds to learning in the Hinton-Nowlan model.

The intron region is completely ignored by the developmental and learning pro-
cesses. Its sole purpose is to separate the TM and tape regions so that they can grow or
contract relatively independently of one another. For example, the TM region can ex-
pand without taking bits away from the tape region, or both tape and TM can contract
when the intron region expands, as determined by the ratio region.

The TM region encodes transition rules as 5-tuples of the form (s, x, s∗, x∗, a). Here,
s is the current TM state and x is the tape symbol being read, while s∗ is the next state
of the TM, and x∗ is the next symbol. The fifth element, a, is the action to perform:
either overwrite x with x∗, or insert x∗ to the immediate right of x on the tape. Each
transition rule requires 2p + 2m + 1 bits, where m and p are the numbers of bits used

42 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

Figure 1. The three levels of adaptation in TRIDAP.

Artificial Life Volume 10, Number 1 43

http://www.mitpressjournals.org/action/showImage?doi=10.1162/106454604322875904&iName=master.img-000.jpg&w=389&h=503

K. L. Downing Development and the Baldwin Effect

to encode a tape symbol and a TM state, respectively; the final bit encodes the action
(overwrite or insert). For the examples in this article, m = 5 and p = 3. Hence, a TM
has 8 (2p) states, and each 5-tuple requires 17 bits.

3.2 The Developmental Process
The TRIDAP phenotype is a ternary string of length L or less. For this article, L is either
20, as in Hinton and Nowlan’s experiments, or 40.

To grow the phenotype, TRIDAP decodes the genome into a TM and an initial tape.
The TM 5-tuples are loaded into a hash table, with (s, x) as the key. If the initial tape
is empty, a 0 is appended to it. The TM always begins the developmental process in
state 0.

The TM then repeatedly runs from left to right across the tape in wraparound fashion.
At each cell, the TM uses its current state and the tape symbol, (s, x), as an index into
the hash table, which returns (s∗, x∗, a). In the absence of an entry for (s, x), the TM
simply ignores the current symbol, remains in the same state, and moves one cell to the
right. These movements, insertions, and overwrites continue until either the tape size
reaches L or max-devp-steps Turing operations are performed. Since the TM always
moves right one cell after each turn, the only variable action is whether to overwrite
the current tape symbol or insert a new symbol to its immediate right. A newly inserted
symbol is always the next one to be read.

If the initial tape already contains L cells, then, by convention, no development is
performed, even though a series of overwriting actions could conceivably change the
tape.

3.3 The Learning Process
The result of development is a string of 0’s, 1’s, and 2’s, where the 2’s denote wildcards.
The values in the positions with wildcards can change via learning; all others are fixed.

TRIDAP has a target binary string that each phenotype tape tries to learn by randomly
filling in its wildcards with 0’s and 1’s. If a phenotype has W wildcards, then one
guessing round consists of randomly filling the W wildcards and then comparing the
filled phenotype with the target.

If the filled phenotype perfectly matches the target, then learning halts and the
number of necessary guessing rounds, num-guesses, is recorded. In this case, the
number of matches, num-hits, is L. TRIDAP performs up to max-guesses rounds of
guessing before giving up. It then returns num-guesses = max-guesses and num-hits as
the number of matches in the best guessing round; num-hits < L.

Alternatively, TRIDAP can skip the guessing procedure and merely compute the
probability, pg , that the target string will be guessed within max-guesses. The calculation
is straightforward: if corresponding locations on the target and tape are mismatching
0’s and 1’s, then the probability is 0. However, if every target bit either is matched
directly or corresponds with a wildcard, then the probability is based on W , the total
number of phenotypic wildcards:

pg = 1 − (1 − 0.5W)max-guesses (1)

Here, 1 − 0.5W is the probability of failing to match on a particular guessing round.
Raising that to the max-guesses power yields the probability of failing to match on all
guessing rounds. So the complement of that is the probability of matching on at least
one of the max-guesses rounds.

44 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

3.4 The Fitness Functions
Two main fitness functions are used in the experiments reported below. The original
Hinton-Nowlan function, fHN, works as follows:

fHN =
{

0 if num-hits < L
L − 19num-guesses

max-guesses otherwise
(2)

This defines a very rugged fitness landscape in which only those phenotypes that
can learn the target receive a nonzero evaluation. This score is inversely proportional
to the duration of the guessing period, that is, the learning effort.

When the guessing probability pg replaces the full guessing procedure, a probabilistic
Hinton-Nowlan fitness fpHN is more appropriate:

fpHN = Lpg (3)

The key difference between these two fitness functions involves chance. Consider
a phenotype that is correctly committed: all of its non-wildcard symbols match the
corresponding symbols of the target pattern. If its wildcard count, W , is large, then
fpHN will give it a low, but nonzero, fitness value. However, using fHN and the full
guessing procedure, the phenotype may get lucky by guessing the target early in the
learning process, thereby garnering a high fitness value. At the other extreme, it may
never guess the correct target.

Basically, (1− pg)max-guesses is the expected number of guesses required, so fpHN is
based on the average learning result for a phenotype, while fHN leaves more to chance.
Thus, fpHN achieves a computational speedup by sacrificing the stochastic vagaries of
the learning process. Essentially, then, fHN treats each genome as an individual in a
stochastic learning situation, while fpHN treats each as a subpopulation or species by
averaging over the individual uncertainty. On the larger (40-cell) tape problems and
on batch runs, fpHN was essential for producing results in reasonable time, given our
computational constraints.

3.5 The Fitness Cases
Three general classes of target patterns are used: repetitive, semi-repetitive, and ran-
dom. These were chosen to cover two extrema and a midpoint on the scale of difficulty
for TRIDAP’s developmental algorithm: repetitive patterns are usually easily generated
by small sets of development rules, while random patterns are often their own shortest
descriptions. On the other hand, for a fixed problem length, all three pattern types are
equally difficult for non-developmental genetic algorithms.

The repetitive patterns involve adjacent copies of 1–4-bit patterns, such as 1111111...
or 01010101... or 011001100110.... Similarly, the semi-repetitive patterns involve adja-
cent chunks of b bits, where the first c bits are the same across all chunks, while the
remaining b − c bits are randomly generated in each chunk. For example, the string
1010101110111010 is semi-repetitive with b = 4, c = 3, and the repetitive segment 101.
In fully random patterns, in contrast, all bits are randomly generated.

3.6 Additional Genetic-Algorithm Details
The examples below use a population of 1,000 genomes, a mutation rate of 0.01 per
bit, and a single-point crossover rate of 0.7, with no restrictions on the locations of
the crossover points. Although standard fitness-proportionate selection was tried, it
gave less interesting results due to early convergence. Hence, a tournament selec-

Artificial Life Volume 10, Number 1 45

K. L. Downing Development and the Baldwin Effect

Table 1. Key parameters for the 20- and 40-bit test cases.

Target size Population Chromosome Max. Max. Fitness
bits devp. steps guesses function

20 1,000 300 100 1,000 fHN

40 1,000 500 100 1,000,000 fpHN

tion mechanism with a tournament size of 4 is employed, along with single-individual
elitism.

4 Blueprints versus Recipes

As discussed earlier, development confounds the Baldwin effect by greatly complicating
the genotype-phenotype mapping, so that a learned change to the phenotype becomes
nearly impossible to reverse-engineer into the genotype. So phase II of the Baldwin
effect, genetic assimilation, can suffer under developmentally dominated mappings.
Oddly enough, however, this does not preclude development from assisting a learning-
driven evolutionary process. In fact, in some of the scenarios below, development is a
necessary condition for both evolutionary progress and the Baldwin effect.

In the examples that follow, there is a clear interaction between two strategies:
blueprint and recipe. The former involves a long initial tape and very little TM de-
velopment, so the genome directly encodes the phenotype. Conversely, the recipe
strategy employs development to grow the phenotype from a very short initial tape.
Both strategies can exploit learning equally, since both can produce phenotypes with
many wildcards.

To rephrase the problem of developmental Baldwinism in these terms: a recipe
strategy has difficulty encoding learned patterns back into the recipe itself. A blueprint
strategy has no such difficulty, since the phenotype and the initial tape of the genotype
correlate so well. For blueprints, phase II of the Baldwin effect involves simply replac-
ing some wildcards with the appropriate 0’s and 1’s. This evolutionary instantiation
process can continue until the complete target pattern is encoded in the initial tape.
Learning simply buys evolutionary time for the genome, while it gradually instantiates
the wildcards. But whereas wildcards are relatively safe, wrong instantiations are fatal,
given the fitness functions above. So instantiation proceeds very slowly, with many
failed attempts going extinct.

Blueprints and recipes compete for dominance of the genome, with the test condi-
tions often brokering the tradeoffs between winner-take-all and cooperative results. A
brief tour through a series of repetitive, semi-repetitive, and random test cases, using
two different target-pattern lengths (20 and 40), reveals the spectrum of these blueprint-
recipe interactions and their influence upon the Baldwin effect. Table 1 summarizes
the key differences between the 20- and 40-bit scenarios.

5 Results

As in Hinton and Nowlan’s classic article [9], the results below are all typical runs of their
respective scenarios, unless otherwise stated. This more clearly illustrates the Baldwin
effect, particularly the often abrupt rises and falls in learning effort, than averages over
multiple runs.

In all cases, the fitness landscape is so extensive and uninformative (one sharp peak
rising from a flat plane) that evolution without learning reduces to a nearly fruitless
random search that only rarely (3 of 50 attempts, as shown in case 20-fr-e of Table 2)

46 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

Table 2. Batch TRIDAP runs for 20-cell tapes. Each case was performed 50 times, with each run halting when either
an individual with maximum fitness (of 20) arose or 50 generations had passed. A recipe solution is defined as one
involving five or more developmental steps.

Recipes Blueprints

Case Target Count Generation Steps Count Generation
20-2f 0101 . . . 42 15.0 26.8 8 21.1
20-fr 0 � 0 � . . . 3 28.3 57.3 27 27.9
20-4f 0011 . . . 1 17.0 15.0 26 29.8
20-r � � � . . . 1 25.0 8.0 30 29.0

20-fr-e 0 � 0 � . . . 0 — — 3 18.3

finds the target pattern in the 20-cell scenarios. The 40-cell scenarios are nearly impos-
sible without learning, and no solutions (or even precursors to solutions) were found
in the runs below. Conversely, with learning, the 20-cell scenarios often yield to ei-
ther blueprints, recipes, or a cooperative combination within a few dozen generations.
Hence, the general claim of the Baldwin effect—learning speeds evolution—is clearly
evident in the examples below. The strength of presence of phases I and II varies
across the scenarios, but the general trend is quite convincingly Baldwinian.

5.1 20-Cell Target Patterns
5.1.1 Repetitive Targets
First, consider a simple repetitive target pattern with chunk size 1—that is, a string of
all 0’s or all 1’s. This is so easily generated by a TM running on a blank initial tape that
neither blueprinting nor learning enters the picture. However, it often takes a 1000-
individual TRIDAP population a few generations to find the combination of a blank (or
nearly blank) initial tape and a TM with rules such as

s0, 0 ⇒ s1, 1, Overwrite

s1, 1 ⇒ s1, 1, Insert

These convert the default seed tape {0} into a string of 1’s by first replacing the 0 with
a 1 and moving into state 1. Moving right then moves the TM read head back to the
start of the tape, which now consists of {1}. The second rule then tells the TM to insert
a new 1 to the right of the current one and to remain in state 1. The read head then
moves to the newly inserted 1 and performs rule 2 again, adding a third 1, moving to
it, and so on. The recipe is even simpler if the initial tape is already {1}.

Generating 2-bit repetitive patterns, such as 10101010 . . ., is equally easy, with a
typical developmental strategy containing the following core rules:

s0, 0 ⇒ s1, 1, Insert

s1, 1 ⇒ s0, 0, Insert

Adding more complexity, a 4-bit pattern such as 00110011 . . . requires a TM that can
count to 2 in two ways (once for 0’s and once for 1’s). Finding such a recipe is nontrivial
for TRIDAP, so a blueprint strategy normally wins the race (see case 20-4f in Table 2).
These blueprints follow the typical evolutionary sequences described by Hinton and
Nowlan: the best individuals of early generations contain many wildcards, and as the
generations pass, these get filled by the correct binary values. Figure 2 shows the
gradually improving phenotypes from a typical run.

Artificial Life Volume 10, Number 1 47

K. L. Downing Development and the Baldwin Effect

�0 � �00 � �001 � �011 � � � 1

00 � 100 � �001 � �011 � � � 1

00 � 1001 � 001 � �011 � � � 1

00 � 1001 � �011 � 011 � 011

00 � 100110011 � 011 � 011

0011001 � 0011 � 0110011

0011001 � 001100110011

00110011001100110011

Figure 2. A sequence of best-of-generation phenotypes from ascending, but non-contiguous generations for the
4-bit repetitive target 00110011 Wildcards are denoted by �.

Figure 3. Fitness progression for the 20-bit repetitive target pattern 00110011

This same run reveals a classic Baldwin effect, as shown in Figures 3 and 4. Fitness
gradually increases, but with sporadic declines, since the early individuals employ
excessive learning with its inherent stochasticity. For example, a phenotype with eight
wildcards may correctly guess the target pattern in one generation, but an identical
individual may fail to guess it in the next (or same) generation. As the blueprints
evolve fewer wildcards and more correct bits, the good solutions are guaranteed to
find the target, thus achieving a fitness value near the maximum of 20.

Figure 4 shows that learning, measured in terms of the population average of phe-
notypic wildcards, gradually increases, signifying phase I of the Baldwin effect. Phase
II is then evident in the decline of learning as correct solutions become hardwired into
the initial tapes of the genomes. Notice that development, quantified by the population
average of TM actions, vanishes after 25 generations. Finally, the amount of genome
used to encode the TM and initial tape rises slightly as development disappears.

48 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

Figure 4. Evolving adaptive effort for the 20-bit repetitive target pattern 00110011

In adaptive-effort graphs such as Figure 4, the fractions are:

1. TM+tape space: The sum of the number of TM rules and the number of symbols on
the initial tape divided by the length of the target pattern.

2. Development: The number of developmental steps (TM actions) divided by the
maximum allowable number of steps, 100.

3. Learning: The number of wildcards divided by the length of the target pattern.

5.1.2 Semi-repetitive Targets
In general, as repetitive patterns involve longer subpatterns, recipes get harder to evolve
and blueprinting becomes the dominant strategy. Semi-repetitive patterns with short
subpatterns offer a middle ground, where blueprints and recipes square off on approxi-
mately equal footing. Some runs are fully dominated by one or the other strategy, while
others alternate highest-fitness strategy types from generation to generation. However,
as shown in the 20-fr cases of Table 2, blueprints eventually win out in the vast majority
of runs.

It is important to note that a solution in Table 2 is classified as a recipe if it involves
five or more developmental steps, whereas a blueprint solution has four or less such
steps. In most cases, blueprints have no developmental steps. Hence, many devel-
opmental solutions involve sizable initial genomes that hardwire many of the random
bits; development then adds in semi-repetitive 0’s, for example, to achieve the target
match.

The sequence in Figure 5 of best-of-generation individuals illustrates a tight com-
petition over the target pattern 01000101010001010101, which is semi-repetitive with
a subpattern of 0X , where X is a random number. Here, a simple recipe generates
a 10-wildcard sequence that occasionally wins in a generation due to lucky guessing,
that is, the target is found after only a few guessing rounds.

Artificial Life Volume 10, Number 1 49

K. L. Downing Development and the Baldwin Effect

�100 � 1 � � � � � 0010 � 0 � 0�

∅
⇒ 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 �

0 � 00 � 1 � 10 � 00010 � � � 01

0 � 00 � 1 � �0 � 000101 � � � �

∅
⇒ 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 �

0 � 0001 � 101000101 � �0�

01000 � � � 01000101 � � � �

01000101010001010101

Figure 5. A sequence of best-of-generation phenotypes from ascending, but non-contiguous generations for the two-
bit semi-repetitive target 01000101010001010101. Wildcards are represented by �. Arrows denote a developmental
process from the initial tape (left) to phenotypic tape (right); phenotypes without arrows are pure blueprints.

Figure 6. Fitness progression for a 20-bit semi-repetitive target pattern.

Figures 6 and 7 again reveal a classic Baldwin effect, but in contrast to the previous
example, both blueprints and recipes remain viable until around generation 50, when
development briefly rises but then suffers a sharp decline. This is also evident in the
size of the active genotype, which dips down during development’s short success but
then returns to a high value once blueprints finally gain control. In the final 50 gener-
ations, learning decreases as the dominating blueprints assimilate more correct bits.

5.1.3 Random Targets
For the sake of brevity, no random 20-bit scenarios are shown, but, as illustrated by case
20-r in Table 2, these are almost always dominated by blueprints, as expected, since (a)
compact rule sets are normally powerless to generate particular unstructured patterns
on their own, and (b) the search space is small enough that unaided blueprinting can
find solutions. With development largely out of the picture, the random-pattern cases
show a classic Baldwin effect just as in Hinton and Nowlan’s experiments.

50 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

Figure 7. Evolving adaptive effort for a 20-bit semi-repetitive target pattern.

5.2 20-Cell Batch Runs
To add quantitative backing to the more qualitative descriptions above, a series of batch
runs were performed to illustrate the interactions between recipes and blueprints. Table
2 summarizes the results for the batch tests on 20-cell patterns. The case names indicate
the target length, the pattern, and the adaptive methods used. For example, 20-2f is
a case involving a 20-cell target with a repeating pattern of 2 fixed (f) bits, while 20-
fr involves one fixed and one random (r) bit in each 2-bit sequence. The first four
cases involve the whole of TRIDAPs adaptive repertoire—evolution, development, and
learning—while the fifth case, 20-fr-e, involves only evolution (e); it is therefore just a
standard genetic algorithm evolving strings of 20 binary alleles.

Each case involves 50 randomly seeded runs, where each run halts after 50 gener-
ations, or earlier if an individual achieves the maximum fitness of 20. To make the
batch runs tractable, the probabilistic fitness function, fpHN, was used for all cases.
The 50 runs are sorted into three groups: (a) those in which no optimal individuals
were found after 50 generations, (b) those in which an optimal individual was found
and its genome included a significant amount of development, defined here as five or
more developmental steps (counting the number of developmental rules is misleading,
since many, sometimes all, are never used), and (c) runs in which the first optimal
individual is primarily a blueprint (less than five developmental steps). Only the latter
two categories are included in Table 2, where the number of runs in that category is
listed, along with the average generation at which the optimal individual arose. For the
recipe-dominated runs, the average number of developmental steps of the first optimal
individual is also listed.

The results clearly indicate the dominance of recipes on the simple 2-bit repetitive
target, while blueprints take over as the patterns get more complex. However, these
results fail to capture the competition between recipes and blueprints. In a separate
set of 50-run batch tests of the first four cases, the runs were halted as soon as an
individual reached a fitness value of 10 (i.e., half the maximum). In those cases (not
all results are shown), recipes were the halfway winners in 13 of 50 20-fr runs. This

Artificial Life Volume 10, Number 1 51

K. L. Downing Development and the Baldwin Effect

0 � 1 � 011 −→ 0 �1 � 011

0 � 1 � 011 −→ 0 �1 � 011

∅ −→ 00 � �00 � �00 � �00 � �00 � �00 � �00 � �00 � �00 � �00 � �

∅ −→ 00110011001100110011001100110011001100 � �

Figure 8. A sequence of best-of-generation phenotypes for the 40-cell repetitive target 00110011

matches the expectation that blueprints and recipes compete on relatively even footing
on 2-bit semi-repetitive patterns, at least initially. Recipes also were halfway winners
in four of the 20-4f cases and five of the 20-r cases. So, clearly, the two strategies do
interact before blueprints take over. In the next section, we find that this dominance
does not scale up.

Finally, the standard genetic algorithm, case 20-fr-e, finds the needle in the haystack
three times out of 50 attempts. This is somewhat expected given the evolutionary
parameters: 50 generations and 1,000 individuals gives a (very optimistic) maximum
of 50,000 individuals tested per run, in a search space of 1 million points. The poor
performance of pure evolution, compared with the successes of the other four cases,
is the standard illustration that the Baldwin effect can indeed speed the course of
evolution, particularly in rugged search spaces.

5.3 40-Cell Target Patterns
For these experiments, the chromosome length is increased from 300 bits (for the 20-cell
targets) to 500 bits, giving ample space for a 40-cell initial tape on the genome and/or
more TM rules. Also, the maximum number of learning trials (i.e., guesses) increases
from 1,000 to 1,000,000. However, the population size remains the same, 1,000, as does
the maximum number of developmental steps. The latter was not scaled up, because
(a) 100 is sufficient for both 20- and 40-cell cases, and (b) the larger structured targets
provide a major advantage to recipes over blueprints, and we did not want to give
development any additional help. Due to the larger search space and the 1 million
learning trials, the probabilistic fitness function, fpHN, was employed to make these
tests computationally feasible.

In general, the search space has increased one-million-fold from the 20-cell case.
Under these conditions, both blueprinting and development clearly have an uphill bat-
tle, even with learning and its landscape-smoothing effects. Note that to scale properly
from the 20-cell to the 40-cell case, one would need a population of one billion, along
with one billion learning trials. Failing to scale properly clearly diminishes the odds of
success for semi-repetitive and random scenarios.

5.3.1 Repetitive Targets
Of course, for 1-bit and 2-bit repetitive sequences, development quickly finds perfect
solutions. However, a 4-bit repeater such as 00110011 . . . poses a tougher challenge.
The typical run needs a few dozen generations to converge to a solution such as

∅ −→ 001 � 001 � 001 � 001 � 001 � 001 � 001 � 001 � 001 � 001� (4)

Despite the 10 wildcards, this is essentially perfect, since the probability of guessing
the correct 10 bits in the one million learning trials approaches 1.0.

Occasionally, the genetic assimilation is nearly complete, as in the run of Figure 8.
This also gives a dramatic Baldwin effect, as depicted in Figures 9 and 10.

52 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

Figure 9. Fitness progression for the 40-cell repetitive target 00110011 The natural logarithm of fitness is plotted
to clearly show the full range of evolutionary progress. The minimum-fitness line vanishes, since it is all zeros.

Figure 10. Adaptivity evolution for the 40-cell repetitive target 00110011

Artificial Life Volume 10, Number 1 53

K. L. Downing Development and the Baldwin Effect

0� −→ 0 �

0010101 −→ 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 010101

0010101 −→ 010 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 010101

∅ −→ 01010 � 01010 � 0 � 01010 � 0 � 01010 � 01010 � 0 � 0 � 0�

Figure 11. A sequence of best-of-generation phenotypes for the 40-cell semi-repetitive target
0101010101000001010001010100010101010101.

The final, nearly perfect solution in Figure 8 is generated by the following six devel-
opmental rules:

s0, 0 ⇒ s2, 2, Insert

s2, 2 ⇒ s3, 2, Insert

s3, 0 ⇒ s1, 0, Insert

s1, 0 ⇒ s2, 1, Insert

s2, 1 ⇒ s1, 1, Insert

s1, 1 ⇒ s3, 0, Insert

5.3.2 Semi-repetitive Targets
Moving to a semi-repetitive pattern 0X0X . . . , where X is a random bit, development
also manages to find rather complex solutions by first generating highly plastic phe-
notypes (i.e., many wildcards) and gradually hardwiring more bits. For the scenario
summarized in Figure 11, development is the dominant strategy. Blueprinting plays
an intermediate role but eventually gives way to an interesting recipe with only four
effective rules:

s0, 0 ⇒ s1, 1, Insert

s1, 1 ⇒ s1, 0, Insert

s1, 0 ⇒ s2, 2, Insert

s2, 1 ⇒ s0, 0, Insert

In analyzing these, note that when no TM rule exists for a state-symbol pair, such as
(s2, 2) in the above situation, the read head simply moves right while maintaining the
same state. Also, to generate the final phenotype of Figure 11, the read head wraps
around the growing tape several times.

Figures 12 and 13 again show the Baldwin effect. In Figure 12, the improvements
in maximum fitness after generation 50 are such small fractions that the increases are
not detectable on the fitness graph. The final phenotype of Figure 11 does not arise
until generation 319. In Figure 13, note the dramatic early spike in learning near
generation 30 and then the gradual decline to under 20%. Other runs on these 40-
cell semi-repetitive patterns show a mixed strategy, but only very rarely does a pure
blueprint emerge. In all cases, the Baldwin effect is clearly evident, with learning
playing a significant role early in evolution, where 50–70% of the bits are wildcards,
and then gradually receding to 20–30%. With one million learning trials, percentages
below 25 (i.e., 10 bits) give no significant fitness advantage under the probabilistic
Hinton-Nowlan fitness function fpHN.

54 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

Figure 12. Evolutionary progression for the 40-cell semi-repetitive target
0101010101000001010001010100010101010101.

Figure 13. Adaptivity evolution for the 40-cell semi-repetitive target
0101010101000001010001010100010101010101.

Artificial Life Volume 10, Number 1 55

K. L. Downing Development and the Baldwin Effect

�1 � � � 0 −→ 11 � 0

� � 001� −→ 1 � 001 �

�0 � 010 −→ �10 �010

�100 � 0 −→ 1100 �10

00 � 11 � 000 � 0 −→ 11 �11 � 000 � 0

1 � � � 0 � 0 � 1 � 00010 −→ 1 �0 � 0 � 1 � 00010

�00001 � �00010 −→ � 00001 � �00010

11 � 0011 � 00010 −→ 11 �0011 � 00010

�000011000010 −→ � 000011000010

�000011000010 −→ �1 � 0000011000010

�000011000010 −→ �10010 �0011000010

�000011000010 −→ �10010 � 00011000010

11001001101 � 000011000010 −→ 11001001101 � � � � � � � � � � � � � � � � � 000011000010

11001001101 � 000011000010 −→ 11001001101 � � � � � � � � � � � � � � � �0000011000010

Figure 14. A sequence of best-of-generation phenotypes from ascending, but non-contiguous, generations for the 40-
cell random target 1100100110100010111011010100000011000010. Wildcards are represented by �, and arrows
denote a developmental process from the initial TM tape on the left to the phenotypic tape on the right.

5.3.3 Random Targets
Finally, consider a random 40-cell pattern:

1100100110100010111011010100000011000010 (5)

Intuitively, neither blueprinting nor development should have a chance of finding this
pattern. However, the combination can often get close. As shown in Figure 14, the
early solutions convert a simple initial tape into a large wildcard string. Although
far from the target, these have a nonzero probability of learning the target, so fpHN

gives them a small positive fitness value—just enough to bias evolution in the proper
direction. Then, over the course of a few hundred generations, the initial tape fills up
with non-wildcard cells while maintaining at least one wildcard, which serves as the
seed for the TM to grow the central wildcard region. Figures 15 and 16 show another
classic Baldwinian progression as learning initially aids search but then gradually abates
as more bits become assimilated. The probabilistic fitness function fpHN gives nearly
perfect fitness to a correctly committed individual with 16 wildcards or less (since there
are one million learning trials), so progress to perfect genetic assimilation is impeded
by the mastery effect.

This same general evolutionary sequence occurs frequently in other 40-cell random
tests, although the blueprint often fills from just one side or the other, and not both
simultaneously. Still, the number of wildcards rarely goes below 18. Using alternative
fitness functions that penalize for the number of phenotypic wildcards provides little
help and often hinders early evolution.

5.4 40-Cell Batch Runs
The batch cases of Table 2 were repeated with 40-cell tapes; the results appear in
Table 3. Again, 50 runs of each case were performed, but each run lasted a maximum
of 100 generations (instead of 50). Also, runs were halted whenever an individual with
fitness 39 arose, since perfect individuals (fitness 40) were nearly impossible to find for
all cases other than 40-2f and 40-4f. A fitness of 39.0 or higher implies a phenotype

56 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

Figure 15. Fitness progression for the 40-cell random target pattern. The natural logarithm of fitness is plotted to
clearly show the full range of evolutionary progress. The minimum-fitness line has disappeared, since it is all zeros.

Figure 16. Adaptivity evolution for the 40-cell random target pattern.

Artificial Life Volume 10, Number 1 57

K. L. Downing Development and the Baldwin Effect

Table 3. Batch TRIDAP runs for 40-cell tapes. Each case was performed 50 times, with each run halting when either
an individual with nearly maximum fitness (of 39) arose or 100 generations had passed. A recipe solution is defined
as one involving 10 or more developmental steps.

Recipes Blueprints

Case Target Count Generation Steps Count Generation
40-2f 0101 . . . 50 13.0 43.3 0 —
40-fr 0 � 0 � . . . 46 38.6 41.8 0 —
40-4f 0011 . . . 41 49.8 41.5 0 —
40-r � � � . . . 0 — — 0 —

40-fr-e 0 � 0 � . . . 0 — — 0 —
40-fr-el 0 � 0 � . . . 0 — — 0 —

having at least 22 correct bits, with the remaining 18 or less being wildcards. Given
the condition of one million learning guesses and fpHN, such a phenotype is nearly
optimal.

Impressively, developmental strategies find nearly optimal strategies within 100 gen-
erations in 46 of the 50 40-fr runs, and 41 of the 40-4f runs. However, note that no
near-optimal recipes are found for the 40-r case. To further investigate this failure, an
additional set of 25 40-r runs were performed, but this time over 300 generations (in-
stead of 100). Although only one of these runs achieves a fitness of 39, 22 of the 25 runs
show the distinct scaffolding effect of development in combination with blueprinting.
That is, the genomes involved initial tapes of length 5–30 bits, which then were filled
out by simple patterns, such as � � � . . . , during development. In the remaining three
runs, the developmental filling was more distributed, and included expanding certain
wildcards (dependent upon their context) into wildcard pairs or triples.

It is not that surprising that no pure blueprint winners were found in any of the
runs. Even with developmental assistance during the early generations, it is extremely
difficult to hardwire all 40 bits to the proper values. On the other hand, it is important to
remember that all semi-repetitive and random solutions involve a cooperative strategy
of developmental growth and (often considerable) hardwiring via the initial tape.

In comparing Tables 2 and 3, the 4-bit repetitive and 2-bit semi-repetitive cases
(20/40-4f and 20/40-fr) are particularly interesting. In the 40-bit cases, note that good
recipes are found, on average, in 38.6 and 49.8 generations. Since the 20-bit patterns
were run for only 50 generations, it seems reasonable that development probably found
many good solutions in the 20-4f and 20-fr runs as well. However, recipes simply lost in
competition with blueprints. On the larger problem, the competition is greatly reduced,
if not absent entirely.

To further illustrate TRIDAP’s capabilities on the 40-cell tape, a series of 50 tests of
100 generations each, with population size of 1000, was run using the 8-bit repetitive
pattern 10100011 In all, five runs produced an individual with fitness of 39 or
better. Figure 17 shows four of the winning strategies; the final strategy was found in
two different runs.

The final two cases in Table 3 involve a standard genetic algorithm. In case 40-fr-e,
the GA attempts to directly evolve a 40-bit binary pattern. Complete failure is expected,
given the immense size of the search space. To illustrate the nearly insurmountable
nature of the task, even with learning but without development, a sixth case, 40-fp-el,
was run. In this, TRIDAP evolves three-symbol tapes, as usual, but no development is
permitted. Also, a run halts whenever an individual achieves a nonzero fitness value.
So TRIDAP searches for an individual in which all bits are either correct matches to the
target or wildcards, but without the help of development. As shown, 50 runs of 1,000

58 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

111 −→ 101 � �01 � �01 � �01 � �01 � �01 � �01 � �01 � �01 � �011

�1101 � 0 � �11010001110100011 −→ � � � � � � � � � � � � � � �1101 � 0 � �11010001110100011

1010� −→ 1010 � 01 � �01 � �01 � �01 � �01 � �01 � �01 � �01 � �01 �

1011 −→ 101 � �01 � �01 � �01 � �01 � �01 � �01 � �01 � �01 � �011

Figure 17. Four different strategies found by TRIDAP that earned a fitness of 39 or better on the 40-cell 8-bit
repetitive target 10100011

individuals over 100 generations produce nothing. Development is obviously crucial
for the 40-bit scenarios.

6 Discussion

The previous examples illustrate both the competitive and cooperative interactions
between blueprints and recipes during the evolutionary search process. While simple
repetitive patterns are more easily found by developmental schemes, a small increase
in subpattern complexity opens the door for blueprinting. Note that within a particular
size category (e.g., 20 or 40 cells) all patterns are equally easy or difficult to generate via
blueprinting. So as subpattern complexity increases in repetitive targets, blueprinting
takes over only because development has greater difficulty designing string generators.
However, as the comparison between cases 20-4f and 40-4f indicate, development is
quite capable of generating the more complex patterns; it is merely beaten by pure
blueprinting on the smaller 20-bit problems.

Perhaps the most interesting results are those of the random 40-cell patterns, where
neither strategy has any clear competitive advantages. However, development gives
evolution a small, but very significant, start, and cooperation with blueprinting then
finds good results, with respect to the fitness function and the large number of learning
trials.

Basically, development provides scaffolding for the progressive expansion of a
blueprint. Without these simple repetitive recipes, evolution simply cannot guess
enough correct bits. In this needle-in-the-haystack landscape, nothing encourages a
blueprint strategy to add more wildcards, since, with extremely high probability, all
pure blueprints will receive zero fitness. Blueprinting has the ominous task of design-
ing a 40-cell pattern with either correct bits or wildcards in each cell, but it gets no
partial information that wildcards are useful until one correctly committed individual
arises. The probability of producing such an individual by randomly choosing each bit
is

(
2

3

)40

≈ 0.00000006 (6)

Thus, on average, a genetic algorithm with 1,000 individuals would need tens of thou-
sands of generations to find a pure blueprint with nonzero fitness. This is the same
small, but vital, hint that development can provide almost immediately.

It is critical to note that Hinton and Nowlan used a biased genotype generator that
chose wildcards with 50% probability. This skews the above odds to a much more
blueprint-friendly value:

(
3

4

)40

≈ 0.00001 (7)

Artificial Life Volume 10, Number 1 59

K. L. Downing Development and the Baldwin Effect

However, it is difficult to justify any general hardwired bias toward learning, especially
given the (often extreme) costs of plasticity. Artificial evolution should be unfettered
in tuning the balance between innate and acquired skills.

As for the computational issues involved in the decision to use development and/or
learning with an evolutionary algorithm (EA), this work provides no conclusive answers,
since (a) the problem domain is so abstract, and (b) the learning and development algo-
rithms are so simple. Although there were no significant run-time differences between
the TRIDAP and pure-GA runs described above, speed comparisons have little gen-
eral utility in this context, since TRIDAP’s learning is essentially free in comparison
with sophisticated learning algorithms or even general local-search methods: it is only
done implicitly by the probabilistic fitness function, fpHN. Similarly, the Turing-machine
developmental mechanism is trivial compared to the more common developmental al-
gorithms used with EAs [27]. Still, it is worth noting that the pure GA, and even the GA
with learning but not development, was hopelessly lost in these difficult search spaces.
There is little doubt that the combination of learning and development can benefit EAs
in certain domains.

But what of our original skepticism toward development and the Baldwin effect?
Have the simple abstract models above overturned our deepest suspicions? Unfortu-
nately, no. Essentially, our results do nothing to dispute the claim that learned traits
are extremely difficult to reverse-engineer into a recipe-type genome. But then, it
would require quite a leap of faith to believe that any fixed, largely deterministic
generative process could map all m-bit genomes into all n-bit phenotypes (where
n
 m).

However, this implies neither that (a) development prevents the Baldwin effect, nor
that (b) recipes cannot compete with blueprints in difficult fitness landscapes where
the Baldwin effect is often critical to search success, nor that (c) recipes cannot coop-
erate with blueprints to enhance Baldwinian search. Also, note that the Baldwin effect
does not require complete genetic assimilation in phase II. Ideally, only the traits that
correspond to static elements of the environment should become fixed, while those
that are involved with dynamic aspects will remain plastic. Thus, many acquired traits
will not and should not map to unique genes, but only to genes that facilitate one or
another form of plasticity.

Although based on a simple model, the example scenarios above do show various
relationships between development and Baldwinism in tough, needle-in-a-haystack
search spaces. First, when the target phenotypes are highly structured, development
can short-circuit the Baldwin effect by simply generating the proper phenotypes with-
out involving learning at all. This effect is largely independent of the target length.
Conversely, blueprints will, on average, show a similar Baldwin effect on all patterns,
structured or random, but scaling to larger targets may block the effect completely,
since the advantages of learning are never discovered in phase I.

Second, when the target phenotypes are partially structured or fully structured but
with complex subpatterns, development often competes with blueprinting. It is con-
ceivable, although not proven in our studies, that this competition puts added selection
pressure on blueprints to hardwire their bits as quickly as possible, thus accelerating
phase II. In other cases, development creates a structured plastic genome that gets
close enough to fend off blueprint challengers. Here, phase I of the Baldwin effect
begins abruptly but never gives way to phase II, since (a) evolution cannot invent com-
plex enough generators, and (b) blueprinting capabilities largely disappear from the
population.

Finally, when development and blueprinting cooperate, recipes often dominate in
the earlier generations by laying out patterns of plasticity that gradually assimilate more
bits as blueprinting (and thus longer initial tapes) enter the picture. This facilitates a

60 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

complete Baldwin effect in domains that are either too large for blueprinting alone or
too intricate for development alone.

Since living organisms are complex in terms of both component cardinality and intri-
cacy, it seems fair to generalize from this third situation and speculate that development
in the biological world could indeed enhance the Baldwin effect via a cooperative ar-
rangement between genes that control general wide-scale properties of embryogenesis
and those that have a more direct link to spatially localized phenotypic traits. In evo-
lutionary computation, this cooperation might also be exploitable in problem domains
where (a) solutions are complex but house intermittent structure, and (b) a hybrid
recipe-blueprint genome is feasible, with evolution governing the relative contribu-
tions.

7 Conclusion

As seminal works often do, Hinton and Nowlan’s classic article [9] creates plenty of heat
to complement its light. One poignant source of controversy involves development and
its potential incorporation within their framework:

We have focused on the interaction between evolution and learning, but the
same combinatorial argument can be applied to the interaction between
evolution and development.... There is a selective pressure for genes which
facilitate the development of certain useful characteristics in response to the
environment. In the limit, the developmental process becomes canalized: The
same characteristic will tend to develop regardless of the environmental factors
that originally controlled. Environmental control of the process is supplanted by
internal genetic control. [9, p. 500]

Granted, learning and development both involve adaptations to the environment (as
development is also a flexible process governed by both genes and exogeneous physi-
cal and chemical factors). Hence, both map nicely to the abstract framework of Hinton
and Nowlan’s model. However, the interchangeable or parallel role of these processes
must not overshadow their strongly serial nature: the brunt of development (i.e., ev-
erything except the final growth-rejuvenation stage) occurs prior to learning. For the
most part, the brain needs to be assembled before it can begin learning. This serialism
more clearly illustrates the gauntlet of transformations from gene to trait and the havoc
this plays with the genotype-phenotype mapping, and hence upon the potential for
canalization (i.e., phase II of the Baldwin effect).

Clearly, developmental Baldwinism is not simply an alternative instantiation of learn-
ing Baldwinism. Development exacerbates the whole problem, as also expressed by
Mitchell and Belew [18]:

In Hinton and Nowlan’s model, the specification of a genetic trait and the
guessing of it by a cognitive phenotype are directly interchangeable. This
obviates the need for, indeed the possibility of, the complex biological
processes of development by which genotype is transformed into phenotype.
The entire model may well, therefore, turn out to be somewhat irrelevant to the
real relation between learning at the individual level and evolution at the
species level. [18, p. 445]

Although irrelevant seems somewhat harsh, the original model clearly abstracts away
an essential natural process. However, it does appear to capture the basic essence of

Artificial Life Volume 10, Number 1 61

K. L. Downing Development and the Baldwin Effect

the Baldwin effect and is worthy of further expansion and investigation. Our extension
allows very abstract notions of development and learning to serially interact, with the
strength of each contribution controlled by evolution. The results do not solve any
mysteries as to the indirect transfer of phenotypic to genotypic change, backward across
a complex developmental process. But they do illustrate several roles that development
can play in Baldwinian evolution, both inhibiting and enhancing.

The natural world is so much more complex than our models that one can often
doubt the utility of this whole endeavor. However, as every student of physics 101
knows, we would flounder aimlessly without science’s friendly abstractions. Nowhere
is this more true than in studies of the Baldwin effect. Consider the trail from DNA to
blastula to gastrula to neural tube to cerebrum to behavior to synaptic modification and
learning...and then back again! Detailed coherent models of this entire sequence are
far from realizable, although the pieces are falling together at an ever-increasing rate.
Furthermore, lab or field studies of evolving and learning organisms are extremely
demanding, since organisms with significant learning capacities tend to have longer
life spans and older maturation ages. So although the results of ALife simulations
cannot undeniably confirm or refute Baldwin’s hypothesis, they offer the only realistic
hope, at least in the short term, of making serious empirical progress on an issue
that has not advanced beyond the stage of plausible phenomena for over a century.
Like developmental recipes on long target strings, ALife could provide the essential
scaffolding for this search.

References
1. Ackley, D. H., & Littman, M. L. (1992). Interactions between learning and evolution. in

C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen (Eds.), Artificial Life II
(pp. 487–509). Reading, MA: Addison-Wesley.

2. Bala, J., DeJong, K., Huang, J., Vafaie, H., & Wechsler, H. (1996) Using learning to facilitate
the evolution of features for recognizing visual concepts. Evolutionary Computation, 4,
297–311.

3. Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30, 441–451.

4. Cangelosi, A. (1999). Modeling the evolution of communication: From stimulus
associations to grounded symbolic associations. In J. N. D. Floreano and F. Mondada
(Eds.), ECAL99 (pp. 654–663). Berlin: Springer-Verlag.

5. Chomsky, N. (1998). On language: Chomsky’s classic works ‘Language and responsibility’
and ‘Reflections on language’ in one volume. New York: New Press.

6. Downing, K. L. (2001). Reinforced genetic programming. Genetic Programming and
Evolvable Machines, 2, 259–288.

7. Gruau, F. (1994). Genetic micro programming of neural networks. In P. J. Angeline and
K. E. Kinnear, Jr. (Eds.) Advances in Genetic Programming (chapter 24, pp. 495–518).
Cambridge, MA: MIT Press.

8. Gruau, F., & Whitley, D. (1993). Adding learning to the cellular development of neural
networks. Evolutionary Computation, 1, 213–233.

9. Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems,
1, 495–502.

10. Holland, J. H. (1992). Adaptation in natural and artificial systems (2nd ed.). Cambridge,
MA: MIT Press.

11. Houck, C. R., Joines, J. A., Kay, M. G., & Wilson, J. R. (1997). Empirical investigation of the
benefits of partial Lamarckianism. Evolutionary Computation, 5, 31–60.

12. Iba, H. (1998). Multi-agent reinforcement learning with genetic programming. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg,

62 Artificial Life Volume 10, Number 1

K. L. Downing Development and the Baldwin Effect

H. Iba, & R. Riolo (Eds.), Genetic Programming 1998: Proceedings of the Third Annual
Conference (pp. 167–172). San Francisco: Morgan Kaufmann.

13. Kitano, H. (1990). Designing neural networks using genetic algorithms with graph
generation system, Complex Systems, 4, 461–476.

14. Koza, J. R. (1992). Genetic programming: On the programming of computers by natural
selection. Cambridge, MA: MIT Press.

15. Koza, J. R., Andre, D., Bennett, F. H., III, & Keane, M. (1999). Genetic programming 3:
Darwinian invention and problem solving. San Francisco: Morgan Kaufman.

16. Lamarck, J. B. (1914). Of the influence of the environment on the activities and habits of
animals, and the influence of the activities and habits of these living bodies in modifying
their organization and structure. In Zoological Philosophy (pp. 106–127). Translated by M.
Elliott. London: Macmillan.

17. Mayley, G. (1996). Landscapes, learning costs and genetic assimilation: Modeling the
evolution of motivation. Evolutionary Computation, 4(3), 213–234.

18. Mitchell, M., & Belew, R. (1996). Preface to Chapter 25. In R. Belew & M. Mitchell (Eds.),
Adaptive individuals in evolving populations: Models and algorithms (pp. 443–445).
Reading, MA: Addison-Wesley.

19. Montana, D. J., & Davis, L. D. (1989). Training feedforward networks using genetic
algorithms. In Proceedings the Eleventh International Joint Conference on Artificial
Intelligence (pp. 762–767).

20. Moriarty, D. E., & Miikkulainen, R. (1997). Forming neural networks through efficient and
adaptive coevolution. Evolutionary Computation, 5, 373–399.

21. Munroe, S., & Cangelosi, A. (2002). Learning and the evolution of language: The role of
cultural variation and learning costs in the Baldwin effect. Artificial Life, 8, 311–339.

22. Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and
technology of self-organizing machines. Cambridge, MA: MIT Press.

23. Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and
Brain Sciences, 13, 707–784.

24. Riolo, R. L. (1991). Lookahead planning and latent learning in a classifier system. In J.-A.
Meyer & S. W. Wilson (Eds.), Proceedings of the First International Conference on
Simulation of Adaptive Behavior: From animals to animats (pp. 316–326). Cambridge, MA:
MIT Press.

25. Sims, K. (1994). Evolving 3D morphology and behavior by competition. In R. Brooks &
P. Maes (Eds.), Artificial Life IV (pp. 28–39). Cambridge, MA: MIT Press.

26. Stanley, K., & Miikkulainen, R. (2002). Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10, 99–127.

27. Stanley, K., & Miikkulainen, R. (2003). A taxonomy for artificial embryogeny. Artificial Life,
9, 93–130.

28. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

29. Turney, P., Whitley, L. D., & Anderson, R. W. (1997). Introduction to the special issue:
Evolution, learning, and instinct: 100 years of the Baldwin effect. Evolutionary
Computation, 4, iv–viii.

30. Wolpert, L. (2002). Principles of development. New York: Oxford University Press.

31. Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87, 1423–1447.

Artificial Life Volume 10, Number 1 63

This article has been cited by:

1. Ingo Paenke, Tadeusz J. Kawecki, Bernhard Sendhoff. 2009. The Influence of Learning on Evolution: A Mathematical
FrameworkThe Influence of Learning on Evolution: A Mathematical Framework. Artificial Life 15:2, 227-245. [Abstract] [PDF]
[PDF Plus]

2. Reiji Suzuki, Takaya Arita. 2007. The Dynamic Changes in Roles of Learning through the Baldwin EffectThe Dynamic Changes
in Roles of Learning through the Baldwin Effect. Artificial Life 13:1, 31-43. [Abstract] [PDF] [PDF Plus]

http://dx.doi.org/10.1162/artl.2009.15.2.15204
http://www.mitpressjournals.org/doi/pdf/10.1162/artl.2009.15.2.15204
http://www.mitpressjournals.org/doi/pdfplus/10.1162/artl.2009.15.2.15204
http://dx.doi.org/10.1162/artl.2007.13.1.31
http://www.mitpressjournals.org/doi/pdf/10.1162/artl.2007.13.1.31
http://www.mitpressjournals.org/doi/pdfplus/10.1162/artl.2007.13.1.31

