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ABSTRACT
This work investigates an intermediate abstraction level,
that of neural groups, for modelling the development
of complex artificial neural networks. Based on Neu-
ral Darwinism [5], Displacement Theory [4] and The
Neuromeric Model [17], our DEACANN system avoids
the complexities of axonal and dendritic growth while
maintaining key aspects of cell signalling, competition
and cooperation that appear to govern the formation of
neural topologies in nature. DEACANN also includes
a genetic-algorithm for evolving developmental recipes,
and the mature networks can employ several forms of
learning.

1. INTRODUCTION
Nervous systems of higher vertebrates have a clearly hi-
erarchical structure, with sensory inputs translated into
motor outputs in a fast, purely reactive manner at the
lowest levels, but with these same inputs propagating
to higher neural structures, whose delayed effects upon
motor activity reflect more advanced processes such as
sensory integration, memory retrieval, prediction and
even planning. However, bi-directional signalling is ex-
tremely prevalent among cerebral regions, indicating
more of a heterarchical than purely hierarchical orga-
nization, as shown in Figure 1.

Many modern Artificial Intelligence (AI) systems that
attempt to mimic aspects of higher intelligence exploit
similar heterarchical organization. Unfortunately, the
closest contemporary computational analog to cerebral
mechanisms, artificial neural networks (ANNs), are dif-
ficult to train on heterarchical structures. Many re-
searchers have successfully utilized evolutionary algo-
rithms (EAs) to evolve weight vectors for hierarchical
and heterarchical ANNs [12, 20, 14], but these direct
codings (one gene per weight) do not scale well to the
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sizes of networks needed for complex, beyond-reactive
tasks.

Developmental approaches, in which EA genomes spec-
ify a recipe, not a blueprint, for ANN formation, arose to
combat the scalability problem [10, 2, 8, 19]. In a sem-
inal article on developmental EAs (DEAs) [16], Stanley
and Miikkulainen attack the standard classification of
DEA’s as too superficial and implementation specific.
As an alternative, they propose a biologically-based set
of dimensions for distinguishing DEAs. Although some-
what orthogonal to the classic developmental processes
cited by Wolpert [18] (cleavage division, pattern forma-
tion, morphogenesis, differentiation and growth), Stan-
ley and Mikkulainen’s dimensions (cell fate, targeting,
heterochrony, canalization and complexification) also fo-
cus on the cellular (and even genetic) levels.
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Figure 1: Mammalian sensorimotor control hi-
erarchy

Unfortunately, the distance between these low levels and
the control heterarchies seen in the brain is great. Even
incremental complexification approaches, as in NEAT
[9], cannot achieve the multi-level neural topologies seen
in nature. Although Stanley and Miikkulainen argue for
abstractions well above the level of cellular migration,
chemical signalling and neuritic growth, this paper ar-
gues for yet another step up from the cellular level.

In [16], Stanley and Miikkulainen discuss heterochrony:
the effects of timing upon developing phenotypes. The
strong adaptability of developing embryos normally pre-



vents timing changes from being fatal, but instead, al-
lows greater exploration of phenotypic space via small
genotypic (timing) variations. Exploration via hete-
rochrony is reasonably safe during early and late devel-
opment, when intercellular communication is relatively
low. However, the middle, phylotypic stage is much less
flexible due to a high level of global chemical signalling.

Interestingly enough, this phylotypic stage is precisely
the stage during which the embryos of many different
species look alike. In fact, by examining neural struc-
tures during the phylotypic stage, one finds structural
similarities that can form the basis for a general model
of the development of heterarchical ANNs.

This article examines one of the most popular (among
developmental neuroscientists) characterizations of the
phylotypic stage, the Neuromeric Model, and describes
a DEA based upon it.

2. GROUP-LEVEL PRINCIPLES OF NEU-
ROGENESIS

In Principles of Brain Evolution [17], Striedter, a com-
parative neurobiologist, reviews a host of useful princi-
ples, at many abstraction levels, for understanding neu-
rogenesis, neuroevolution, and their interaction. Two of
the key principles are the Neuromeric Model and Dis-
placement Theory. The former addresses the spatial ar-
rangement of brain regions, while the latter explains the
topology of connections between them. Together, they
provide a promising intermediate level of abstraction for
DEAs that grow artificial neural networks.

2.1 The Neuromeric Model
In 1953, Bergquist and Kallen [3] noticed that all ver-
tebrate embryos have a similar elongated, segmented
hindbrain during the phylotypic stage. The ringed seg-
ments, termed neuromeres, are modular zones of high
cell division (to form neurons) and radial migration (of
neurons to their proper layer). Later, Puelles and Ruben-
stein [15] found that this pattern encompassed the mid-
brain and forebrain as well. They also provided ge-
netic evidence that Hox and Hox-like genes control this
segmentation, just as they control the subdivisions of
the body’s central axis. Hence, this revised Neuromeric
Model views the entire developing brain as an elongated
series of ringed modules, within which develop layers of
neuron cell bodies (i.e., gray matter).

Figure 2 sketches the basic neuromeric structure of the
vertebrate phylotype. The hindbrain neuromeres de-
velop into brain regions such as the cerebellum and
pons, which are tightly tied to sensory and motor sys-
tems, while the midbrain and forebrain segments be-
come areas such as the basal ganglia, hippocampus and
prefrontal cortex, all of which are involved in high-level
cognitive processes. Hence, the Neuromeric Model pro-
vides the perfect developmental scaffolding for the con-
trol heterarchy of Figure 1.

2.2 Displacement Theory
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Figure 2: The contemporary neuromeric model.

The Neuromeric Model provides a useful structural bias
for generating neuron sub-populations in a DEA for
ANNs, while abstracting away many cellular-level de-
tails. Deacon’s [4] Displacement Theory (DT) compli-
ments the Neuromeric Model by explaining the interac-
tions between the sizes of neural sub-populations and
their inter-connectivity, again, while remaining above
the cellular level of abstraction.

The basis of DT lies in Edelman’s [5] Darwinistic view
of neurogenesis, known as The Theory of Neural Group
Selection (TNGS). In this view, neurons undergo a se-
lective process wherein only those that grow axons to,
and receive axons from, other neurons will reach ma-
turity. Essentially, neurons are involved in a survival

of the best networkers competition. DT expounds on
TNGS by proposing that the networking competition
during early development enables brains to scale to fit

the body’s sensory and motor apparatus. In short, pri-
mary sensory and motor areas of the brain are sized
according to their immediate inputs or outputs, respec-
tively. Secondary region sizes derive from those of the
primary regions, and deep cortical structures grow or
shrink to fit their input and output sources.

Figure 3 conveys the essence of TNGS and DT. Note
a) the expansion of the 3 neuron groups along the path
from the largest sensory input, S1, to the largest motor
output, M2, and b) the decline of groups B and D, which
lose the competition for C’s dendrites and C’s axons,
respectively. As Deacon explains:

So although genetic tinkering may not go
on in any significant degree at the connection-
by-connection level, genetic biasing at the
level of whole populations of cells can result
in reliable shifts in connection patterns...relative
increases in certain neuron populations will
tend to translate into the more effective re-
cruitment of afferent and efferent connections
in the competition for axons and synapses.
So, a genetic variation that increases or de-
creases the relative sizes of competing source
populations of growing axons will tend to
displace (our emphasis) or divert connec-
tions from the smaller to favor persistence of
connections from the larger.

Developmental neuroscience clearly supports and em-
ploys the key tenets of DT. For example, Fuster [7] doc-
uments the earlier maturation of posterior brain regions
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Figure 3: (Above) The Theory of Neural Group
Selection (TNGS), wherein neurons survive only
if they establish efferent and afferent connec-
tions. Dying neurons are unfilled in the figure.
(Below) Displacement Theory (DT), in which
neuron groups with good networking possibili-
ties expand, while others shrink. Sizes of sen-
sory, motor, and neuron group icons depict sizes
of the corresponding pools.

(used in early sensory processing) and late maturation
of frontal areas such as the prefrontal cortex (PFC).
Striedter [17] combines DT with the work of Finlay and
Darlington [6] to explain the trend of greater neocorti-
cal (and especially PFC) control of lower brain regions
in higher organisms. First, Finlay and Darlington show
that late equals large in neurogenesis: larger brain re-
gions are those that mature later in development. Sec-
ond, a key corollary of Deacon’s DT is that large equals

well-connected : big brain regions send many axons to
other regions and thereby have a significant amount
of control over them. Together, these show how small
changes in developmental timing (in higher mammals)
have enabled the frontal regions to mature later, hence
grow larger, and hence exhibit greater control over a
wide variety of cortical areas. And greater frontal con-
trol correlates well with behavioral sophistication, as il-
lustrated by Nakajima et al.’s [13] comparisons of man-
ual dexterity vis-a-vis frontal control of motor areas in
mammals such as cats, monkeys and humans.

Together, these theories paint neurogenesis as a self-
organizing process in which genetics determines the neu-
romeric structure, the basic properties of neurons in
different layers of the neuromeres, and the maturation
speed of neural regions, but the final sizes of these re-
gions and their interconnectivity stem from self-organizing
processes wherein neuronal subpopulations essentially
compete for the right to cooperate (via synaptic sig-
nalling) with other subpopulations.

3. GROUP-LEVEL DEVELOPMENT IN
DEACANN

Designed to emulate the essential elements of Neuromere
formation, Neural Group Selection and Displacement
Theory, while avoiding the computationally intensive
simulation of axon growth, the developmental algorithm
employed in DEACANN involves three phases.

In phase I, Translation, the binary genome is con-
verted into a set of neuromeres, each containing one
or more neuron groups, whose basic properties are ge-
netically determined.

In phase II, Displacement, the sizes of each neuron
group and intra- and inter-group invasion strengths un-
dergo repeated cycles of modification. Since (in both
TNGS and DT) group size affects invasion strength, and
vice versa, several iterations are required to translate
the initial group masks, inter-group distances, growth
limits and proximities (to sensory inputs and motor out-
puts) into group sizes and relative degrees of inter-group
connectivity.

In phase III, Instantiation, the final group sizes and
invasion strengths are used to generate a) populations
of neurons for each group, and b) connections between
individual neurons in the same and different groups. Al-
though not detailed in this paper, some of these con-
nections specify neuromodulatory signalling pathways,
wherein single neurons send messages to entire neuron
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Figure 4: DEACANN’s 3-stage developmental
model. Each circle denotes a neuromere, while
each concentric ring represents a neuron group,
with ring width proportional to group size. In
the upper right, arrows between neuron groups
indicate biases (quantified as invasion factors -
see below) that generally lead to axonal connec-
tions during the instantiation phase. In the bot-
tom section, small dots are neurons, and their
axons are thin, outward-bound arrows.

3.1 Translation
The DEACANN genome needs to support the devel-
opment of neuromere chains, where each segment may
consist of several distinct neuron groups. All neurons in
a group should be similar, and a group type may repeat
several times in the same or in different neuromeres. For
example, a layer of lateral inhibitors may occur several
places in the developed neural network.

Although one could rely on evolution to duplicate the
genes that encode these groups, the probability of such
copying (in a linear genome) decreases dramatically as
gene complexity rises. Although genetic programming
with subroutines [11] provides one method of modular-
izing reusable genes, the computational overhead of GP
seems unnecessary in this case, given the objective of
evolving sets of neuron-group parameters, not actual
growth procedures.

In this special case, where neither the number of neu-
romeres nor the number of groups per neuromere is
fixed, we can achieve modularity and reuse within a lin-
ear GA chromosome by simply removing the standard
GA constraint of fixed gene locations and adopting a
tag-based addressing system, as shown in Figure 5.

In this indirect representation, binary tags denote the
start of a neuromere specification. In the example of
Figure 5, this tag is 11111, with length k = 5. The user
can specify the degree to which any k-length segment of
the chromosome must match this tag to qualify as a hit.
A matching segment is called a neuromere header. Here,
we assume a match degree of 100 % for neuromere head-
ers, i.e., they must match the neuromere tag exactly.

Once a neuromere header is found, the bits directly fol-
lowing it are interpreted as the neuromere specification.
In the current version of DEACANN, this specification
is simply a single value denoting a neuron-group tag.
In Figure 5, the single neuromere specification (denoted
by the pentagon labelled ”N”) has 01010 following its
header. Thus, the neuron-group tag for this neuromere
is 01010.

The translator then scans the (entire) chromosome in
search of segments that match the neuron-group tag,
01010. In this example, we assume that a 80% or more
of a chromosome segment’s bits must match the tag.
Each such matching segment denotes the header of a
neuron-group specification, and the bits following the
header are translated into the various parameters of the
group, such as axon and dendrite masks, learning rates,
etc. (which are detailed below).

Thus, for each neuromere specification header that is
found, a neuron group tag is read from the chromosome
and used as the basis for a complete scan of the chro-
mosome for the specifications of the neuron groups of
that neuromere. During a scan, the group specifications
cannot overlap. However, the group specification for
one neuromere may be ignored or interpreted differently
during the scan for another neuromere’s groups. Simi-
larly, the (rather short) neuromere specifications cannot
overlap.

A match degree less than 100% allows neuromeres to
share some, but not necessarily all, group specifications,
since each neuromere has a potentially unique group
tag. For example, assuming a common group-tag-match
degree of 75%, if neuromere N1 has group tag 1111
and neuromere N2 has group tag 1010, then both neu-
romeres would share any group specification with header
1011 or 1110, but only N1 would include groups with
header 0111 and only N2 would select groups headed
with 1000.

This representation supports complexification via the
well-known combination of genetic duplication and dif-
ferentiation [1]. Being relatively short, neuromere cod-
ing regions are frequently copied in their entirety, thus



creating additional neuromeres in later generations. Any
mutation to the new neuromere’s group tag then pro-
vides the potential for differentiation, since this enables
the new neuromere to inherit some, but not all, of the
neuron-group types from its ancestor neuromere.

100101001000011111010100000101110000011110110000110110001000001111000001110011
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Figure 5: Translation of a bit string into the pa-
rameters for the neuron groups of a neuromere.
Pentagons point to the start of neuromere (N)
and group (G) tags, while triangles denote the
extent of the parameter bits (P) that follow each
tag. In this example, the tag for neuromeres is
11111 and must be matched exactly, while group
tags must match on at least 4 of their 5 bits. The
single parameter for the neuromere is the tag for
its groups, 01010, which appears under the tri-
angle attached to pentagon N. Hence, all strings
that match 80% of 01010 mark the start of group
specifications.

The neuron-group specification consists of a contiguous
string of bits that encode the following parameters:

1. Axon mask - Masks are abstractions of cadherins,
ephrins, [18] and other chemicals that govern the
attraction and repulsion of axons during their mi-
gration toward dendritic targets. In general, the
attractiveness of one neuron group for another is
directly proportional to the complementarity of
the axon and dendrite masks in the two groups,
and inversely proportional to the distance between
the groups.

2. Dendrite mask

3. Axon sharing - The sharing parameters indirectly
control the patterns of connectivity formed be-
tween two groups during the Instantiation phase
of development.

4. Dendrite sharing

5. Postsynaptic effect - This indicates whether the
neurons in the group have excitatory or inhibitory
effects upon their targets.

6. Neuromodulator sent - This governs whether neu-
rons in the group send neuromodulators instead of
normal action potentials when excited, along with
coding the type of neuromodulator. If the group is
excitatory (inhibitory), then it’s neuromodulator
will always have an excitatory (inhibitory) effect
upon targets.

7. Neuromodulator received - This indicates the neu-
romodulator (if any) to which the group neurons
are sensitive.

8. Growth limit - The number of developmental rounds
in which the group neurons will participate.

9. Learning rate - Degree to which synaptic-strength
is modified on a single training trial during post-
developmental adaptation.

3.2 Displacement
Phase II of development is the heart of the DEACANN
approach. It simulates the interaction between neuron
groups, both within and between neuromeres, but with-
out simulating the actual growth of axons and dendritic
trees. Instead, three interacting factors are iteratively
updated: 1) the cardinality of the neuron sets in each
group, Si, 2) the invasion strength of each group rela-
tive to itself and others, Ii,j , and 3) the connectivity of
each neuron group, Ci.

Invasion strength, Ii,j , represents the propensity of neu-
rons in group i for sending axons to invade targets in
group j. It is a function of the distance between the
two groups, Di,j , the compatibility of the axon mask
for i with the dendritic mask for j, Mi,j , and the sizes
of groups i and j, Si and Sj . The basic update for-
mula is given in equation 1, in which αm and αd are
weighting constants with typical values of 0.5 and 1,
respectively, and T is the total elapsed time since the
beginning of Phase II. The inclusion of T allows groups
that are distant from one another but otherwise com-
patible, i.e. high Mi,j , to eventually hook up if both
groups can maintain a reasonable size during the early
stages of displacement.

Ii,j = SiSj(T + 1)
αmMi,j

1 + αdDi,j

(1)

For each group, i, the total invasion force into, Iin
i , and

out from i, Iout
i are derived from the pairwise invasion

strengths as:

I
in
i =

X

j∈G

Ij,i (2)

and

I
out
i =

X

j∈G

Ii,j (3)

Neuron groups compete for targets via the following
modification to invasion strength:

Ii,j ← (1− γ)
Iin

j

Ng

+ γIi,j (4)



Here,
Iin
j

Ng
is the average intensity of invasions into group

j; Ng is the total number of neuron groups in the ANN.
γ denotes the competition intensity, a constant with a
range of [0 1] and typical value of 0.5. Higher values
of γ will penalize intensities that are below the aver-
age, thus squeezing out weak invaders. Conversely, a γ

closer to 0 will push all invasion strengths closer to the
average, thus more evenly distributing access to group
j’s dendrites.

The competition-modified invasion strengths are re-summed
to update the invasion forces, and the estimated - re-
member, no actual connections have yet been formed -
connectivity of each neuron group is then computed as:

Ci = I
in
i + I

out
i (5)

To reflect the basic tenet of Neural Darwinism - the best
networkers proliferate, while poorly-connected neurons
die - neuron-group sizes are updated as a function of
connectivity:

△Si = αg(Ci −C) (6)

where C is the average connectivity over all neuron
groups, and αg is a growth constant, typically 0.1. No-
tice that Si does not occur in this update formula; its
effect is already present in the contribution of Iout

i to
Ci, since each addend of Iout

i involves Si.

These updates of Ii,j , Ci and Si are repeated a max-
imum of R (a user-defined parameter typically in the
range [5 10]) developmental rounds. Any group with a
growth limit, Gi less than R will not participate in the
final R-Gi rounds. This embodies the late equals large

principle, since neuron groups with longer growth lim-
its will tend to have higher connectivity - remember the
affect of T in equation 1 - and hence larger sizes.

Initially, each group size is 1, with the exception of the
input and output groups, whose sizes are constant and
equal to the number of sensors and affectors, respec-
tively. Sensory inputs are assumed to enter through
the outermost group of neuromere 0, while outputs exit
through its innermost group. Groups that are spatially
adjacent or otherwise attractive as targets for the in-
put and output groups will have high incoming invasion
forces, and thus high connectivity and increasing sizes,
exactly as prescribed by Displacement Theory.

3.3 Instantiation
Given the Si and Ii,j values for each group and group
pair, respectively, Phase III of development uses these
values to bias the generation of neurons for each group
and connections between them.

To generate neurons, all group sizes, except the input

and output groups, are normalized to produce distribu-
tion fractions for a fixed total number of neurons, N.

Connections are formed by considering each group, i,
and all invasion factors into that group. These factors
are normalized to produce the values ˜Ij,i for all groups
j. For each potentially invading group j, corresponding
neurons in groups i and j are considered. For each pair,
a connection from the j neuron to the i neuron is formed
with probability ˜Ij,i.

Once formed, a connection from the kth neuron of group
j to the kth neuron of group i neuron can spawn further
connections of a convergent, divergent or parallel form,
depending upon the axonal sharing factor of group j,
λout

j and the dendritic sharing factor of group i, λin
i . In

the process described below, the kth neuron of group is
denoted Gi(k)

• ki = k, kj = k

• Repeat

– Create connection Gj(kj)→ Gi(ki)

– Generate random fractions ri and rj

– If (ri ≤ λin
i ∧ rj ≤ λout

j ) then ki ← ki +1 and
kj ← kj + 1

– Else if ri ≤ λin
i then ki ← ki + 1

– Else if rj ≤ λout
j then kj ← kj + 1

• Until (ri > λin
i ∧ rj > λout

j )

Briefly, if both sharing factors are high, then the first
conditional will often be true and both indices will be in-
cremented, causing the next pair of corresponding neu-
rons to be paired. Several rounds of this will create
a set of parallel connections, similar to a topological
map. If dendritic sharing is high but axonal sharing
low, then the second, but not the first, conditional will
often be true, thus causing the presynaptic neuron to
remain fixed, while the postsynaptic neuron becomes
the neighbor to Gi(ki). A few repeats of this situation
forms a divergent connection pattern from group j to i.
Conversely, if dendritic sharing is low but axonal shar-
ing high, the third condition is frequently triggered and
a convergent pattern results. Finally, if both sharing
values are low, then the loop exits early and only one
or a few connections are created. These outcomes are
summarized in Figure 6.

4. PRELIMINARY RESULTS
To date, the system has only been used to evolve ANNs
to meet simple structural goals; the nets have not been
used as actual controllers. The ANNs of Figures 7 and
8 were evolved using a population size of 20 over 20
generations, with a mutation rate of 0.1 (per individ-
ual) and a single-point crossover rate of 0.5. Fitness-
proportionate selection was used, with single-individual
elitism. Genomes were 100 bits long, and the develop-
mental process had a maximum duration of 5 rounds.
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Figure 6: Inter-group connection topologies as a
function of axonal and dendritic sharing factors.

The fitness functions are based on the number of neu-
romeres (N), the average size of each neuromere in terms
of its neuron-group cardinality, S, and the standard de-
viation of neuromere size, σS. In Figure 7, fitness is
simply NS, while in Figure 8, size diversity is also re-
warded, while N receives less weight:

Fitness =
N

2
+ S + σS (7)

Although having no role in the current evolutionary
task, the darker neurons (with solid lines emanating
from them) in Figures 7 and 8 are excitatory, while
the lighter circles (with dotted emerging lines) are in-
hibitory. To avoid clutter, the connections lack direc-
tional arrows.

5. DISCUSSION
We have just begun testing DEACANN on simple per-
formance tasks but have not yet evolved useful con-
trollers. Unfortunately, even if successful, these toy-
problem tests will not convincingly validate this ap-
proach. Complex tasks that require large neural hierar-
chies or heterarchies as controllers must eventually be
attempted. Although DEACANN’s intermediate level
of abstraction saves considerable computational effort
during development, it still involves a complex itera-
tive process that is quadratic in the number of neu-

Figure 7: ANN evolved to have as many neu-
romeres and neuron groups as possible. The
neuromeres occupy successive horizontal planes
in the picture, and neuron groups are concentric
rings within each plane.

Figure 8: ANN evolved to have a diversity of
neuromere sizes.



ron groups. To combat the resource demands of in-
tegrated evolutionary, developmental and learning sys-
tems (a.k.a. TRIDAP systems), we are currently ex-
ploring the use of distributed evolution, where each pro-
cessor handles an individual’s development, task perfor-
mance and learning.

Notwithstanding computational issues, the DEACANN
approach deserves consideration in the general attempt
to scale up evolutionary and developmental systems to
complex problems that require large, well-structured
controllers. It has become a somewhat abused cliche
in bioinspired computing to point to nature’s successful
approaches as justification for similar attempts in silico.
Our work, particularly in its current state, certainly has
no better grounds for invoking that cliche.

However, we do feel that moving up the abstraction hi-
erarchy has clear advantages over moving down. The
neuron-group level a) still affords the cooperative and
competitive interactions at the heart of Neural Darwin-
ism, and b) appears to be the proper level at which
to explain the formation of large-scale brain topologies,
via principles such as late equals large and large equals

well connected and structures such as laminae and neu-
romeres [17]. In artificial TRIDAP systems, develop-
ment can afford to work primarily at this intermediate
level, since learning can (and should) handle the fine-
tuning of individual synapses.

Finally, it is worth noting that nature-inspired tech-
niques in engineering, from simulated annealing to ge-
netic algorithms to neural networks to swarm intelli-
gence, are based on the essence, not the details, of a nat-
ural process. Since the development of complex hetero-
geneous control systems, i.e., brains, is best explained
at an intermediate level, there is no reason to believe
that it cannot be simulated there as well.
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