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Abstract This work continues investigation into Gaia theory
[Lovelock, (1995) The ages of Gaia, Oxford University Press]
from an artificial life perspective [Downing, (2000) in
Proceedings of the 7th International Conference on Artificial
Life, (pp. 90–99) MIT Press], with the aim of assessing the
general compatibility of emergent distributed environmental
control with conventional natural selection. Our earlier
system, GUILD [Downing and Zvirinsky, (1999) Artificial Life,
5, 291–318], displayed emergent regulation of the chemical
environment by a population of metabolizing agents, but the
chemical model underlying those results was trivial,
essentially admitting all possible reactions at a single energy
cost. The new model, METAMIC, utilizes abstract chemistries
that are both (a) constrained to a small set of legal reactions,
and (b) grounded in basic fundamental relationships between
energy, entropy, and biomass synthesis/breakdown.

To explore the general phenomena of emergent
homeostasis, we generate 100 different chemistries and use
each as the basis for several METAMIC runs, as part of a Gaia
hunt. This search discovers 20 chemistries that support
microbial populations capable of regulating a physical
environmental factor within their growth-optimal range,
despite the extra metabolic cost. Case studies from the Gaia
hunt illustrate a few simple mechanisms by which real biota
might exploit the underlying chemistry to achieve some
control over their physical environment. Although these
results shed little light on the question of Gaia on Earth, they
support the possibility of emergent environmental control at
the microcosmic level.

1 Introduction

In the past few decades, the idea that an evolving microbial community can alter its
physical surroundings has become less controversial, even accepted, among natural
scientists. However, rousing debates begin at the mention of Gaia theory [15], which
goes further by speculating that these biotic influences are homeostatic, regulating the
environment within a physicochemical regime that maximally benefits the organisms
themselves.

The controversy surrounding Gaia stems less from the general concept of emergent
distributed control and more from Lovelock’s poetic descriptions of Earth as an evolving
homeostatic superorganism. The renowned evolutionary biologist Richard Dawkins [4],
was quick to assault this metaphor from several directions: (a) natural selection cannot
possibly apply at a planetary level, and (b) assuming natural selection at the individual
level, then cheater organisms that do not pay the extra costs associated with Gaian
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regulation could still reap its benefits and gain a selective advantage, thereby destroying
cooperative regulation. Dawkins then challenged the scientific community to come up
with a feasible model of Gaia that was compatible with natural selection as we know it.

One year later, Watson and Lovelock’s famous Daisyworld model [24] clearly illus-
trated the emergence of distributed biotic control. Daisyworld has since become the
poster-child for Gaia. However, from the ALife perspective, the actual emergence in
Daisyworld seems too contrived, since all of the necessary genotypes are hard-wired
into the initial population of daisy species. There is no emergence of new forms, only
shifts in the species distribution.

Our research enlists the tools of ALife: genetic algorithms and individual-based sim-
ulations, in search of more realistic evolutionary emergent biotic control in an abstract
virtual world where organisms rely on genetically determined metabolisms for energy
and biomass production. In doing so, we hope to fortify the Daisyworld efforts to
debunk the myth that the emergence of distributed homeostatic phenomena requires
something more elaborate and fantasy filled than standard natural selection.

Many different abstract chemistries are used as the backdrop for these evolving
metabolisms, in hopes of assessing the general likelihood of emergent microbial regu-
lation of their environment about a set-point that maximizes metabolic reaction rates.
Our results show that emergent regulation is quite common, although certainly not
inevitable. Dawkin’s cheaters turn out to be present but hardly ubiquitous, since an
organism’s contribution to global regulation can also have a local selective benefit.
The emergence of regulation then hinges on a trade-off, brokered by natural selection,
between the costs and benefits of Gaian cooperation.

It should be clear from the outset that the goal of our work is to use ALife tools to test
the general plausibility of the evolutionary emergence of Gaian-like distributed environ-
mental control by the biota: to investigate the reconciliation of Gaia theory with natural
selection. If this plausibility can be established, then biologists and Earth scientists can
begin to discuss objectively the possibility that Gaia actually occurs here on Earth. At
present, the natural evidence is quite fascinating, but hardly convincing. Regardless,
we feel that the theory and its implications are so important that they should not be
summarily rejected on principle, due to extreme interpretations of Lovelock’s writings.
Rather, we believe that Gaia theory has promising analytic foundations in the theory of
complex adaptive systems, as supported by Daisyworld and our own simulations.

Of course, a trillion bytes do not make a trilobite: Although ALife models typically
beat standard differential equations for investigating emergent phenomena, the gap
between cyberspace and nature is still immense. If the best meteorological models
cannot accurately predict the weekend weather, then how can we expect to recreate
a few billion years of evolution? No amount of real data in these models can signifi-
cantly improve our odds vis-a-vis the Gaia-on-Earth question. However, we hope that
evolutionary biologists can still see the merits of these models as evidence that emer-
gent distributed control by evolving species (a) requires neither divine intervention
nor ecosystem-level selection, and (b) is not necessarily derailed by the over-simplified
concept of cheaters. From there, they can address the empirical question of Gaia on
Earth from a more solid analytical base, free from the poetic misconceptions that have
haunted Gaia research.

1.1 Gaia Theory
The essence of Gaia theory is trivially stated, but it evades clear proof or refutation.
Volk [23] best sums up the Gaian concept as “life begetting life.” The originators of Gaia
theory, Lovelock and Margulis [15], took a then (1970s) controversial view and added
a final eyebrow-raising twist to agitate a large sector of the natural science community.
Things have only partially calmed down since.
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Lovelock and Margulis’ springboard was the view that biota (particularly microorgan-
isms) can significantly affect their physicochemical environment, primarily by chemical
means. Today, plenty of evidence supports that claim; geochemists and geophysicists
have quantified many of the biotic influences upon the planet [20]. Now, the main
controversy revolves around Gaia theory’s added twist: Living organisms affect the
environment in self-beneficial ways.

Under overzealous interpretation, this self-serving clause can conjure up distored
images of bacteria performing particular metabolic activities for the sole purpose of
altering the balance of greenhouse gases and moving global climate into a growth-
optimal range, or of large climate-regulating ecosystems functioning as superorganisms
and evolving as single units under a selective pressure to become better controllers.
The horror stories are endless.

However, a more serious analysis [13, 14, 23, 25] uncovers the very plausible possi-
bility that the means by which organisms collectively affect the environment can also
provide a local selective advantage to the individual organisms. The global side effect is
free, and relatively unrestricted in the short term. However, any large-scale side effects
that prove detrimental to the species could eventually be selected against due to the
species’ demise.

A classic example is rock weathering, wherein tree roots break down rocks to lib-
erate mineral nutrients for immediate gain. In addition, this process consumes CO2

as a reactant, which is drawn down from the atmosphere into the soil. By enhancing
nonbiotic rock weathering by a factor of hundreds or thousands [21], the biota exert
a huge influence upon atmospheric CO2 and, via the greenhouse effect, the global
temperature.

In terms of homeostasis, one of many very plausible scenarios is the following. If
global CO2 levels rise, then tree growth is stimulated (photosynthesis consumes CO2 to
produce plant biomass) and more roots are formed. This increases rock weathering and
CO2 drawdown, thus preventing a rise in global temperature that, above certain thresh-
olds, could eradicate most plant and animal life. Similarly, a large drop in atmospheric
CO2 would reduce plant growth, weathering and CO2 drawdown, thus elevating CO2

and preventing extreme temperature drops. In short, life preserves viable conditions
for life. For more details of the above scenario along with a host of other examples,
see [13, 14, 23].

As the ice ages and other climatic perturbations indicate, the biota can never qualify
as an optimal regulator [20]. Still, life has managed to persist here on Earth through 3.6
billion years and numerous extreme geophysical disturbances. Either way, the hallmark
of Gaia is not perfect environmental control, but control governed to some significant
extent by the biota. In short, life is in the loop, and the living, dying, and evolving of
organisms can drive the physical and chemical factors of the loop into different steady
states—just as those states can influence life.

However, the adaptability of life injects an interesting asymmetry into these loops.
While the sensitivity of atmospheric temperature to CO2 is an immutable physical rela-
tionship (all else being equal), the sensitivity of a species to temperature may change
via evolution. But the mere fact that the biota can adapt to physical perturbations does
not imply that it must, that is, that life will always give in to the physical forces. Since
the biota can influence the environment, there is no reason to rule out the possibility of
life countering a physical push with an opposing shove. This biotic ability to fight back
(albeit unconsciously, indirectly, and inadvertently) lies at the heart of Gaia theory. And
the occasional absence of the previous three parenthesized adverbs in Gaian literature
lies at the heart of the Gaia controversy.

Also, since the idea of nonpassive biota violates strong adaptationist principles, it is
unpopular with many biologists, who also argue that cheater organisms could break the
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regulatory loops by reaping the benefits of environmental stability without paying the
costs [4]. However, as mentionned above, the global influences are often side effects of
locally favorable behavior, so many Gaian costs that an organism pays actually purchase
immediate survival benefits—the Gaian effects are accidental, and free. For more on
the Neo-Darwinian critique of Gaia theory and the Gaian rebuttal, see [9, 12].

To date, Gaia theory’s most convincing evidence comes from a simple elegant com-
puter model, Watson and Lovelock’s Daisyworld [24]. It clearly illustrates how a few
species of organisms (daisies) can control a global physical factor (temperature) via
their distributed competitive interactions and their local influences upon albedo. This
competitive element is synonymous with natural selection to Daisyworld adherents,
but it amounts to little more than the hardwiring of two (or in modified versions, 10 or
100) genotypes and allowing them to fight it out. In short, Daisyworld sidesteps the
question of how these distributed regulatory systems might emerge via genetic permu-
tations over evolutionary time. And without a plausible ultimate causal explanation,
Daisyworld cannot fend off all Neo-Darwinian assaults.

1.2 Improving the GUILD Model
Our previous system, GUILD [9], borrowed some key concepts from Daisyworld, mixed
in Volk’s [23] ideas on biochemical guilds, and added genetic search through a large
space of potential metabolisms. The emerging virtual microbial communities exhibited
two key Gaian characteristics: (a) nutrient recyling, and (b) environmental regulation.
Since both traits emerged over the course of tens to hundreds of evolutionary gener-
ations, these results offered support to the reconciliation of Gaia theory with natural
selection.

Since Gaia theory often implies an unconscious cooperation among many popula-
tions and/or species, genera, and so forth, its relationship to standard individual-based
natural selection has always been tenuous. However, by adding an abstract genetic
basis to some of the key Daisyworld mechanisms, GUILD enhanced support for these
ties that are so essential for bringing Gaia theory into the realm of plausible and testable
biological hypotheses.

However, GUILD relied on an overly abstract chemistry that (a) permitted all inter-
molecular transformations, (b) conserved mass only at the highest level of abstraction,
and (c) had no specific thermodynamic constraints upon reactions. For example, an
organism was free to convert M units of compound A into M units of compound B, for
all compounds A and B. The transformation did involve an energy cost, but one based
solely on M , not on A or B. This permitted a relative metabolic free-for-all in which
diversity quickly arose, along with the concomitant recycling of compounds. Once
recycling was in full swing, the organisms began to control environmental nutrient
concentrations and steer them toward levels that best supported life: the quintessence
of Gaia. All of this was transparent to the organisms themselves and guided by the
gentle hand of natural selection, which worked on the genomes that determined the
metabolisms.

Although simple general models can offer vital insights into complex biological phe-
nomena, the key details of the underlying abstraction must remain faithful to the natural
situation. By allowing an unconstrained set of chemical reactions, GUILD sufficiently
violated that faith to bring its results into serious question. Our new system, METAMIC
(metabolically abstract microorganisms), attempts to remedy that shortcoming.

METAMIC employs the MD-CHEM (modular designer chemistry) module to generate
random abstract chemistries that conform to user specifications, such as the maximum
number of compounds and reactions. In addition, MD-CHEM respects a few funda-
mental biochemical constraints. It differentiates between atoms and molecules, and
the former are conserved in all reactions. A simple thermodynamic constraint links
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the synthesis (breakdown) of larger molecules from (into) smaller ones with energy
consumption (release). Hence, metabolism can be partitioned into anabolic (biomass
producing) and catabolic (biomass burning) stages; and an organism’s fitness reflects its
ability to exploit the underlying chemistry and overall ecological situation (in terms of
the other biochemical guilds present in its environment) to produce energy and build
biomass.

METAMIC includes a set of physical variables that (a) have a direct effect upon
metabolic rates, and (b) are influenced by the relative concentrations of certain chemical
compounds. For example, in the real world, atmospheric temperature is an important
physical factor that both influences biotic growth and is affected by CO2 and CH4 levels
(which the biota can alter). In METAMIC, particular global chemical ratios will move
the physical variables into ranges that are optimal for metabolism and growth. The
fundamental Gaian question is whether or not the evolving biota can unconsciously
regulate chemical levels so as to achieve these physical optima.

To investigate the emergence of distributed environmental control as a general phe-
nomena, we run METAMIC on a host of different MD-CHEM chemistries and look
for signs of physical-variable regulation. A test of 100 chemistries that support life in
METAMIC reveals 20 that satisfy a relatively conservative control metric.

This article provides a detailed description of METAMIC and MD-CHEM along with
the results of a Gaia hunt within a restricted space of abstract chemistries. Several case
studies reveal the mechanisms by which a population of microbes, whose metabolisms
are subject to natural selection, unconsciously can evolve to regulate their environment
for the benefit of life itself.

2 MD-CHEM: The Modular Designer Chemistry Generator

Although a wide variety of artificial chemistries already exist [5, 6, 10, 22], these generally
involve complex simulations to generate a set of stable compounds. Basically, the
artificial chemistry is the artificial life system. However, to investigate the general ability
of an evolving microbial community to exploit the underlying chemistry to achieve
environmental control, a different type of artificial chemistry system is needed: one
that can easily produce hundreds of distinct chemistries.

To support simulations of metabolism, an artificial chemistry must incorporate some
notion of energy and its relationship to the formation and breakdown of large com-
pounds, such as the proteins, carbohydrates, and lipids that constitute biomass. In
looking to real biochemistry for inspiration, one finds a host of important basic concepts
such as electron valences, bond types, redox pairs, and so forth, but their analogues in
an artificial chemistry may only add superfluous detail. Furthermore, the energy yields
of real chemical reactions are functions of the three-dimensional physical structures of
the individual compounds—again, not an easy add-on to an artificial chemistry, even
in one or two dimensions. In short, real biochemistry does not appear to provide a
short-list of basic concepts that are easily mapped into fully functioning realistic mod-
els at a higher level of abstraction. Most artificial chemistries capture some of the key
biochemical concepts, but with only a few notable exceptions [16], they ignore energy.

MD-CHEM generates artificial chemistries by ignoring atomic-level dynamics and
choosing random regroupings of random reactant sets, constrained only by user-speci-
fied parameters such as the desired numbers of compounds and reactions. Reaction
energies stem from statistical entropy differences between reactants and products, as
explained below. The system is only weakly constructive, since new compounds arise
stochastically, but not on the basis of any first-principle physical relationships between
the atoms, such as their potentials for bond formation. So chemistry construction in
MD-CHEM is a purely algorithmic (albeit nondeterministic) process, guided not by an
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interaction dynamic, but by simple trial-and-error search for a constraint-satisfying set
of compounds and reactions.

The designer aspect of MD-CHEM is quite simple: A user specifies several hard
constraints and biases, and the system then generates a chemistry that meets the speci-
fication. These chemistries are modular in the sense that they easily plug into artificial
life simulators.

The key hard constraints in an MD-CHEM specification are

1. Na—the number of legal atoms,

2. Nc—the total number of compounds to be generated,

3. Nr—the total number of reactions to be generated,

4. Nic—the number of initial randomly generated compounds,

5. Rcs—the range of legal compound sizes,

6. Rrs—the range of reaction sizes, in terms of the minimum and maximum number of
reactants/products.

The essential biases are

1. Bics—the bias of initial compound sizes. This is a normalized list of probabilities,
one for each legal size in Rcs, which governs stochastic size choice of the initial Nic

randomly generated compounds.

2. Brs—the bias of reaction sizes, a probability distribution for the sizes in Rrs, which
affects the stochastic choice of both (a) the number of reactants chosen for each
random reaction, and (b) the number of product compounds that the reactant
atoms are partitioned into.

The basic algorithm for chemistry generation appears in Figure 1.
For example, if the atomic set is {abc}, Rcs = [3, 6], Rrs = [2, 4], and Nic = 4, then MD-

CHEM begins by generating four initial compounds, such as a2b, abc, ac2, c3, where
subscripts denote the number of each atom and no subscript implies a single atom.

The reaction generator would then take between two and four of these compounds,
with possible duplicates, such as {a2b, ac2, ac2}, to form the reactant group. All atoms
are then thrown into a set: {a a b a c c a c c} that is sent to REACT-COMP, where it
is randomly permuted: {c b a c a c a a c}, and partitioned into two to four subsets:
{c b a ! c a ! c a a c}.

Since no interatomic relationships are modeled, MD-CHEM is insensitive to the order
of atoms within a compound and converts it to a canonical form. Hence, the product
group for the above example becomes {abc, ac, a2c2}. Since the latter two compounds
are new, MD-CHEM will only add the new reaction if Nc − nc ≥ 2.

The new reaction is then

a2b + 2ac2 �⇒ abc + ac + a2c2 (1)

The use of the num-attempts and max-attempts variables in Figure 1 indicates that
GENCHEM makes a finite number of attempts to generate Nr reactions. Note that once
nc = Nc, any reaction that generates additional new product compounds will be rejected
in REACT-COMP. In cases where Nr > 2Nc, or even Nc ≤ Nr ≤ 2Nc, the algorithm will
occasionally time out before generating Nr reactions.
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Program GENCHEM
C = { }; The set of compounds
R = { }; The set of reactions
nc = 0; The size of C
nr = 0; The size of R
RG, PG: reactant product groups.
Initialize C to Nic randomly-generated compounds.
num-attempts = 0
Repeat
RG = random group of compounds from C
Collect all atoms from RG into one set, S

p = e
−ke (Nc −nc )

Nc

known-compound = TRUE
PG = { };
np = 0; Number of products
Np = random-integer-in(Rcs)
While known-compound and random-number ≤ p

and np < Np

known-compound = find-known-compound(S).
if known-compound

Add known-compound to PG.
np = np + 1

Remove atoms in known-compound from S.
End while
If REACT-COMP(S,C,R,RG,PG,Np − np)
Then Add [ RG → PG] to R, and update nr

Else num-attempts = num-attempts + 1
Until nr = Nr or num-attempts ≥ max-attempts
End Program

Procedure REACT-COMP(S, C, R, RG, PG, NP)
; This procedure randomly completes reactions
Randomly permute S.
PG ′ = PG
Randomly break S into NP groups

and add each group to PG ′
If
All groups in PG ′ either:

Form a pre-existing compound, or
Form a new compound that can be

added without nc exceeding Nc

And PG ′ = RG And [PG ′ → RG ] /∈ R
Then

PG = PG ′
Add newly-generated compounds in PG ′ to C
Update nc

Return TRUE.
Else Return FALSE.

End Procedure

Figure 1. Algorithmic overview of MD-CHEM.
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To remedy this situation, GENCHEM attempts to extract known compounds from
the list of product atoms prior to calling REACT-COMP, thus decreasing the number of
new compounds introduced by each reaction. It uses the probability p to determine
whether to try to extract one or more known compounds from S before randomly
permuting and partitioning the remaining product atoms. In the calculation of p, ke is
the extraction factor, with a typical value between 1 and 2, with lower values implying
a higher extraction probability. A high value of ke is preferable when Nc ≈ Nr, but it
should decrease as Nr − Nc rises.

Regardless of ke settings, the initial size bias, Bics, is a critical success factor. If the
initial compound set contains too many large compounds, then generating Nr legal
reactions becomes quite difficult, particularly when Rcs and Rrs are small (i.e., tight
ranges of legal reaction and compound sizes). In short, if n large molecules are chosen
as reactants from which m (m ≈ n) random products of similar size are generated, then
the odds of generating preexisting compounds as products diminish rapidly as the size
distribution of those compounds becomes top-heavy. Hence, most products are new,
and REACT-COMP can only succeed a few times before nc = Nc, after which it will
predominantly fail. With a bottom-heavy size distribution, REACT-COMP has a better
chance of generating preexisting compounds, thus prolonging the completion of the
compound set and maintaining the flexibility to generate new legal reactions.

2.1 Reaction Energies
One critical aspect of MD-CHEM is the association of energy production and consump-
tion with reactions in a manner that supports the basic biological fact that biomass
construction demands energy, whereas biomass breakdown generally releases energy.
At the reaction level, this translates into a simple qualitative MD-CHEM energy prin-
ciple: building larger compounds from smaller ones (i.e., anabolism) requires energy
input, whereas the reverse process (i.e., catabolism) releases energy.

Statistical entropy is the basis of size comparisons between the reactant and product
sets of a reaction. Entropy essentially measures the evenness and granularity of the size
distribution of molecules: many small molecules have higher entropy than a few large
molecules; and m molecules of similar size have higher entropy than m molecules of
diverse sizes. The fractional sizes of each compound, fi, relative to the total number
of atoms in the reaction, determine the entropy according to

k∑

i=1

− fi log fi (2)

Thus, in reaction 1, which involves a total of nine atoms, the fractional sizes are
{1/3, 1/3, 1/3} for the reactants, and {1/3, 2/9, 4/9} for the products, yielding a reactant
entropy of 1.585 and a product entropy of 1.530. Since lower entropy reflects higher
order, the reaction exhibits a small degree of structure formation and is considered
endothermic (i.e., energy consuming). MD-CHEM maps entropy differences directly
into reaction energies, so this reaction requires 1.585 − 1.530 = 0.055 energy units in
order to run. The reverse reaction is modeled as exothermic, yielding 0.055 energy
units.

When deployed in an artificial-life simulator, MD-CHEM uses the law of mass action
[17] to compute the rates of reactions. To wit, the product of the concentrations of the
reactants along with a basal reaction constant determine the rate at which reactants are
converted into products and energy is produced or consumed.
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2.2 Catalysts
Catalytic relationships between compounds and reactions arise randomly during the
reaction-generation process. Any compound that appears as both a reactant and prod-
uct in the same reaction is considered a catalyst (i.e., enzyme). When running a reaction,
MD-CHEM assumes that unless the catalyst is completely absent (concentration of 0.0),
the reaction is substrate-limited and can proceed as if each catalyst molecule could
instantaneously derive product from reactant molecules. Hence, the law of mass action
is only applied to the concentrations of the nonenzymatic compounds in deriving the
reaction rate. Of course, if the enzyme is completely absent, then the reaction cannot
occur.

To model reaction catalysis, MD-CHEM uses the enzyme’s molecular weight (i.e.,
number of atoms) as a rough estimate of catalytic enhancement, ec. For exothermic
reactions, ec appears as an extra product in the mass-action derivation of the reaction
rate, while in endothermic reactions, the energy consumption of the uphill reaction is
reduced by a factor of 1/ec.

a2b + ab2c + c3 ⇐⇒ a2b + ab2c4 (3)

For example, if ec(ci) = 1 + length(ci) for any catalytic compound ci , then the
catalytic enhancement of reaction 3 is 1 + length(a2b) = 4. Since the left-to-right
reaction is uphill/endothermic, with an entropy change from 1.571 to 0.881, or 0.69,
the catalytic effect essentially reduces the energy requirement of the uphill reaction
to 0.69/4 = 0.1725. Similarly, the rate of the right-to-left downhill reaction will be
enhanced by a factor of 4 in any context in which the reaction runs.

2.2.1 Using MD-CHEM
MD-CHEM is designed for investigating the abstract relationships between chemistries
and the metabolisms that they support, and hence the biochemical guilds that evolve.
A typical scenario is to generate hundreds of different chemistries and test each one in
an artificial life simulation of metabolizing organisms. Those chemistries on which mi-
croorganism communities can survive are separated from the less supportive variants to
get a general understanding of the primary life-sustaining aspects. These life-supporting
chemistries can then form the backdrop for explorations into more complex phenom-
ena such as emergent environmental control, recycling, and so forth.

Using MD-CHEM in this manner affords (a) generalizations across a wide array of
phenomena-supporting chemistries to understand the essential chemical foundation of
those phenomena at a level above that of the specific atoms, molecules and reactions,
(b) estimates of the actual likelihood of a phenomenon under varying chemical con-
ditions. In short, MD-CHEM permits views beyond biochemistry as we know it for
exploration of the more general relationships between chemistry and life.

3 METAMIC: Metabolically Abstract Microorganism System

METAMIC is a simple box model with chemical inflows and outflows. The box consti-
tutes an environment, E , for a population of individually modeled metabolizing agents
(a.k.a. metamics) who only interact in two ways: (a) indirectly via chemical exchange
with E , and (b) directly via gene swapping during conjugation. Each metamic is mod-
eled as a cell with a genetically determined metabolism, a local chemical buffer, and a
semi-permeable membrane that separates it from the environment.

METAMIC employs MD-CHEM chemistries as bases for all intra- and extracellular
chemical activity. The chemical basis for a METAMIC run is defined by the pair (C , R),
where C denotes the set of legal compounds, and R the legal reactions.
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Figure 2. A METAMIC organism’s genome determines the reactions and reaction constants for its metabolism.
Exothermic reactions make up the catabolism, and endothermic reactions the anabolism. The energy produced by
catabolism pays back the energy demand, and any remaining energy goes toward structure building (i.e., anabolism).

3.1 Physical Variables
A parameterizable set of physical variables, �, provides a second pathway for bidirec-
tional interactions between the organisms and their environment. The value of each
pi ∈ � is defined as a function of the normalized concentrations of some or all of the
molecules in C . Values for all pi are computed for the global environment, based on
the global concentrations; also, local values are computed for each cell, based solely on
intracellular concentrations. As described below, the physical variables can influence
metabolic rates, and hence growth.

3.2 Genetically Determined Metabolisms
Each metamic’s genetic algorithm (GA) genome encodes rT, a subset of R , plus base
reaction constants, kr, for each inherited reaction. All values are encoded as bit strings,
where reactions are integer indices into R and rates are real numbers within a param-
eterized range.

From the genome, the exothermic, rx, and endothermic, rn, reactions are separated,
where rT = rx ∪ rn; together, they compose the organism’s metabolism. As shown in
Figure 2, the abstract metabolic process consists of two phases: catabolism and an-
abolism. On each time step, metamics receive an energy request and begin catabolism,
wherein the exothermic reactions, rx , run for the maximum of two durations: (a) the
official time step and (b) the estimated time needed to generate the required energy
(based on previous energy-production rates of the rx). If the former exceeds the latter,
then an energy surplus results, thus triggering the anabolic processes (i.e., the endother-
mic reactions, rn), which run long enough to consume the available energy and build
structure by reducing internal entropy.

3.2.1 Mass Action Dynamics
Within a cell, the rate of each chemical reaction, r ∈ rT is the product of (a) the intracel-
lular concentrations of the nonenzymatic reactants, Ine, (b) the genetically determined
reaction constant, kr, (c) the catalytic enhancement factor (for exothermic reactions),
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ec, and (d) the physical-factor satisfaction, fsat

krec fsat

∏

i∈Ine

[i] (4)

Reaction rates in the global environment are computed similarly, but with fsat fixed
at 1.0 and kr fixed, but parameterizable (i.e., user specified).

Physical-factor satisfaction is an exponentially decaying function of the deviation of
each physical factor pi ∈ � from its optimal value (for metabolism), p∗i .

esat =
∑

pi∈�

∣∣∣∣
pi − p∗i

p∗i

∣∣∣∣ (5)

fsat = e−ksatesat (6)

The parameter ksat reflects the degree to which deviations from optimal physical
conditions will affect metabolism. A typical value is 1.0. The p∗i and the functions
for computing the pi from chemical concentrations are user supplied and may differ
considerably across experiments.

3.3 Biomass
Those compounds that constitute biomass can vary between organisms, with key re-
strictions. Two user-defined parameters, Nbio and N ∗

bio, specify the maximum number
of compounds that an organism can treat as biomass, and the number of large com-
pounds in C that are legal biomass constituents, respectively. To choose the biomass
compounds, cbio, for an agent, METAMIC gathers the Nbio largest compounds that the
organism is a net producer of (in rT). It then intersects that set with the N ∗

bio largest
compounds in C to form cbio. An organism’s biomass is then the total intracellular mass
of all cbio compounds.

3.4 The Cell Membrane
The cell membrane (Figure 3) is semi-permeable in that diffusion rates depend upon
the molecule. All compounds in cbio cannot diffuse into or out of that metamic’s cell: All
biomass molecules, aside from those present at birth, result from internal production.
Also, any compounds that the organism is a net consumer of (in rT) can diffuse into
but not out of the cell. Conversely, compounds with net production in rT can only
diffuse out, not in. All other compounds can freely diffuse into and out of the cell. Net
production and consumption are estimated from rT and the inherited reaction constants,
rk, for determining a metamic’s fixed diffusion constraints. Since active transport is not
modeled, all flows between cells and E are along a decreasing concentration gradient
for that particular compound.

The cell membrane provides a buffer zone for the cell. This zone is not perfectly
protective, since diffusive chemical exchanges with the environment will move local
and global chemical concentrations, and hence pi values, closer, but the restrictions on
diffusion do allow a cell to create an interior milieu that differs from its surroundings.
This buffering is critical for cell growth, since the pi can affect metabolic rates.

3.5 External Chemical Fluxes
For each compound ci ∈ C , the user specifies separate exogenous inflow and outflow
rates for the environment, E . The inflows are simply units of chemical per time step,
and the outflows are specified as fractions of the current amount of ci in E , for each i.
All reactions in R are assumed to occur in E , and since no energy is demanded of E ,
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Figure 3. The semi-permeable cell membrane permits (A) only inflow of (net) consumed compounds, (B) only
outflow of (net) produced compounds, (C) no diffusion of biomass, and (D) bidirectional diffusion of compounds
with no significant net production nor consumption. Each icon denotes a compound, and arrows between different
compounds represent chemical reactions.

the energetic fruits of rx go directly into rn. The user can also specify a constant energy
input to the system, which is distributed among all agents.

3.6 Fitness, Reproduction, and Death
In METAMIC’s GA, fitness is implicit: If an organism doubles its birth biomass, then
reproduction occurs by asexual splitting, with possible mutation of both child genomes.
Organisms also undergo a form of double bacterial conjugation by occasionally swap-
ping GA chromosome segments with one another. This is essentially standard GA
crossover followed by mutation, with each individual continuing its life, but with a
new genome and metabolism. Both genetic operators work at the bit level, without
respecting gene borders.

The same mortality rate pertains to all living organisms, regardless of age or biomass.
However, agents with biomass below a critical threshold are culled from the population.
Upon death, the cell’s membrane dissolves and all internal chemicals are added to the
global environment.

3.7 Biotic-Biospheric Interactions
METAMIC is designed to allow bidirectional interactions between the organisms (biota)
and the environment (biosphere). In nature, the biota’s primary route to global phys-
ical change is via a multitude of local chemical exchanges, whereas the biosphere
can directly influence the biota by either chemical or physical means. In METAMIC,
the only direct causal routes are chemical, since the physical variables are computed
independently in the cells and in the global environment.

As summarized in Figure 4, METAMIC’s primitive mechanisms support a feedback
loop involving metabolism, chemical concentrations, and the physical factors. Mass-
action dynamics govern the relationship between metabolic rates (and growth) and the
intracellular chemical concentrations, while user-specified constraints relate concentra-
tions to physical conditions. Deviations of physical variables from their growth optima
then influence metabolic rates to close the loop.

In the environment, the physical factors have no influence upon reaction rates, since
this link is intended to capture the complex relationship between physical conditions
and metabolism, not chemical reactions at large.
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MR = f(|p(0)−p(0)*|, |p(1) − p(1)*|...)

p(i) = f([c(0)],[c(1)]...)
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Figure 4. The primary interactions in METAMIC that causally interlock the biota and biosphere. Arrows indicate
influence of one factor upon another, with arrow labels indicating the underlying mechanism. The p(i) are physical
variables, the p(i)∗ are optimal values for those variables, the [c(i)] are chemical concentrations, and MR is the
metabolic rate.
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Figure 5. Illustration of the Gaian regulatory index (GRI). The large graph shows the trajectory of a physical variable
p, along with the essential terms needed to compute the GRI at any time point t′. The smaller graph plots the time
series of GRI values corresponding to that same trajectory of p.

3.8 GRI: The Gaian Regulatory Index
The Gaian regulatory index (GRI) is a quantitative measure of the METAMIC biota’s
ability to control the environment within a range that is most conducive to growth. In
a nutshell, the GRI is the gain of the distributed regulator having pdead as a base value
and p∗ as the target value, where (a) pdead is the steady-state value of a focal physical
variable, p, when the global environment is simulated using chemical inflows, outflows
and internal chemical reactions, but without organisms, and (b) p∗ is the (arbitrarily
chosen) metabolic optimum value for p.

As depicted in Figure 5, the GRI at any time point t ′ is −1 plus the ratio of the
distance from p∗ to pdead (i.e., the total distance that a perfect regulator would move p)
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to the actual distance from p(t ′) to p∗ (i.e., the error). Higher GRI values indicate better
regulation. To avoid infinity calculations in zero-error (d2 = 0) situations, METAMIC
enforces a GRI upper bound of 20.

3.9 The Cycling Ratio
In E, the ratio of recycled atoms to the maximum of the input and output fluxes consti-
tutes that element’s cycling ratio [23]. In essence, the cycling ratio denotes the average
number of times that an atom is passed from organism to organism before it is flushed
out of the environment. This provides an alternate metric of Gaia, since it is a clear ex-
ample of life enhancing life: An ecosystem that recycles materials can support a much
larger total biomass than one that is totally dependent upon external nutrient fluxes for
growth. Like GUILD, METAMIC tallies cycling ratios for all atomic elements.

3.10 Simulation Procedure
On each time step, a metamic (a) performs its metabolic activities, with all chemical
reactions driven by intracellular chemical concentrations, and (b) exchanges chemicals
via diffusion with the global compartment. In addition, it may asexually reproduce or
die. A generation is a fixed number of time steps (e.g., 20 in all runs below), and at
the end of each generation, a fixed percentage (often 30%) of organisms are chosen
for conjugative gene swapping.

In E, all exogenous fluxes and chemical reactions are performed on each time step.
The environmental reaction constants are typically an order of magnitude lower than
their intracellular counterparts.

4 Hunting for Gaia

This reseach is motivated by a central research question: How likely is the emergence of
distributed environmental regulation in an evolving community of metabolizing organ-
isms? The approach is simply to generate a host of artificial chemistries, use each as the
basis for a few METAMIC runs, and observe the frequency of emergent control. Since
distributed environmental control is a trademark of Gaia, this procedure is referred to
as Gaia hunting.

MD-CHEM chemistry was chosen over real biochemistry for two reasons: (a) The
complexities of the latter are intimidating, particularly at the level of microbial metab-
olism, and (b) The former enables testing over a wide range of (albeit simple) chemistries,
not just one.

The basis in MD-CHEM forces a specialization of the central research question to
our basic experimental question: In chemical environments that incorporate the fun-
damental thermodynamic relationship between energy consumption (production) and
the synthesis (breakdown) of large molecules, what is the likelihood of emergent dis-
tributed environmental regulation among a community of metabolizing microorganisms?
In short, if we make this very basic thermodynamic assumption about chemistry, and
little else, is emergent control expected?

As summarized in Figure 6, the Gaia-hunt loop begins with the generation of an
MD-CHEM artificial chemistry, C ∗. A short METAMIC simulation based on C ∗ then runs
to determine whether C ∗ supports life. In these short runs, the initial population is
typically 20, whereas the maximum allowable size is 100, and ksat = 0, indicating an
insensitivity of metabolisms to the physical parameter, p. After 50 generations, if the
population size exceeds 20, then C ∗ is tested again in a 1,000-generation run, denoted
Gbase(C ∗). If C ∗ enables the population to grow to maximum size in Gbase(C ∗), then
C ∗ is deemed life-supporting and the homeostasis tests can begin.
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Procedure Gaia-Hunt(Max-Chems, GRIthresh)
Num-Good-Chems = 0 ;; Number of life-supporting chemistries
Num-Gaia-Chems = 0 ;; Number of life-supporting chemistries that

also support Gaia
While Num-Good-Chems < Max-Chems do

Use MD-CHEM to create a chemistry, C*
Perform a short (e.g., 50 generation) METAMIC run, based on C*
If population growth occurs, then

Seed = get-random-number-generator-seed
Perform a long (e.g., 1,000 generation) METAMIC run, based

on C*, using metabolizing organisms, and with ksat = 0.
If this long run supports life, then:

Num-Good-Chems = Num-Good-Chems + 1
Perform a short (e.g., 1,000 time step) METAMIC run,

without organisms, to establish the baseline value,
pdead of the focal physical variable, p.

pavg = the time-average value of p from generation Tmax

to 1,000
d = pavg − pdead

p∗
in = pavg − d/2

p∗
out = pavg + d/2
If Gaia-Test(C*,pdead,p∗

in,0.75,GRIthresh,seed) or
Gaia-Test(C*,pdead,p∗

out,0.75,GRIthresh,seed) then
Num-Gaia-Chems = Num-Gaia-Chems + 1

End While
Return Num-Gaia-Chems/Max-Chems

End Procedure

Procedure Gaia-Test(C*,pdead,p*,k,GRI*,seed)
set-random-number-generator-seed(seed)
Perform a long (e.g., 1,000 generation) METAMIC run, based on

C*, using metabolizing organisms, with ksat = k, and with the
metabolic-optimum value of the physical variable p set to p*.

GRI = the time-averaged Gaian regulatory index (based on p*
and pdead) for the entire simulation.

If GRI ≥ GRI ∗ then
return TRUE
else return FALSE

End Procedure

Figure 6. Overview of the Gaia-hunting process.

To establish base and target values of p for the regulatory tests, the value of pavg

is computed as the average value of p in the previous 1,000-generation run between
generations Tmax and 1,000, where Tmax is the first generation where the population hit
the maximum size. Then, pdead is the steady-state p value from the aforementioned
lifeless simulation. Given pavg and pdead, d is computed as the distance between them,
and the two target values, p∗

in and p∗
out, are found by moving d/2 units from pavg toward

and away from pdead, respectively (Figure 7).
These target values form the basis for two Gaian regulatory tests, Gin(C ∗) and

Gout(C ∗), in which the metabolic optimum p value is p∗
in and p∗

out, respectively. These
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p(dead)

p(avg)

p*(out)

p*(in) d

d/2

d/2

time

Figure 7. Establishing optimal physical conditions for Gaia tests: (1) Run a lifeless simulation to find the steady state
value, pdead, of the physical variable p. (2) Repeat the simulation with organisms and record the trajectory of p
(curved line). (3) Take average of the trajectory, pavg from point where maximum population size first occurs. (4) Let
d = pavg − pdead. (5) Let p∗

in = pavg − d/2 be the optimal p value for one Gin run. (6) Let p∗
out = pavg + d/2 be the

optimal p value for another Gout run.

three runs, Gbase(C ∗), Gin(C ∗), and Gout(C ∗) are referred to as the G(C ∗) runs. For a
given C ∗, each G(C ∗) run begins with the same random seed. The key differences are
in the values of p∗ and ksat, where ksat is 0.0 in Gbase(C ∗) and typically 0.75 in Gin(C ∗)
and Gout(C ∗), reflecting a strong sensitivity of metabolic rates to the intracellular value
of p. Using the two p∗ values as targets, the GRI values are then computed for each
generation of the regulatory tests. If GRI, the average GRI value from Tmax to 1,000,
in either run exceeds GRIthresh, then the simulation results are stored as an example of
emergent distributed control. For the runs presented in this article, GRIthresh = 5.

Table 1 summarizes the main parameters used in the Gaia hunt. In addition, the
value of p in all G(C ∗) runs and the lifeless case is computed as

p = c̃1 − c̃2 + c̃3 − c̃4 (7)

where c̃i i = 1, . . . , 4 are the normalized (over all 10 compounds) concentrations of the
four smallest compounds in C ∗. This is an arbitrary choice for the functional relationship
between the chemical and physical factors. Many others are clearly possible.

Figure 8 shows the results of 20 different METAMIC runs, each based on a different
MD-CHEM. A total of 100 life-supporting chemistries were tested, with 20 giving GRI
values above 5, indicating a reasonable degree of regulation. Of these 20 cases, 13 were
Gout and 7 were Gin, with neither type showing particularly better results than the other.
The average GRI of these 20 cases was 7.63, with a standard deviation of 2.71. The
very best regulator had GRI = 14.97, and 7 of the 20 had low values between 5 and 6.

In several scenarios, the regulatory run clearly distinguishes itself from the Gbase case
and maintains a stable value near the optimum, p∗. In other situations, the base and
regulatory cases have more intertwined trajectories. This overlap does not necessarily
decrease GRI, if both curves are in the neighborhood of p∗. However, it weakens the
homeostatic claim when the base case also oscillates near p∗. This was the whole basis
for choosing p∗ at a distance from pavg—but not too close to pdead.

In general, these results indicate that emergent distributed control is hardly a rare
occurrence. Of course, it is certainly not a necessary consequence of metabolizing
organisms in relatively closed environments. However, the basic phenomena arises in
20% of the tested chemistries, with 7–10% of them giving rather convincing evidence
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Table 1. Key parameter values for the Gaia hunt simulations.

Parameter Value
MD-CHEM

Atoms C , H, N , O
Compounds (Nc) 10
Reactions (Nr) 20
Initial compounds (Nic) 4
Compound size range (Rcs) [3, 12]
Reaction size range (Rrs) [1, 3]
Initial compound size bias (Bics) [0.33 0.33 0.33 0 0 0 0 0 0 0 0]
Reaction size bias (Brs) [0.14 0.72 0.14]

METAMIC genetic algorithm
Initial population 20
Maximum population 100
Generations 1,000
Time steps per generation 20
Chromosome 10 reactions + 10 reaction constants
Mutation rate 0.04 per gene
Conjugation fraction 0.3
ksat 0.0 or 0.75

METAMIC global environment
Input fluxes 10 mass units per time step
Input compounds The 4 smallest
Output fractional fluxes 0.001 of all 10 compounds per time step

for a deviation from normal behavior to an unconscious environment-controlling mode.
Remember that in the base case, the metabolic rates are independent of the physical
variable, p, so there is no selective advantage for local regulation of intracellular p
values. In many Gin and Gout runs, the chemistry simply does not provide the flexi-
bility: Organisms cannot alter their metabolisms to attain near-optimal p values while
simultaneously producing enough biomass to eventually reproduce. Hence, they must
stick to the standard metabolisms but operate under suboptimal p regimes.

In our GUILD simulations [9], the environmental control is robust to changes in exter-
nal chemical fluxes. This stems from the lack of constraints on chemical transformations
in that model. However, the reduced reaction possibilities in the above METAMIC runs
strongly restrict the metabolic options. Hence, regulation often breaks down with a
change in exogenous fluxes.

For example, if compound X affects the physical variable, p, and if X flows into the
environment at a higher rate than desired with respect to p∗, then the chemistry may
permit a metabolic pathway that both builds biomass and consumes X, thus moving
the environment closer to p∗. However, if the external influx of X suddenly declines
to a suboptimal value (with respect to p∗), then the chemistry may not also sanction
a viable metabolism that produces X. Hence, environmental control would only occur
with normal or elevated inflows of X.

4.1 Snapshots from the Hunt
A case study of a few convincing examples of emergent regulation from Gaia hunts
reveals some mechanisms by which organisms manage the trade-off between producing
biomass and controlling the environment.
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Figure 8. Emergent regulation (GRI > 5.0) in 20 different METAMIC runs based on 20 different 10-compound,
20-reaction MD-CHEM chemistries. A total of 100 life-supporting chemistries were tested, and 20% gave GRI values
above 5. In each graph, the straight solid line denotes pdead, and the straight dashed line represents p∗. The solid
curve is the trajectory of p in the Gbase run, and the curve with asterisks shows p’s trajectory in the Gin or Gout case.

4.1.1 Scenario GH1
The random chemistry of Figure 9 provides the backdrop for a METAMIC test in which
the Gout run exhibits strong environmental regulation: GRI = 12.05. Figure 10 compares
p trajectories for the Gbase and Gout runs; it also illustates the relatively high GRI value
after about generation 500. In these runs, the Gbase population hits the maximum size
of 100 after 184 generations, whereas the Gout population needed 242 generations.

A detailed comparison of the Gbase and Gout runs reveals the metabolic sacrifices that
the Gout organisms make to control their internal environments near p∗. First, a tally
of the biomass combinations used by the 1,000th-generation organisms for both runs
appears in Table 2.
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Compounds:
H2 NO C3N C2O2 C5O C8 C6N2 C4N4 C9N3 C5N7

Reaction Energy Frequency

0: C3N + C3N ⇒ C6N2 1.00 (1 : 6)
1: C6N2 ⇒ C3N + C3N –1.00 (98 : 8)
2: C3N + C6N2 ⇒ C9N3 0.92 (1 : 2)
3: C9N3 ⇒ C3N + C6N2 –0.92 (98 : 100)
4: C3N + C9N3 ⇒ C8 + C4N4 –0.19 (4 : 59)
5: C8 + C4N4 ⇒ C3N + C9N3 0.19 (97 : 0)
6: C4N4 + C4N4 ⇒ C3N + C5N7 0.19 (1 : 6)
7: C3N + C5N7 ⇒ C4N4 + C4N4 –0.19 (0 : 95)
8: C3N + C2O2 ⇒ NO + C5O 0.19 (0 : 1)
9: NO + C5O ⇒ C3N + C2O2 –0.19 (0 : 3)
10: C8 + C6N2 + C4N4 ⇒ C9N3 + C9N3 0.58 (2 : 100)
11: C9N3 + C9N3 ⇒ C8 + C6N2 + C4N4 –0.58 (52 : 0)
12: C5O + C4N4 ⇒ NO + C9N3 0.39 (37 : 99)
13: NO + C9N3 ⇒ C5O + C4N4 –0.39 (2 : 9)
14: NO + C3N + C9N3 ⇒ NO + C6N2 + C6N2 –0.17 (61 : 80)
15: NO + C6N2 + C6N2 ⇒ NO + C3N + C9N3 0.17 (0 : 98)
16: C2O2 + C6N2 ⇒ NO + NO + C8 –0.33 (42 : 1)
17: NO + NO + C8 ⇒ C2O2 + C6N2 0.33 (98 : 79)
18: C3N + C6N2 ⇒ C3N + C3N + C3N –0.67 (0 : 3)
19: C3N + C3N + C3N ⇒ C3N + C6N2 0.67 (98 : 100)

Figure 9. Compounds and reactions for 10 × 20 Scenario GH1. The atoms C, H, N, and O are used only to enhance
readability and recall of compound names; in no way do the atoms or compounds directly model their real-world
counterparts. Energy values (prior to catalytic enhancement) appear in the second column, with positive (negative)
values for endothermic (exothermic) reactions. The third column lists pairs of occurrence frequencies for the Gbase
and Gout cases, respectively. Each value denotes the number of organisms using that reaction in their metabolism
after the final (1,000th) generation. The population size had been at or about a maximum level of 100 since very
early in both simulations.

The column totals in Table 2 indicate that whereas C6N2 is the favorite biomass in
Gbase, the organisms of Gout prefer C9N3. The difference, one molecule of C3N , is
critical for environmental control.

In GH1, the physical variable, p, is computed as

p = ˜[H2] − ˜[N O] + ˜[C3N ] − ˜[C2O2] (8)

Figure 10 indicates that the base case yields a higher value of p than desired in Gout.
Equation 8 hints at possible routes to improvement via decreasing the positive terms
or increasing the negative terms. Although H2 is inert in this chemistry (i.e., it is not
involved in any reactions), the other three compounds in Equation 8 are theoretically
amenable to metabolic control.

A comparison of the environmental chemical concentration profiles for Gbase and
Gout (Figure 11) shows that Gout organisms maintain a much lower value of C3N than
in Gbase. However, this choice carries a high metabolic cost.

Although the populations in both runs exhibit a wide variety of metabolisms, a few
very popular chemical reactions appear in a large majority of the organisms in each
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Figure 10. Homeostatic behavior in Scenario GH1. Leftmost graph displays physical variable, p, when the metabolic
rates are sensitive (Gout) and insensitive (Gbase) to p. Rightmost graph portrays the Gaian regulatory index (GRI) for
the Gout run.

Table 2. Biomasses used by the 100 organisms at the end of the 1,000th generation of Scenario GH1’s Gbase and
Gout runs. In each row, the column entries for the compounds used in the biomass combination type contain the
number of organisms using that combination.

Biomass
Combination
Type C6N2 C4N4 C5N7 C9N3

Gbase

1 67 67
2 30 30
3 1 1
Total 98 30 1 67
Gout

1 54 54
4 41 41
5 5 5
Total 54 41 5 100
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Figure 11. Environmental chemical concentrations for the Gbase (left) and Gout (right) runs of Scenario GH1.
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Table 3. Anabolic differences between the evolved metabolisms of the Gbase and Gout runs for GH1. The exact
anabolic combinations above are the most popular, appearing in 57% (67%) of the Gbase (Gout) individuals at the end
of generation 1,000. Energy requirements take catalytic effects into account by reducing the energy demand by the
standard catalytic factor of 1 + catalyst size. Net biomass gain (rightmost column) involves five terms for the five
biomass combination types from Table 2. The anabolic efficiency values for the primary biomass types of each run
are in bold.

Reaction Energy used Net biomass gain
Common
17: NO + NO + C8 ⇒ C2O2 + C6N2 0.33 1,1,1,0,0
19: C3N + C3N + C3N ⇒ C3N + C6N2 0.133 1,1,1,0,0
Gbase only
5: C8 + C4N4 ⇒ C3N + C9N3 0.189 1, −1, 0, 0, 1
Gbase total 0.655 3,1,2,0,1
Gbase anabolic efficiency 0.22, 0.66, 0.33,—, 0.655
Gout only
10: C8 + C6N2 + C4N4 ⇒ C9N3 + C9N3 0.585 1, −2, −1, 1, 2
12: C5O + C4N4 ⇒ NO + C9N3 0.394 1, −1, 0, 0, 1
15: NO + C6N2 + C6N2 ⇒ NO + C3N + C9N3 0.056 −1, −2, −2, 1, 1
Gout total 1.501 3, −3, −1, 2, 4
Gout anabolic efficiency 0.50, — , — , 0.75, 0.38

Table 4. Catabolic differences between the evolved metabolisms of the Gbase and Gout runs for GH1. The exact
catabolic combinations above are the most popular, appearing in 32% (33%) of the Gbase (Gout) individuals at the end
of generation 1,000. Energy production ignores catalytic effects, since these alter reaction rates but not the energy
yield per unit of reactant. Net biomass gain (rightmost column) involves five terms for the five biomass combination
types from Table 2.

Reaction Energy produced Net biomass gain
Common
3: C9N3 ⇒ C3N + C6N2 0.92 0, 1, 1, −1, −1
14: NO + C3N + C9N3 ⇒ NO + C6N2 + C6N2 0.168 1, 2, 2, −1, −1
Gbase only
1: C6N2 ⇒ C3N + C3N 1.0 −1, −1, −1, 0, 0
11: C9N3 + C9N3 ⇒ C8 + C6N2 + C4N4 0.585 −1, 2, 1, −1, −2
Gbase total 2.673 −1, 4, 3, −3, −4
Gout only
4: C3N + C9N3 ⇒ C8 + C4N4 0.189 −1, 1, 0, 0, −1
7: C3N + C5N7 ⇒ C4N4 + C4N4 0.189 0, 2, 1, 2, −1
Gout total 1.466 0, 6, 4, 0, −4

run. The final column of Figure 9 shows the frequencies of the different reactions at the
end of both runs. Similarly, many different anabolisms and catabolisms are used, but
a few variants occur repeatedly, providing a general picture of the average individual.

In Tables 3 and 4, the anabolic and catabolic reactions are listed for Gbase(GH1)
and Gout(GH1), with reactions common to both runs appearing first. The rightmost
column, net biomass gain, considers the five basic biomass combinations, as enumer-
ated in Table 2. From the perspective of each biomass type, the net production of
both compound molecules that make up the type is calculated for each reaction and
summed for the entire reaction set. For example, relative to biomass type 1, {C9N3,
C6N2}, reaction 15 has a net biomass gain of −1, since two C6N2 molecules are con-
sumed as reactants to produce one C9N3 molecule. For the endothermic reactions, the
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energy input divided by the biomass gain gives a rough estimate of anabolic efficiency,
with lower values indicating greater performance. These ratios are calculated relative
to each biomass type, and the ratios for the most popular biomass types are indicated
by bold in Table 3.

As Table 3 shows, the average Gbase metamic has an efficiency of 0.22 for its prime
biomass type, 1, which constitutes 67% of the population, and 0.66 for its secondary
biomass type, 2, with a 30% frequency. Conversely, the average Gout metamic has
efficiencies of 0.5 and 0.75 for its main biomass types, 1 and 4, which make up 54%
and 41% of the population, respectively. Including the efficiencies for the other biomass
types, as listed in Table 2, the average efficiencies for the two metamic populations are:

Efficiency(Gbase(GH1)) = (0.22)(0.67) + (0.66)(0.30) + (0.33)(0.01) = 0.35

Efficiency(Gout(GH1)) = (0.50)(0.54) + (0.75)(0.41) + (0.38)(0.05) = 0.60

Hence, the Gout metamic works nearly twice as hard to produce biomass. Much of
this extra effort goes to creating the larger C9N3 molecule, which has the side effect of
tying up more C3N in biomass, thus contributing to control of the physical variable, p.
In addition, Table 4 reveals the consumption of C3N in the two catabolic reactions that
are commonly, but uniquely, found in Gout metamics: 4 and 7. Note that the energy
yields of these two reactions are much less than those of the popular exothermic
reactions in Gbase: 1 and 11. Table 4 also shows that for its two main biomass types, 1
and 2, the Gbase organism has minimal biomass loss (−1) and a gain (4), respectively,
during catabolism, whereas the Gout agent has no net loss or gain for its two main
biomass types, 1 and 4.

Clearly, the Gout metamics are selected for their ability to control their intracellular
p values in exchange for otherwise less effective metabolisms. Global environmental
control near p∗ then emerges from this local selective advantage.

Another sign of Gaia, recycling, has a more pronounced appearance in Gout than in
Gbase. The former displays stable cycling ratios of between 2 and 10 for the four atomic
elements, whereas the latter gives only sporadic weak recycling at ratios between 0.25
and 2. When the maximum population size is increased to 500 (with no other increases
in environmental fluxes) a 5,000-generation run of Gout yields cycling ratios between
20 and 60 and GRI > 10.0. In nature, where population sizes are in the millions and
billions, and where there have been equally many years in which to evolve efficient
complementary metabolisms, it is not surprising that cycling ratios in the thousands
often occur [23].

Since the environment in GH1 receives (a) the input fluxes of only the four lightest
compounds, and (b) no external energy injections, long-term regulation near p∗ is
far from a certainty due to the excessive energetic demands of the control-oriented
metabolisms. However, several alternate Gout (GH1) runs of between 5,000 and 10,000
generations yielded persistent control with GRI > 10.0.

Interestingly enough, these long runs exhibited the emergence of several different
dominant biomass types. In one case, type-1 biomass, {C9N3, C6N2}, was used by 100%
of the population, yielding GRI = 10.78. In another, type-5 biomass, {C9N3, C5N7},
attracted 95% of the metamics, resulting in GRI = 10.23. In both cases, the anabolisms
ressembled those of the original Gout(GH1) run, with a central core of reactions 10, 12,
15, and 19. However, the catabolisms varied considerably, sometimes having more in
common with the Gbase(GH1) run.

Population convergence to a common biomass seems expected, since individu-
als that share a biomass type, B, with a dead organism, X, could, given the proper
metabolism, more quickly assimilate the decay products of X into their own B com-
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Table 5. Most popular anabolism and catabolism for an alternate Gout(GH1) scenario, Gout(GH1)∗, which ran for
7,000 generations with GRI = 19.06. The energy values in column 2 ignore catalytic effects, while energy consumption
is reduced by the standard catalytic factor: 1 + catalyst size. In this run, type-2 biomass was the most prevalent.
Consequently, the anabolism uses 1.466 energy units to produce three biomass units, while the catabolic sequence
yields 2.863 energy units and actually produces five biomass units.

Energy Net biomass
Reaction produced gain
Anabolism
0: C3N + C3N ⇒ C6N2 −1.00 1,1,1,0,0
17: NO + NO + C8 ⇒ C2O2 + C6N2 −0.33 1,1,1,0,0
19: C3N + C3N + C3N ⇒ C3N + C6N2 −0.133 1,1,1,0,0
Anabolic total −1.466 3,3,3,0,0
Anabolic efficiency 0.49, 0.49, 0.49, — , —
Catabolism
1: C6N2 ⇒ C3N + C3N 1.0 −1, −1, −1, 0, 0
3: C9N3 ⇒ C3N + C6N2 0.92 0, 1, 1, −1, −1
4: C3N + C9N3 ⇒ C8 + C4N4 0.189 −1, 1, 0, 0, −1
11: C9N3 + C9N3 ⇒ C8 + C6N2 + C4N4 0.585 −1, 2, 1, −1, −2
14: NO + C3N + C9N3 ⇒ NO + C6N2 + C6N2 0.168 1, 2, 2, −1, −1
Catabolic total 2.862 −2, 5, 3, −3, −5

pounds. Organisms with a different biomass type might have to wait slightly longer for
the environment to decompose B compounds into reactants that they could utilize.

However, in the most interesting of the long Gout(GH1) runs, biomass type 2, {C6N2,
C4N4}, held a steady 85–95% for over 5,000 generations, with type 1 filling in the
remainder. Although type 2 had no consistent presence in the other three Gout(GH1)
runs, it made up 30% of the Gbase(GH1) individuals. This case, Gout(GH1)*, displayed
an impressive GRI = 19.06. Note that the maximum allowable GRI value at any time
step was artificially set to 20, not infinity, so the GRI values are actually underestimates
in the very successful regulatory runs.

In Table 5, a detailed look at the dominant metabolism in Gout(GH1)* explains its
superior performance. Compared to Gbase(GH1)’s anabolism, Gout(GH1)* replaces re-
action 5 with reaction 0. This entails the consumption of an extra three C3N molecules,
but at an increased energy cost of 1.00 − 0.189 = 0.811. This yields an anabolic effi-
ciency of 0.49, midway between the efficiencies of Gbase(GH1) and Gout(GH1). Looking
back at Gout(GH1)’s anabolism, it replaced reaction 5 with reactions 10, 12, and 15. To-
gether, these three reactions have no net regulatory influence, since they have a net
production of one NO and one C3N molecule; however, the removal of reaction 5
does reduce C3N production by one molecule. So on the anabolic side, the regulatory
enhancement of Gout(GH1) over Gbase(GH1) is one more consumed C3N molecule,
whereas Gout(GH1)*’s improvement is a more substantial three C3N molecules.

On the catabolic ledger, Gout(GH1)∗ adds reaction 4 to Gbase(GH1)’s set. This con-
sumes one more molecule of C3N but provides little extra energy, 0.189. Compar-
ing Gout(GH1)∗ to Gout(GH1), the former has a net catabolic production of one C3N
molecule, whereas the latter removes two. Hence, Gout(GH1) appears to hold a regu-
latory advantage during catabolism. However, note that for its main biomass type, 2,
Gout(GH1)∗ gains five molecules during catabolism, whereas Gout(GH1) gains nothing
for its two main biomass types. Thus, although the trade-offs may balance on the
catabolic side, Gout(GH1)*’s anabolic dominance over Gout(GH1) appears to be the key
to stellar environmental control over the entire 7,000-generation run.

Artificial Life Volume 8, Number 2 145



K. Downing Simulated Emergence of Distributed Environmental Control

Table 6. Compounds and reactions for 10 × 20 Scenario GH2. The atoms C, H, N, and O are used only to enhance
readability and recall of compound names; in no way do the atoms or compounds directly model their real-world
counterparts. Energy values (prior to catalytic enhancement) appear in the second column, with positive (negative)
values for endothermic (exothermic) reactions. The third column lists pairs of occurrence frequencies for the Gbase
and Gout cases, respectively. Each value denotes the number of organisms using that reaction in their metabolism
after the final (1,000th) generation. The population size had been at or about a maximum level of 100 since very
early in both simulations. Compounds: NO CHN CN2O N2O2 CN2O2 N3O2 N3O3 CHN3O2 CN4O3 CHN4O3.

Reaction Energy Frequency

0: CHN + N2O2 ⇒ CHN 3O2 0.98 (99 : 6)
1: CHN 3O2 ⇒ CHN + N2O2 −0.98 (1 : 46)
2: CN2O + N2O2 ⇒ CN4O3 1.00 (73 : 100)
3: CN4O3 ⇒ CN2O + N2O2 −1.00 (5 : 0)
4: NO + N2O2 ⇒ N3O3 0.92 (3 : 49)
5: N3O3 ⇒ NO + N2O2 −0.92 (33 : 23)
6: NO + CN4O3 ⇒ CN2O2 + N3O2 −0.28 (12 : 5)
7: CN2O2 + N3O2 ⇒ NO + CN4O3 0.28 (75 : 47)
8: CHN + N3O3 ⇒ CHN 4O3 0.92 (4 : 98)
9: CHN 4O3 ⇒ CHN + N3O3 −0.92 (9 : 1)
10: N3O3 ⇒ NO + NO + NO −1.58 (40 : 68)
11: NO + NO + NO ⇒ N3O3 1.58 (10 : 44)
12: NO + N2O2 ⇒ NO + NO + NO −0.66 (38 : 16)
13: NO + NO + NO ⇒ NO + N2O2 0.66 (25 : 97)
14: CHN 3O2 ⇒ NO + NO + CHN −1.56 (3 : 9)
15: NO + NO + CHN ⇒ CHN 3O2 1.56 (87 : 99)
16: CHN + N2O2 ⇒ NO + NO + CHN −0.57 (19 : 13)
17: NO + NO + CHN ⇒ CHN + N2O2 0.57 (88 : 28)
18: N2O2 ⇒ NO + NO −1.00 (93 : 97)
19: NO + NO ⇒ N2O2 1.00 (16 : 1)

4.1.2 Scenario GH2
In a different, shorter, Gaia hunt, the random chemistry in Table 6 led to an interesting
scenario, GH2. Here, environmental control emerged but could only persist for 700–
800 generations. Although the graphs of Figure 12 display impressive regulation (GRI
= 15.93), extended follow-up Gout runs of several thousand generations revealed a
consistent breakdown in control.

In GH2, the physical variable, p, is computed as

p = ˜[N O] − ˜[CH N ] + ˜[CN2O] − ˜[N2O2] (9)

As in scenario GH1, the Gbase case yields an average p value well above p∗. Hence,
control involves decreasing p via (a) increasing CHN or N2O2, or (b) decreasing NO
or CN 2O.

As shown in Table 7, the two runs differ in their primary biomass type, with Gbase

favoring type 1 and Gout using type 2. The difference between these is CHN 3O2 in type
1, and CHN 4O3 in type 2. Hence, type 2 biomass requires one more molecule of NO,
and this extra NO consumption (Figure 13) enhances regulation, but, once again, at a
metabolic cost.
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Figure 12. Homeostatic behavior in Scenario GH2. Leftmost graph displays physical variable, p, when the metabolic
rates are sensitive (Gout) and insensitive (Gbase) to p. Rightmost graph portrays the Gaian regulatory index (GRI) for
the Gout run.

Table 7. Biomasses used by the 100 organisms at the end of the 1,000th generation of Scenario GH2’s Gbase and
Gout runs. In each row, the column entries for the compounds used in the biomass combination type contain the
number of organisms using that combination.

Biomass
combination
type N3O3 CN 4O3 CHN 3O2 CHN 4O3

Gbase

1 94 94
2 4 4
3 2 2
Total 2 98 96 4
Gout

1 1 1
2 99 99
Total 0 100 1 99
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Figure 13. Environmental chemical concentrations for the Gbase (left) and Gout (right) runs of Scenario GH2, where
the main difference is in the concentrations of NO. The graphs differ slightly in scale.
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Table 8. Anabolic differences between the evolved metabolisms of the Gbase and Gout runs for GH2. The anabolic
combinations above are the four most popular endothermic reactions for the two runs. Energy requirements take
catalytic effects into account by reducing the energy demand by the standard catalytic factor of 1 + catalyst size. Net
biomass gain (rightmost column) involves three terms for the three biomass combination types from Table 7. The
anabolic efficiency values for the primary biomass types of each run are in bold.

Reaction Energy used Net biomass gain
Common
15: NO + NO + CHN ⇒ CHN 3O2 1.56 1,0,1
Gbase only
0: CHN + N2O2 ⇒ CHN 3O2 0.98 1,0,1
7: CN 2O2 + N3O2 ⇒ NO + CN 4O3 0.28 1,1,0
17: NO + NO + CHN ⇒ CHN + N2O2 0.14 0,0,0
Gbase total 2.96 3,1,2
Gbase anabolic efficiency 0.99, 2.96, 1.48
Gout only
2: CN 2O + N2O2 ⇒ CN 4O3 1.00 1,1,0
8: CHN + N3O3 ⇒ CHN 4O3 0.92 0, 1, −1
13: NO + NO + NO ⇒ NO + N2O2 0.22 0,0,0
Gout total 3.70 2, 2, 0
Gout anabolic efficiency 1.85, 1.85, —

Table 9. Catabolic differences between the evolved metabolisms of the Gbase and Gout runs for GH2. The exact
catabolic combinations above are the three most popular exothermic reactions from the two runs. Energy production
ignores catalytic effects, since these alter reaction rates but not the energy yield per unit of reactant. Net biomass
gain (rightmost column) involves three terms for the three biomass combination types from Table 7.

Reaction Energy produced Net biomass gain
Common
10: N3O3 ⇒ NO + NO + NO 1.58 0, 0, −1
18: N2O2 ⇒ NO + NO 1.00 0,0,0
Gbase only
12: NO + N2O2 ⇒ NO + NO + NO 0.66 0,0,0
Gbase total 3.24 0, 0, −1
Gout only
1: CHN 3O2 ⇒ CHN + N2O2 0.98 −1, 0, −1
Gout total 3.57 −1, 0, −2

A brief comparison of Table 8 to Table 3 indicates that the underlying chemistry in
GH2 offers no guarantees of metabolic success. The average anabolic efficiencies are
1.08 and 1.85 for Gbase and Gout, respectively. These are both much worse (i.e., higher)
than the worst efficiency, 0.6, in scenario GH1. Hence, the metamics may already
be struggling for existence in the Gbase(GH2) run. It is therefore understandable that
regulation has a limited duration. In fact, in a series of Gout(GH2) repeats (with different
random seeds), the regulatory metabolisms only arose on occasion and never persisted
for more than 400–600 generations.

On the catabolic side, Gout organisms get slightly more energy from their three main
reactions (Table 9). By using reaction 1, they reap a huge energy benefit without loss of
biomass. Conversely, the Gbase metamics use CHN 3O2 as biomass and would therefore
have trouble exploiting reaction 1 to its fullest. Instead, Gbase catabolisms use reaction
12, which has a high energy yield but which produces NO. By using reaction 1 instead
of 12, the Gout agents keep NO lower, thus enhancing control. Recycling in the two
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GH2 cases is nearly identical, with cycling ratios in the 4–7 range for Gbase and the 5–8
range for Gout.

4.1.3 Results Summary
The Gaia hunt and case studies therein indicate that emergent environmental control can
easily occur in systems where (a) energy consumption and biomass production interre-
late in a standard manner, and (b) bidirectional interactions exist between metabolisms
and physical factors. Whether one uses the quantitative criteria detailed earlier (and
gets 20% Gaia) or one simply views the graphs in Figure 8 (and sees 5–7% Gaia) has
little bearing on the general conclusion: Although regulation is not inevitable, it is
certainly within the realm of plausibility.

Even within a particular chemical environment, predictions may be ambiguous. For
instance, the fact that GH2 turned up during the Gaia hunt (with the highest GRI value!)
was clearly only good fortune, since repeated runs of the same scenario did not always
lead to regulation. Conversely, other scenarios based on other chemistries that did not
yield high GRI values may have fared better on other attempts. In short, many of the
emergences of Gaian control appear contingent.

Once the population locks into a particular dominant biomass type and supporting
metabolisms, the shift to another regime rarely occurs in these fixed-influx scenarios.
Hence, Gaia does not appear to be a global attractor in all of the successful cases,
although scenarios such as GH1 show a marked tendency toward control. In a set of
isolated tests, changes to the fluxes often incurred biomass and metabolic shifts, but
no extensive Gaia hunts in dynamic environments have yet been performed.

The highlighted cases, along with several others, reveal a trade-off between efficient
metabolism and environmental control. Evolution in the Gbase scenarios typically finds
the chemistry’s most metabolically useful reactions, whereas the Gout and Gin organisms
also have a p value to contend with, thereby complicating their search in metabolism
space.

5 Related Work

Daisyworld [24] and its many offspring [12, 14, 18, 19] dominate Gaian model-based
thinking. All are simple and elegant, but all are based on standard differential equations
and do not include models of individuals nor genetics. Since all necessary genotypes
are available from the start, the regulatory behaviors that emerge are largely hardwired.

To date, few artificial life researchers have investigated Gaian issues. The EUZONE
model [7] of the evolution of aquatic ecosystems is motivated by Gaian thinking and
achieves the emergence of one species, vertically migrating photosynthesizers, which
creates a niche for another species, aerobic bottom feeders, via its effects upon the
chemical environment. However, environmental regulation does not arise in EUZONE.

GUILD and METAMIC do parallel research into the emergence of autocatalytic sets
[11], metabolic systems [1], and hypercycles [2], except that we focus on (a) interaction
pathways involving both organisms and chemicals, and (b) the self-organized regulation
of the environment by the evolving biota. The Gaia hunt is inspired by Kauffman’s
[11] NK-landscape explorations, wherein many sets of randomly generated primitive
interactions are simulated, and the emergent patterns categorized. But of course, the
Gaia hunt reported above is only the beginning of a much needed, more comprehensive
future investigation.

In general, many ALife systems involve populations of genotypes that encode for
feeding, metabolizing, mating, and other strategies, but the focus is almost exclusively
on the emergent structure of the evolving populations themselves, not upon the emer-
gent environmental effects, whether regulatory or otherwise.
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One notable exception is swarm intelligence [3], based on the phenomena of stig-
mergy, wherein simple organisms, for example, social insects, interact indirectly by
environmental markings, such as pheromone trails or cell patterns in a honeycomb.
In essence, the organisms communicate and coordinate via the global structure that
emerges from their parallel activity. The building, and particularly the maintenance, of
this structure is easily cast as a control problem. One key difference is that in Gaia, the
target environmental condition is somehow optimal for the continued survival of the
organisms themselves, although the beehive or ant nest is also clearly an integral part
of an insect colony’s well-being. Apparently, a comparitive analysis of stigmergy and
Gaia could shed interesting light on both the phenomena themselves and the general
principles underlying emergent environmental effects. Swarm intelligence is probably
the most important contemporary ALife research area with strong links to Gaia theory.

6 Discussion

A few ardent Gaia believers envision a world in which biotic control over the biosphere
is ubiquitous, optimal (they just have not quantified exactly what is being optimized),
and the fundamental organizing principle of nature—above even natural selection itself.
However, the majority of serious scientists who follow Gaian developments with interest
and curiosity take a more conservative stance. To them, the biogeochemical data and
computer models hint of a phenomenon that may be (a) prevalent, (b) far from optimal
but generally satisfactory in a world where large-scale physical factors can easily erase
much of the biota’s best and worst work in a geological heartbeat, and (c) completely
consistent with natural selection.

This research is grounded in the latter view. Our motivation is an understanding
of some of the fundamental mechanisms by which evolving organisms could wrestle
some degree of environmental control from the brute physical forces of nature. In short,
how could Gaian phenomena emerge on an evolutionary scale? Hence, GUILD, and
particularly METAMIC, take a step beyond Daisyworld by assuming very little about the
initial phenotype pool but still providing a virtual incubator for distributed homeostatic
emergence, in full harmony with individual-based natural selection.

As for ubiquity versus prevalence, METAMIC was designed to test the general fea-
sibility, not the necessity, of emergent environmental control among populations of
evolving, metabolizing microbes. No commitment to a particular chemistry was de-
sired, but the chemical foundation needed (a) a restricted set of reactions, and (b) a
qualitatively realistic link between energy, structural entropy, and biomass. The result-
ing evolution of regulation in many test runs (based on a variety of random chemistries)
supports this feasibility hypothesis.

However, the trade-offs observed between efficient metabolisms and those with
Gaian side effects partially support the Neo-Darwinian cheaters-will-prosper attack. In-
deed, the p-value-controlling side effects can exact a heavy cost in METAMIC, although
they do provide an immediate local selective advantage. The empirical question is
the standard one: Do the benefits exceed the costs? Clearly, no right-minded Gaian
nor anti-Gaian could give a definitive answer to this general question, and neither can
METAMIC. In some runs in some chemical worlds, the benefits dominated and control
emerged as an apparent stable attractor; in others, it arose occasionally as something
akin to a saddle point; and in many cases, the chemistry simply did not offer many
metabolic choices, although sustained life was possible. So if METAMIC has captured
some essence of the real world, then one basic take-back-to-the-wild lesson from the
computer runs is simply that Gaian homeostasis is neither tautological nor impossi-
ble, but clearly contingent on a host of physicochemical, and quite possibly historical,
factors.
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Of course, the real world has only one chemistry, but it also has many different
chemical systems with varying constraints and dynamics based on, among others, the
physical surroundings. And even within a particular chemical system, the path of mi-
crobial evolution is hardly deterministic. So the use of hundreds of abstract chemistries
instead of one real chemistry should not automatically disqualify our Gaia-hunting
results from legitimate biological consideration. Rather, it will hopefully inspire bio-
chemists to explore further METAMIC-like simulators using their own chemical mod-
els.

Regarding optimality, METAMIC gives no evidence of perfect (i.e., zero-error) robust
control. A population is often capable of moving the physical variable to p∗

out or
p∗

in, but not both. Similarly, it may regulate under one set of environmental fluxes
but completely lose control under another. In GUILD, the unrestricted metabolic pool
enabled this kind of flexible regulation, but the addition of energy constraints and small
reaction sets hinders that behavior in METAMIC. Many MD-CHEM chemistries appear
to admit one or a few possibilities for both (a) metabolic subsistence, and (b) p-value
control. But even under fixed conditions, the energetic sacrifices of the latter may
support only temporary control, as in scenario GH2.

Although one prime motivation of METAMIC vis-a-vis GUILD is to test Gaian emer-
gence under restrictive chemical situations, all chemistries in the Gaia hunt were 10x20
(10 compounds and 20 reactions), providing somewhat limited metabolic possibilities.
Presumably, larger and more intricate chemistries would expand the pool of viable
metabolisms, supporting a truly diverse population of organisms that could evolve to
follow moving set-points and changing fluxes. A few tests with 15 × 30 and 20 × 40
chemistries have been run, and control has been observed, but so far, no indications
of increased robustness have surfaced.

Although GUILD was tested in a two-dimensional world, and control emerged,
METAMIC has not yet been ported to a spatial model. Without larger chemistries,
the niching potential in two-dimensional situations might not be exploited, so these
two improvements should be investigated simultaneously.

Finally, for more realistic Gaia tests, METAMIC should also run on a model of real
biochemistry. Although easier said than done, simplified models might be sufficiently
amenable to our framework. However, even then, the general approach still falls prey to
attacks from a genetic angle, since the direct mapping from genes to metabolic reactions
greatly simplifies reality. Thus, future genomes might encode the initial conditions for
a morphogenetic process whose final result is a stable intracellular biochemical cycle:
a metabolism.

Of course, one can always find deficiencies with Gaia and inaccuracies in its sup-
porting models compared to the real world. Still, examples such as Daisyworld, GUILD,
and METAMIC show that emergent distributed environmental control can occur under
the guidance of standard individual-based natural selection in abstract domains that
have qualitative grounding in the natural world. Essentially, all three projects had the
same goal: reconciling Gaia theory with natural selection. This is the main hurdle to
establishing Gaia as a viable hypothesis, amenable to scientific analysis and objective
evaluation. This would also aid reconciliation at the personal level, where renowned
scientists on both sides of the Gaia argument have bickered more over the new-wave
ecological and spiritual interpretations that Gaia research accidentally spawned than
over the biogeochemical data.

Our aim has been to exploit ALife tools in showing that the basic phenomenon of
emergent distributed control of an environment by naturally selected agents is possi-
ble. Whether Gaia actually occurs on Earth is another, more complicated question,
and one to which we have no strong convictions. We only hope that our results in-
spire further Gaian investigations from the ALife perspective. It is often said that Gaia
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theory has its Aristotle (in James Lovelock) but still needs a Newton to formalize the
concept thoroughly. A good ALife background could be a key prerequisite for that
job.
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