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ABSTRACT
The Baldwin Effect is a very plausible, but unproven, bio-
logical theory concerning the power of learning to accelerate
evolution. Simple computational models in the 1980’s gave
the first constructive proof of its potential existence, and
subsequent work in evolutionary computation has shown the
practical, computational, advantages of hybrid evolution-
learning systems . However, the basic theory, particularly
its second phase (involving genetic assimilation of acquired
characteristics) is difficult to reconcile in systems controlled
by neural networks, particularly those that arise from their
genotypes via a complex developmental process. Our re-
search uses new evidence of the blurred distinction between
development and learning in natural neural systems as the
basis for an abstract model displaying the Baldwin Effect in
artificial neural networks that evolve, develop and learn.

Categories and Subject Descriptors

I.2.6[Learning]: Connectionism and Neural Nets

General Terms

Algorithms

1. INTRODUCTION
The Baldwin Effect (B.E.), an intriguing theory as to

learning’s ability to accelerate evolution [3, 16], sporadi-
cally generates interest in the field of evolutionary compu-
tation, both from theoretical and practical perspectives [15,
2]. Concerning theoretical evolutionary biology, the verac-
ity of B.E. is difficult to test, due to the complications of
evolving populations of organisms - with quantifiable learn-
ing abilities - over many generations. For more practical
computational issues, such as improving search-based prob-
lem solvers, B.E. provides an easily-implemented paradigm
for combining (global) evolutionary computation with (lo-
cal) learning in a manner that often accelerates the overall
search process. In turn, these computer models shed light
on the (still rather vague) theoretical details of B.E.
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Notwithstanding the myriad adaptive mechanisms in liv-
ing organisms, the most potent forms of learning in nature
are normally associated with networks of neurons (i.e. ner-
vous systems). Thus, to understand the full biological ram-
ifications of B.E., one must consider it in the context of
neural-network-based learning systems. In nature, these net-
works emerge from a complex developmental process that
(loosely speaking) uses DNA instructions to produce brains;
but nowhere do DNA segments (i.e. genes) code for indi-
vidual neurons nor the connections between them: the map-
ping from genotype to phenotype is extremely indirect ; and
this confounds B.E by greatly reducing the possibility for
typical learned associations (often realized as synaptic mod-
ifications) to eventually be expressed in the genotype and
transmitted to future generations. It is this transfer of phe-
notypic to genotypic modifications - in the opposite direc-
tion of development - that is prerequisite for the Baldwin
Effect. Although B.E. adherents view this reverse-transfer
process as very indirect in its own right, there must, at some
level, exist a relationship between phenotypic and genotypic
change for B.E. to remain plausible.

In this work, we examine the mechanisms traditionally as-
sociated with neural-network development and learning. We
find that the border between the two processes contains a sig-
nificant gray area with respect to the creation of new neurons
(a.k.a. neurogenesis) and synapses (a.k.a. synaptogenesis),
along with the tuning of those synapses. To wit, neuroge-
nesis and synaptogenesis are not restricted to early neuro-
development, as once believed. Recent evidence [14] shows
that neurons can be generated and inter-connected through-
out life, depending upon an animal’s mental (and physical)
challenges. Thus, neuro- and synaptogenesis can be shared
between development and learning, with the genome broker-
ing the actual division of labor. Furthermore, shifts in this
distribution that transfer some of the burden from mature
(learning) stages of life to early (developmental) stages, sup-
port the reverse-transfer requirements of the Baldwin Effect.

Motivated by these biological findings and their implica-
tions for the B.E., we devise an abstract model in which a)
artificial neural networks (ANNs) evolve, develop and learn,
and b) one fundamental aspect of learning involves neuro-
and synaptogenesis (to handle unsolved problem instances).
By monitoring the evolving division of neuron-generating la-
bor between development and learning, we observe this more
flexible interpretation of the Baldwin Effect.



2. THE BALDWIN EFFECT
One of the first proposals that learning could accelerate

evolution was Jean-Baptiste Lamarck’s (1744-1829) inheri-
tance of acquired characteristics, wherein physical and men-
tal changes incurred during one’s lifetime could be passed on
directly to offspring. In terms of our contemporary under-
standing of the germ-soma distinction, Lamarckianism im-
plies a reverse transcription of the modified phenotype back
into the genotype, a process that is fully realizable and often
useful in evolutionary algorithms, but biologically unrealis-
tic.

In 1896, James Baldwin postulated an indirect mechanism
for the eventual inheritance of acquired characteristics [3].
This Baldwin Effect involves two stages. In phase I (Fig-
ure 1), assume a set of genotypes spread uniformly about
a sub-optimal region, D1, of the fitness landscape. If phe-
notypes have plasticity, then each can essentially perform
local search in the fitness landscape (as shown by the circles
with horizontal arrows), and a rough estimate of phenotypic
fitness will be the time-averaged landscape locations of the
phenotype. Clearly, those phenotypes lying near the base
of the optimal peak will have better opportunities to learn
their way to higher fitness. Hence, they will have a selective
advantage, and the population distribution will move from
D1 to D2, in the direction of P*, the optimal phenotype.

 F
itn

es
s &

 P
he

no
ty

pi
c 

D
iv

er
sit

y

Phenotype

Genotype

P*

Learn

D2

D1

Figure 1: The Baldwin Effect Phase I: Learning
speeds evolution by effectively smoothing (from the
solid to the dashed curve) the fitness landscape.

To move, and not merely redistribute, the genotype pool,
evolution relies on genetic operators (mutation, crossover, in-
version, etc.). If the genotype and phenotype space are well
correlated [12], then genetics can initiate the emergence of
innately optimal phenotypes, natural born P*s, and, in gen-
eral, lead to a flattening of distribution D2 into D3 (Figure
2). Additionally, if learning has a cost, as it normally does
[12], then the P* learners will pay it but the natural-born
P*s will not, thus giving the latter a selective advantage and
moving the population distribution from D3 to D4, where
the previously-learned phenotype, P*, becomes fully innate.

Thus, in the Baldwin Effect, learning accelerates evolu-
tion; and then, if the fitness landscape is static, and the
genotype and phenotype spaces are well correlated, evolution
obviates learning via genetic assimilation.
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Figure 2: The Baldwin Effect Phase II: Genetic as-
similation of P*.

3. NEURAL DEVELOPMENT
Unfortunately, in nature, the developmental process greatly

complicates the genotype-phenotype mapping, as discussed
more thoroughly in [4]. Simple counting arguments show the
impossibility of genes coding for individual neurons or synap-
tic strengths, so learning-driven synaptic change can only
find very indirect parallels in development. For example,
Figure 3 provides a plausible correlation between a learning
change and a genetically-encoded developmental result. As
shown, if the synaptic strength between a neuron in region
A and one in B is modified during learning (thick arrow),
this can be roughly approximated by genetically-controlled
A-B connectivity changes in later generations. With more
(or less) connections between A and B in the future, there
are more (or less) opportunities for synaptic enhancement
via Hebbian learning. Since standard Hebbian learning (via
long-term potentiation) relies on correlated firing (between
neurons in regions A and B in this case), there is a greater
chance of such correlation (and thus a promising starting-
point for synaptic strengthening) when more synapses (of
even weak efficacy) link areas A and B.

The scenario of Figure 3 relies heavily upon the common
characterizations of development and learning in neural net-
works, based both on traditional neuroscientific explanations
[10] and practical issues of artificial neural network deploy-
ment. Here, development involves the generation and linking
of neurons, while learning consists solely of the fine-tuning
of synaptic strengths; and the two processes occur in lock
step, with development ending before learning begins. Fur-
thermore, development is largely controlled by the innate
genome (a.k.a nature), while the environment (a.k.a nurture
or experience) predominantly governs learning.

Another interesting perspective on development and the
Baldwin Effect stems from evidence that the lock-step model,
though correct to a rough approximation, neglects new neu-
robiological evidence of temporal overlap between neuroge-
nesis, synaptogenesis, and synaptic tuning. For example,
many studies (summarized in [13]) find high levels of long-
term potentiation (LTP) and long-term depression (LTD) -
both forms of synaptic tuning - during development. In fact,
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Figure 3: Genetic assimilation of a synaptic change
during learning (thickened arrow) into a similar de-
velopmental outcome, which could facilitate (even
accelerate) the original learning result.

the rates of LTP and LTD (i.e. learning rates) are actually
very high during development and much lower during adult
life. In addition, recent work by Shors [14] reveals that a)
neurogenesis occurs throughout life, particularly in the den-
tate gyrus (DG) of the hippocampus, but b) those neurons
only hook up to other neurons (and ultimately survive) if
the organism subsequently performs cognitively-challenging
tasks.

This new evidence motivates a reinterpretation of the Bald-
win Effect in neural networks. Instead of viewing the second
phase as one of converting synaptic-strength changes (i.e.
classic learning) into genomic codes for controlling neuroge-
nesis and synaptogenesis (i.e. classic development) - which
represents the reverse encoding of the results of one process
into two dramatically different processes - we propose an
alternative that involves a quantitative, rather than a qual-
itative, conversion.

To wit, the second (assimilation) phase of the Baldwin
Effect may only involve a change in the rates of neurogene-
sis, synaptogenesis and LTP/LTD across an organism’s life
stages, as shown in Figure 4, where the four makeshift graphs
roughly illustrate the distribution of effort among these pro-
cesses at different evolutionary and developmental stages.
Under the view that adaptive changes in later life are pre-
dominantly governed by the environment, not the genome,
a Baldwinian modification could simply be to move more of
that adaptive change into earlier life stages, where genomic
control may dominate.

For example, when the biochemical bases for LTP and
LTD arose in evolution, both processes may have been very
active throughout life, requiring constant environmental sig-
naling to tune neural circuitry. However, over many (thou-
sands of) generations, genomic changes could have arisen
such that the early stages of development utilized neuro-
genesis, synaptogenesis and high LTP/LTD to form much
of this circuitry with a minimum of environmental influence.
Similarly, the rates of neurogenesis and synaptogenesis could
have originally been much less variable throughout life, but
evolution has gradually found genomes coding for an acceler-
ation of these processes in early development; and thus, more
of these activities became governed by genomic rather than
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Figure 4: An alternate, quantitative interpretation
of the Baldwin Effect, wherein the brunt of neuro-
and synaptogenesis moves into the embryonic phase.

environmental factors. The neural plasticity that remains in
today’s adult genomes (of any species), may represent that
flexibility which evolution found optimal with respect to fac-
tors such as a) the coding limits of the genome, b) constraints
of the animal’s brain and body, and c) earth’s environment
and the rates of change associated with it.

4. THE BALKO MODEL
Our system, BALKO, explores this alternate interpreta-

tion of the Baldwin Effect using Kohonen networks [11].
It employs a population of evolving nets whose topologies
are jointly determined by development and learning, with
the balance between these two processes governed by the
genome.

As shown in Figure 5, a BALKO genotype codes for the
essential parameters of the development and learning algo-
rithms. The former determines the initial number of nodes in
the Kohonen (self-organizing) layer - which is organized as a
ring - along with the connectivity pattern between the input
and self-organizing layers. It also specifies the range of ini-
tial weights for all connections. The learning parameters in-
clude the initial neighborhood radius for self-organized map
(SOM) formation, the derivative of the radius, and the actual
learning rate used during weight modification. These are



considered tuning factors, while a more substantial growth
aspect of learning consists of the dynamic addition of new
nodes (drawn as dotted circles in Figure 5) to the Kohonen
layer in situations where none of the existing nodes fires hard
enough on an input pattern. So along with synaptic tuning,
learning in BALKO encompasses some degree of neuro- and
synaptogenesis.

To assess the fitness of a phenotype network, a set of nor-
malized (originally binary) input patterns are sequentially
fed into the network, with each instigating normal SOM com-
petitive learning in the Kohonen layer. After this learning
period (whose duration is genetically determined), the in-
dividual’s fitness is derived from three primary factors: 1)
the ability to differentiate among inputs (quantified as en-
tropy), 2) the topological nature of the SOM, and 3) the
total learning effort, as shown at the bottom of Figure 5.
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Figure 5: Overview of the BALKO model.

4.1 Evolution
BALKO uses a standard genetic algorithm [8], with a bit-

vector chromosome, single-point crossover, and bit-flipping
mutations. Bit sequences of varying lengths (i.e. genes) code
for a variety of developmental and learning parameters, as
summarized in Table 1.

For the simulations described in this paper, the (single-
point) crossover rate is 0.8, while the bit-wise mutation prob-
ability is 0.03. Tournament selection of size 3 with a random-
winner probability of 0.1 is employed, along with an elitism
value of one individual.

Symbol Name Range
Development

Kinit Init Size of Kohonen Layer [5, 20]
xseed Init value for Ω [0,1]
RΩ Rate value for Ω [3,4]

Ωiter Iteration value for Ω [0,10]
Ds Developmental steps [1,20]

Learning
Rinit Init neighborhood radius [0,3]
δR Derivative of neighborhood radius [-1, 0]
λ Learning rate [0,1]

Both
wi Max init connection weight [0,1]

Table 1: Genes in a BALKO chromosome. Ω is the
logistic map used for determining connectivity dur-
ing development.

4.2 Development
To determine the topology of connections between the in-

put and Kohonen layers, BALKO employs the classic logistic
map (below) as a useful abstraction, designed not to mimic
biology in a detailed manner, but to stand in for any number
of complex, non-linear, neurodevelopmental processes:

Ω(x) : xi+1 ← RΩxi(1− xi) (1)

with an evolving rate value (RΩ) restricted to the range [3,
4], which determines the degree of order or chaos in the
computed pattern. As shown in Table 1, the initial value of
x (xseed), as well as the iteration factor (Ωiter), also evolve.
The core of development is the generate-offsets algorithm:

define generate-offsets (Nt)
x ← xseed; offsets ← {} ;
For step = 1 to Ds:

For i = 1 to Ωiter: x ← Ω(x)
offsets ← offsets ∪ {x*Nt}

return offsets

This uses the logistic map to produce a list of offsets, which
is employed by generate-indices for each of the Kohonen neu-
rons.

define generate-indices (index0, offsets, Nt)
index ← index0 ; indices ← {}
For z ∈ offsets:

index ← [round(index + z) modulo Nt]
indices ← indices ∪ { index }

return indices

The returned indices refer to the neurons (in a target
group) to which a focal neuron will connect. Nt is the cardi-
nality of this target-neuron set, while index0 is the starting
point within the target set. In BALKO, the target group is
the input-layer. For each neuron, ni in the Kohonen layer,
generate-indices is called with the index of the correspond-
ing input-layer neuron (which is the ith neuron when the
two layers have the same size but is otherwise scaled to the



size differences). The returned indices denote those input
neurons that send afferents to ni; multiple occurrences of an
index entail a stronger initial synaptic strength from that
particular input neuron. During the ensuing learning stage,
only these connection weights can be modified.

Depending upon the values of the evolved developmental
parameters, the connection patterns can be dense or sparse,
regular or chaotic. For example, the logistic map is known
to be periodic when 3.4 ≤ RΩ ≤ 3.6 and chaotic when 3.6 ≤
RΩ ≤ 3.8.

4.3 Learning
BALKO uses the standard self-organized map learning al-

gorithm [11], with the winner node (i.e. that with the highest
output value) and all neighbors (within a gradually shrink-
ing radius) having their existing connections tuned to more
faithfully detect the current input pattern, via the following
update rule:

4wi,k = λ(I(i)− wi,k) (2)

where I(i) is the output of the ith input node, and wi,k is
the weight on the connection from the ith input to the kth
Kohonen-layer node. The neighborhood radius, with ini-
tial value Rinit, changes by δR after each training instance.
Learning continues until R ≤ 0. Since the genome deter-
mines λ, Rinit and δR, evolution controls the tempo, extent
and duration of learning.

If none of the Kohonen neurons fires above a particular
threshold (of 0.8 for the current simulations) for an input
pattern, P, then the network is assumed to fail to detect
P. If the Kohonen layer has not reached its maximum size
(of 20 neurons in these simulations), then a new neuron,
nk is added; it is strongly biased toward detecting P by
adding connections from exactly those input neurons that
fired above a second threshold (0.1 in these runs) on P.

In BALKO, synapses with weights below 0.01 are removed,
as are Kohonen neurons without afferents. So learning can
modify synapses to the point that connections and even neu-
rons vanish from the simulation. This can have a positive
effect upon fitness, since the dendritic density of Kohonen
neurons increases the total learning effort, which negatively
impacts fitness (as shown below).

4.4 Input Patterns
Input vectors for the network have a variable (parameter-

controlled) degree of similarity to one another, thus abstractly
representing the fact that an organism’s natural sensory in-
put is far from random, but reflects the structure of the real
world. To this end, BALKO uses a Hopfield network [9] of
size Is (the number of bits in an input pattern) to generate
patterns. It begins by randomly choosing the bi-directional
weights between each pair of neurons (from the range [-1, 1]),
thus forming an explicit bias as to relationships between pat-
tern bits. Next, it generates a random set of on/off states
for the Is nodes. Then, simulated annealing is applied to
the network, with the probability of a state change governed
by both the sum of weighted inputs and the current tem-
perature. This process is performed N times to produce N
patterns, each of which is normalized prior to presentation to
the Kohonen network. The length of the annealing process
positively influences the similarity of the N patterns.

4.5 Fitness Testing
Three factors contribute to the fitness of a BALKO phe-

notype:

1. Classification entropy (HC) - the degree to which wins
are evenly distributed about the Kohonen nodes.

2. Topological degree (CW ) - the amount of correlation
among the input weight vectors of neighboring nodes
in the ringed Kohonen layer.

3. Learning effort (EL) - a weighted combination of the
tuning and growth efforts during learning.

The complete fitness function is:

F = HC + CW − EL (3)

Classification entropy is defined as:

HC =
−

PKf

i=1 pi ∗ log(pi)

log(Kf )
(4)

where Kf is the number of neurons in the Kohonen layer
at the end of learning, and pi is the fraction of input cases
for which the ith Kohonen-layer neuron wins (i.e. has the
highest activation level). The numerator is thus a standard
entropy calculation, while the denominator scales it by the
maximum possible entropy for the given layer size.

The topological degree of the Kohonen layer, CW , is the
average correlation among the input vectors of neighboring
neurons. Since weight vectors are normalized, the dot prod-
uct of two vectors reflects the cosine of the angle between
them, with a dot product of 1 denoting the maximum simi-
larity.

CW =
1

KfSN

KfX
i=1

X
j∈N(i)

~wi • ~wj (5)

where ~wi is the normalized input-weight vector for the ith
neuron of the Kohonen layer, N(i) is the neighborhood of the
ith neuron, and SN is the size of each neighborhood. SN =
4 (two neurons on each side) for the simulations reported
herein. CW quantifies the degree to which nearby Kohonen
neurons serve as detectors for similar input cases.
EL, the learning effort, consists of two terms related to

growth (g) and tuning (t):

EL = kgEgrow + ktEtune (6)

where kg = 0.1 and kt = 0.033 for the simulations reported
below. Intuitively, the cost of neurogenesis plus synaptoge-
nesis (during the learning phase) exceeds that of tuning ex-
isting synapses. The growth effort (Egrow) and tuning effort
(Etune) are calculated as follows:

Egrow = ΨK+ (7)

where Ψ ∈ [0, 1] is the average density of incoming con-
nections to the Kohonen neurons, and K+ is the number of
Kohonen neurons added during learning.



Tuning effort involves connection density, learning rate,
and tuning duration (based on the shrinking speed of the
Kohonen neural neighborhood):

Etune = Ψλ
Rinit

| δR | (8)

Thus, a highly-fit individual manages to a) separate in-
put patterns into same-sized clusters, b) treat similar inputs
similarly, and c) minimize learning effort (by moving much
of topology generation into development).

5. RESULTS
For the simple, abstract scenario described above, a small

population of 20 individuals run for 50 generations suffices
to evoke the B.E.. Figure 6 shows the results of a typical
run. In this and related figures, the key variables are the
maximum fitness and the number of initial nodes (Kinit),
which are the solid lines in the upper and lower graphs, re-
spectively. Evolution begins with a dramatic drop in Kinit

and a gradual fitness rise, indicating a low investment in de-
velopment and a high reliance upon learning (primarily in
terms of growing new nodes and connections). However, the
3 key learning parameters must also evolve, so their early
values are often insufficient for attaining high values of HC

and CW . Furthermore, since Egrow and Etune incur fitness
costs, evolution cannot simply ramp up the learning effort,
but must do so cautiously and in concert with changes to
the developmental strategy - so that the increased learning
cost is offset by HC and CW rises.

Because HC involves the scaling factor, log(Kf ), there is
no immediate advantage to increasing Kinit or Kf . In fact,
it is easier to achieve a reasonably even distribution (of wins)
over a small neuron population than over a large one. This
appears to be a key factor in forcing Kinit down during early
generations. Since the K+ neurons added during learning
are wired up to match input cases, they tend to positively
influence HC , but can easily have negative effects upon CW

if tuning effort is low. However, the early reliance on low
Kinit plus high Egrow proves to be a successful combination
in this and many other runs. This strategy represents B.E.
phase I, wherein the best fitness stems from a substantial
learning effort (via high Egrow) combined with less reliance
on the genome and developmental.

To progress beyond B.E. phase I, evolution must find a
superior combination of development and learning such that
Kohonen nodes receive a) configurations of afferents that
match the structure of the input cases, or b) enough afferents
to tune to fit that structure. The latter solution occurs most
often in BALKO runs. It involves increasing the number of
developmental steps and finding a combination of logistic-
map parameters such that continued iteration of the map
gives many unique indices, and thus many synapses onto
each Kohonen neuron from a diversity of input neurons.

The afferent density, Ψ, is also important to consider. It
positively influences both learning-effort costs, so keeping it
low is advantageous; but afferents are certainly necessary
for proper input segregation (thus boosting HC). Since Ψ
is measured at the end of an individual’s lifetime, a high
synaptic-tuning effort can pay double dividends by both de-
creasing Ψ and adjusting the remaining afferents to better
separate inputs.
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Figure 6: (Top) Fitness progression for a single run
of BALKO using 20 input patterns. (Bottom) Popu-
lation averages of 2 genes (Kinit and DS) and 2 effort
measures (Egrow and Etune) for the same run.

So the first 20-25 generations involve slowly increasing fit-
ness and languishing Kinit, until evolution works out the
proper balance between Kinit and other genes. Once accom-
plished, this spurs an often-dramatic rise in Kinit, marking
the transition to B.E. phase II. In this stage, the individual
relies on a genome-governed developmental process to pro-
duce neurons and an initial connection topology. Learning
effort is then devoted primarily to synaptic tuning, with very
little late-life neuro- or synaptogenesis. These, more-costly,
post-natal adaptive processes have been assimilated into the
developmental scheme, a hallmark of B.E. phase II.

Overall, the total learning effort clearly decreases from
phase I to II. However, the most noticeable shift is the re-
duction in Egrow, while Etune increases slightly.

The same general trends in Figure 6 reoccur in the 20-run
averages of Figure 7, but with less pronounced transitions
between phases I and II of B.E. This occurs for at least 2
reasons: 1) the proper constellation of developmental and
learning genes never arises, and thus the population remains
highly dependent upon late-life neuro- and synaptogenesis
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Figure 7: (Top) 20-run average fitness progression
for a size-20 population using 20 input patterns.
(Bottom) Population averages of 2 genes (Kinit and
DS) and 2 effort measures (Egrow and Etune) over the
20 runs.

to attain high fitness; Kinit stays low through all 50 gen-
erations, or 2) pattern diversity is so high that it behoves
individuals to generate a high number of Kohonen neurons
during development, even before the other adaptive param-
eters have been found. Similarly, an increase of input pat-
terns from 20 to 40 heightens the need for Kohonen-layer
neurons to classify each case. With 40 patterns, a low Kinit

incurs a higher Egrow than with 20 patterns (even though the
maximum cardinality of Kohonen neurons is 20 in all runs).
Furthermore, with more patterns, the classification entropy,
HC , experiences less difficulty in scaling up to higher Kf val-
ues. Both of these factors facilitate a rise in Kinit, although
it still dips during the early generations (diagrams omitted).

In general, the similarity among input patterns strongly
affects the degree of B.E.. If annealing runs too long, many
patterns are similar or identical. This clearly eases the bur-
den on the Kohonen network, allowing smaller neuron groups
to achieve high entropy and topology values, without much
Egrow. Hence, Kinit can remain small and phase II of B.E.

rarely occurs (data omitted). Conversely, for low pattern
similarity phase I never occurs , as many innate Kohonen
neurons give an immediate fitness advantage, as mentioned
above.

Finally, the development algorithm was extended with a
second set of evolved logistic-map parameters (Ω2

iter and R2
Ω)

to add stochasticity into the choice of the corresponding in-
put neuron for each Kohonen neuron (i.e. the index0 argu-
ment in calls to generate-indices). This allows more intricate
developmental patterns to arise. A similar B.E. occurs in
these cases, although the onset of Phase II is often delayed
due to the need to tune more developmental parameters be-
fore increasing Kinit.

6. RELATED WORK
Though extremely difficult to test in biological lab set-

tings, the B.E. is easily amenable to evolutionary computa-
tion. Hinton and Nowlan’s [7] diabolically simple (yet ele-
gant) set of simulations first illustrated the emergence of the
B.E.. They showed that early learning helped guide evolu-
tion toward a difficult goal (B.E. phase I), but as the pop-
ulation approached the target, the flexible portions of the
phenotype became hard-wired to the correct values, thus
jettisoning the (costly) learning capabilities (B.E. phase II).
Their model involved simple bit-string genotypes, which es-
sentially doubled as phenotypes, so no development nor neu-
ral networks were involved. Ackley and Littman [1] took a
big step by showing the B.E. in evolved pairs of interacting
neural networks, one of which learned by back-propagation.

Upon adding learning (in neural networks) to his semi-
nal work in cellular encoding, Gruau [5] (with Whitley) ob-
served the confounding effects of development upon the B.E..
Downing [4] later extended the Hinton and Nowlan model to
include an abstract developmental process based on a Turing
machine (whose specifications were encoded in the genome).
Those experiments showed the scaffolding effect that devel-
opment can manifest to reduce the learning burden and thus
support B.E. phase II.

Although researchers occasionally combine evolution, de-
velopment and learning in their simulations (most recently
[6]), few observe the B.E. unless a) they are looking for it,
and b) their model’s learned behaviors can also be ontoge-
netically formed.

7. DISCUSSION
This research represents an initial attempt to reconcile

the Baldwin Effect with development in neural networks.
It requires a reinterpretation of B.E. - in particular, the
differences between phases I and II - as more quantitative
than qualitative: cross-generational changes in the pre- and
post-natal rates of neuro- and synaptogenesis can transfer
adaptive effort from learning to development, with the latter
more closely governed by the genome and less by environ-
mental factors. As in [4], the effects of learning are not
reverse-engineered into the genome, but strong learning (in
this case, Egrow) buys evolutionary time until proper devel-
opmental scaffolding reduces the overall learning costs and
elevates fitness to peak levels (see Figure 8).

In the runs reported above, the evolutionary search re-
quired to find proper parameters for the logistic map coarsely
represents a process that we envision in nature: the develop-
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Figure 8: Summary of the Baldwin Effect in the
BALKO experiments.

mental recipe gradually evolves to reduce some of the post-
natal adaptive burden. As future work, we intend to ex-
periment with other developmental schemes that maintain
this non-linearity but exhibit more biological realism, in-
cluding the effects of environment on development. This will
force a generalization of our conceptual foundations from the
Baldwin Effect to West-Eberhard’s genetic accommodation
theory [17], since, in a more complex model, many of the
BALKO results could stem from environmentally induced
developmental changes without actual genetic change.

Another important continuation of this work is the deploy-
ment of these networks in functioning agents, with fitness
determined solely by their behavior. BALKO gleans fitness
from the structure and primitive (segregating) behavior of
the Kohonen net, under the assumption that both classifi-
cation entropy and topological organization are important
characteristics of neural networks. The most convincing ex-
amples of the Baldwin Effect, however, should span the full
spectrum from genes to ethology.

Due to its extreme complexity, the Baldwinian puzzle will
probably not buckle under to a single neuroscientific find-
ing nor theoretical insight. However, the interplay between
the biosciences and computation, particularly evolutionary
computation, should continue to flesh out plausible interpre-
tations of this intriguing hypothesis, with the proper version
quite possibly filling sizeable gaps in our understanding of
the evolution of intelligence. This is a rather difficult and
esoteric pursuit, but one that artificial-life researchers are
well equipped to handle, on both counts.
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