
Genetic Programming and Evolvable Machines, 2, 259–288, 2001
© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Reinforced Genetic Programming

KEITH L. DOWNING keithd@idi.ntnu.no
The Norwegian University of Science and Technology, Trondheim, Norway

Received December 4, 2000; Revised May 11, 2001

Abstract. This paper introduces the Reinforced Genetic Programming (RGP) system, which enhances
standard tree-based genetic programming (GP) with reinforcement learning (RL). RGP adds a new
element to the GP function set: monitored action-selection points that provide hooks to a reinforcement-
learning system. Using strong typing, RGP can restrict these choice points to leaf nodes, thereby turning
GP trees into classify-and-act procedures. Then, environmental reinforcements channeled back through
the choice points provide the basis for both lifetime learning and general GP fitness assessment. This
paves the way for evolutionary acceleration via both Baldwinian and Lamarckian mechanisms. In
addition, the hybrid hints of potential improvements to RL by exploiting evolution to design proper
abstraction spaces, via the problem-state classifications of the internal tree nodes. This paper details
the basic mechanisms of RGP and demonstrates its application on a series of static and dynamic
maze-search problems.

Keywords: genetic programming, reinforcement learning, the Baldwin Effect, Lamarckism

1. Introduction

The benefits of combining evolution and learning, while largely theoretical in the
biological sciences, have found solid empirical verification in the field of evolution-
ary computation (EC). When evolutionary algorithms (EAs) are supplemented with
learning techniques, general adaptivity improves such that the learning EA finds
solutions faster than the standard EA [4, 23]. These enhancements can stem from
biologically plausible mechanisms such as the Baldwin Effect [2, 21], or from factors
such as Lamarckism [6, 10] which have long since been disproven scientifically but
can still work wonders for an EA.
In most learning EAs, the data structure or program in which learning occurs is

divorced from the structure that evolves. For example, a common learning EA is a
hybrid genetic-algorithm (GA)-artificial neural network (ANN) system in which the
GA encodes a basic ANN topology (plus possibly some initial connection weights),
and the ANN then uses backpropagation or Hebbian learning to gradually modify
those weights [8, 13, 25]. A Baldwin Effect is often evident in the fact that the
GA-encoded weights improve over time, thus reducing the need for learning [1].
Lamarckism can be added by reversing the morphogenic process and back-encoding
the ANN’s learned weights into the GA chromosome prior to reproduction [18].
It is well known that the search spaces in genetic programming (GP) are vast and

peppered with large regions of syntactically-correct but functionally-useless code.
As a remedy, Teller [19] proposes the distribution of credit and blame to the inter-
nal components of a genetic program followed by pre-reproductive genomic changes

260 downing

based on these evaluations. Hence, learning directly improves the evolving program,
as opposed to improving a different representation which may (Lamarckism) or
may not (Baldwin Effect) be reverse-engineered into the genome. Teller employs
neural programs to achieve results that support his hypothesis that internal rein-
forcement should help the GP to steer clear of impoverished portions of the search
space while enhancing exploitation. However, Teller’s central research question is
representation independent [19]:

Can the evolution of algorithms be extended in a domain-independent way
to incorporate accurate credit-blame assignment of each program’s internal
structure and behavior in such a way that focused, principled reinforcement
information improves the evolutionary process? (p. 326)

Our research addresses the same issue but uses a more standard representation:
basic GP trees [9]. The primary objective is to devise a mechanism by which the
Baldwin Effect and Lamarckism can be realized within any standard genetic pro-
gram, without the need for a complex morphogenic conversion to a separate learn-
ing structure. Hence, as the GP program runs, the tree nodes can adapt, thereby
altering (and hopefully improving) subsequent runs of the same program. Thus, the
typical problem domain is one in which each GP tree executes many times during
fitness evaluation, for example, control tasks. Since the goals of this research are
subsumed by Teller’s general inquiry, our results lend additional support to the
hypothesis that internal reinforcement can improve evolutionary search.

2. Biological theories of evolution and learning

One of the first proposals that learning could accelerate evolution was Jean-Baptiste
Lamarck’s (1744–1829) inheritance of acquired characteristics, wherein physical and
mental changes incurred during one’s lifetime could be passed on directly to off-
spring. Contemporary knowledge of the germ-soma distinction permits a recasting
of Lamarckism in modern Neo-Darwinian terms, as depicted in Figure 1. Thus,
the theory entails a reverse transcription of the modified phenotype back into
the genotype, a process that is fully realizable and often useful in evolutionary
algorithms, but biologically unrealistic except in a few rare cases.
In 1896, James Baldwin postulated an indirect mechanism for the eventual

inheritance of acquired characteristics [2]. This Baldwin Effect involves two stages.
In phase I (Figure 2), assume a set of genotypes spread uniformly about a sub-
optimal region, D1, of the fitness landscape. If phenotypes have plasticity, then
each can essentially perform local search in the fitness landscape (as shown by the
circles with horizontal arrows), and a rough estimate of phenotypic fitness will be
the time-averaged landscape locations of the phenotype. Clearly, those phenotypes
lying near the base of the optimal peak will have better opportunities to learn their
way to higher fitness. Hence, they will have a selective advantage, and the popula-
tion distribution will move from D1 to D2. Basically, learning smooths the fitness

reinforced genetic programming 261

L
ea

rn

L
ea

rn

Fi
tn

es
s

Phenotype

Genotype

Transcription
 Reverse

P*

Figure 1. Neo-Darwinian interpretation of Lamarckian inheritance of acquired characteristics: during
their lifetimes, phenotypes (circles) can improve and thus climb the fitness landscape away from their
innate position and toward the optimal phenotype, P∗. Any phenotypic improvements are then reverse
transcribed into the genome (changing from filled to open square) prior to reproduction.

Fi
tn

es
s

&
 P

he
no

ty
pe

 D
en

si
ty

Genotype

Phenotype

L
ea

rn

D2

D1

P*

Figure 2. The Baldwin Effect phase I: All phenotypes have the ability to learn, but only those near the
base of the peak can achieve fitness increases over the innate value. This selective advantage moves the
genotype/phenotype distribution from D1 to D2, hence closer to the optimal phenotype, P∗. As depicted
by the dotted curve, learning effectively smoothes the fitness landscape.

262 downing

Fi
tn

es
s

&
 P

he
no

ty
pe

 D
en

si
ty

Genotype

Phenotype

D4D2

D3

P*

Figure 3. The Baldwin Effect phase II: Genetic operations spread the population distribution from D2
to D3, producing individuals with hard-wired optimal phenotypes, P∗. Due to the cost of learning, these
natural-born P∗s have a selective advantage over the learned P∗s, and the distribution moves from D3
to D4.

landscape and enhances selective pressure such that the population moves toward
the optimal phenotype, denoted by P∗ on the phenotype axis.
To move, and not merely redistribute, the genotype pool, evolution relies on

genetic operators (mutation, crossover, inversion, etc.). If the genotype and phe-
notype space are well correlated [12], then genetics can initiate the emergence of
innately optimal phenotypes, natural born P∗s, and, in general, lead to a flattening
of distribution D2 into D3 (Figure 3). Additionally, if learning has a cost, as it nor-
mally does [12], then the P∗ learners will pay it but the natural-born P∗s will not,
thus giving the latter a selective advantage and moving the population distribution
from D3 to D4, where the learned phenotype, P∗, becomes fully innate. Thus, in
the Baldwin Effect, learning accelerates evolution; and then, if the fitness landscape
is static, evolution obviates learning via genetic assimilation.

3. Overview of the RGP approach

Reinforced Genetic Programming combines reinforcement learning [17] with
conventional tree-based genetic programming [9]. This produces GP programs with
some nodes whose actions are reinforced such that successive runs of the same
tree exhibit improved performance on the fitness task. These improvements may
or may not be reverse-encoded into the genomic form of the tree, thus facilitating
tests of both Lamarckian and Baldwinian enhancements to GP.

reinforced genetic programming 263

X

Y
R1

R2

R3

R4

0

9

9

?

?

?

?

Start

Goal

If (between 0 y 5)

(choice west north) (choice east south) (choice west east) (choice north south)

if (between 6 x 8)

If (between 0 x 5)
Y N

Y NY N

N

Figure 4. The genetic program determines a partitioning of the reinforcement-learning problem space.

A simple example conveys the basic mechanism. Consider the small control
program (a Lisp s-expression) for a maze-wandering agent below:

(if (between 0 x 5)
(if (between 0 y 5)
(choice (move-west) (move-north)) R1
(choice (move-east) (move-south))) R2

(if (between 6 x 8)
(choice (move-west) (move-east)) R3
(choice (move-north) (move-south)))) R4

Figure 4 illustrates the relationship between this program and the maze. Variables
x and y specify the agents’ current maze coordinates, while the choice nodes are
monitored action decisions. The between predicate simply tests if the middle argu-
ment is within the closed range specified by the first (upper bound) and third (lower
bound) arguments, while the move functions are self-explanatory. So if the agent’s
current location falls within the southwest region, R1, specified by the (between
0 x 5) and (between 0 y 5) predicates of the decision tree, then the agent can
choose between a westward and a northward move. Conversely, the eastern edge
gives a north-south move option. The agent runs this tree at each timestep as part
of a particular task, such as finding the goal location in the southeast corner.
In this example, assume that the GP’s strong typing insures that a) the only

legal arguments to a choice node are the zero-argument move functions, and

264 downing

b) s-expressions form decision trees with all and only actions at the bottom.
The actions may be monitored (via choices) or simple stand-alone moves. These
assumptions are valid for most of the examples presented in this paper but are not
general requirements for using RGP, which can also handle internal choice points.
During fitness testing, the agent will execute its tree code on each timestep and

take the appropriate action in the maze, which then returns a reinforcement signal.
For example, hitting a wall may invoke a small negative signal, while reaching a
goal state would garner a large positive payback. The sum of all reinforcements
over all timesteps plays a pivotal role in the fitness function, but the individual
reinforcements also drive the learning process.
When the action function is wrapped within a choice (see implementation details

in the Appendix), the individual reinforcement is processed by the reinforcement
learner, which outputs a temporal difference (explained below), which is then sent
back to the state-action pair (SAP) associated with the performance of the partic-
ular action when at that choice node, as depicted in Figure 5. The SAP uses this
feedback to update its own evaluation and then propagates a decayed version of the
reinforcement to the SAP that was invoked prior to itself (on a previous timestep),

SAPSAPSAPSAP SAP SAP SAP SAP

If (between 0 y 5)

(choice west north) (choice east south) (choice west east) (choice north south)

if (between 6 x 8)

If (between 0 x 5)
Y N

Y NY N

R1

Start

Goal

Y

X

R2

R3

R4

N

r2

r6

r7
r8

r15

r21
r22

td1 td5 td6
td7 td20td14 td21

0

9

9

Figure 5. Reinforcements from problem-solving/search are indirectly passed back to the state-action
pairs (SAPs) that are associated with the choice nodes of the GP decision tree.

reinforced genetic programming 265

SAP
 R1
West

SAP
 R1
North

t SAP

North
 R2

t t

t

N

t+1r

Reinforcement Learning
 System

Wait

"R3"

Proceed

R1

R2

R3

GP

Maze Problem Solver

"North"
"N"

Figure 6. The basic control flow in RGP: The GP tree sends a movement command to the problem
solver, which carries it out and returns the reinforcement to the RLS. After waiting to receive the
next state from the GP, the RLS computes the temporal difference, δt and passes it down the chain of
recently-active SAPs.

which updates its evaluation and sends a (further decayed) version to its predeces-
sor, etc., as shown in Figure 6.
Initially, the choice nodes select randomly among their possible actions, but as

the fitness test proceeds, each node accumulates reinforcement statistics as to the
relative utility of each action (in the context of the particular location of the choice
node in the decision tree, which reflects the location of the agent in the maze). After
a fixed number of random free trials, which is a standard parameter in reinforcement-
learning systems (RLSs), the node starts making choices that are biased by these
statistics, so the most successful actions are most often chosen. Hence, the node’s
initial exploration gives way to exploitation. The evolving genome sets the range of
this exploration by specifying the possible actions to the choice node, and the RLS
fine-tunes the search.
Over the lifespan of an individual, the entire tree behaves more deterministically,

reflecting the best learned actions to take in each maze region, relative to the
options provided in the genome. Over evolutionary time, the genomes provide more
appropriate decision trees and action options for the RLS to work with.
By adding alternate forms of choice nodes, such as choice-4, choice-2, choice-1,

where the integer suffix denotes the number of action arguments, the RGP’s learn-
ing effort comes under evolutionary control. As evident in several runs of the RGP
in various domains, the density of broad choices (e.g. choice-4s) increases initially
but gradually gives way to narrower choices (e.g. choice-2s and choice-1s) as good

266 downing

solutions become encoded into the genome and the need for learning decreases—a
classic signature of the Baldwin Effect. The choice-1 node merely serves as an RLS
monitor wrapper of single actions to insure that their payoffs can be propagated
back through the reinforcement chain.
In this example, learning has an implicit cost due to the nature of the fitness

function, which is based on the average reinforcement per timestep of the agent.
So an agent that moves directly to a goal location (or follows a wall without any
explorative “bumps” into it) will have higher average reinforcement than one that
investigates areas off the optimal path. Initially, explorative learning helps the agent
find the goal, but then evolution further hones the controllers to follow shorter paths
to the goal, with little or no opportunity for stochastic action choices. Hence, the
average reinforcement (i.e., fitness) steadily increases, first as a result of learning
(phase I of the Baldwin Effect) and then as a result of genomic hard-wiring (phase
II) encouraged by the implicit learning cost [12].
To achieve Lamarckism, RGP can replace any choice node in the genomic tree

with a direct action function (often with a choice-1 wrapper) for the action that was
deemed best for that node. Hence, if the choice node for R1 in Figure 4 learns
that north is the best move from this region (while choices for R2 and R3 find
eastward moves most profitable, and R4 learns the advantage of southward moves),
then prior to reproduction, the genome can be specialized to:

(if (between 0 x 5)
(if (between 0 y 5) (move-north) (move-east))
(if (between 6 x 8) (move-east) (move-south)))

This represents an optimal control strategy for the example, with no time
squandered on exploration.

4. Reinforcement learning in RGP

Reinforcement Learning comes in many shapes and forms, and the basic design
of RGP supports many of these variations. However, the examples in this paper
use Q-learning [22] with eligibility traces, so the discussion will focus on those
mechanisms.
Conventional RL is essentially on the job training, in that the system uses a control

strategy to work on a problem (e.g., search in a virtual environment) while simul-
taneously building a policy: knowledge about the most appropriate actions to take
in different situations/states. In on-policy RL, the current policy governs control
choices (i.e., exploitation dominates exploration), while in off-policy RL, the con-
troller runs independently of the policy, with new information learned by the (often
explorative) controller being used to direct policy updates.
Q-learning is an off-policy temporal differencing form of RL. In conventional RL

terminology, Q�s� a� denotes the value of choosing action a while in state s. Tem-
poral differencing implies that to update Q�s� a� for the current state, st , and most
recent action, at , use the difference between the current value of Q�st� at� and the

reinforced genetic programming 267

sum of a) the reward, rt+1, received after executing at in st , and b) the discounted
value of the resulting new state, st+1, where this value is based on the best possible
action that can be taken from st+1, or maxa Q�st+1� a�. Hence, the complete update
equation is:

Q�st� at� ← Q�st� at� + α
[
rt+1 + γmax

a
Q�st+1� a� −Q�st� at�

]
(1)

Here, γ is the discount rate and α is the step size or learning rate. The expression
in brackets is the temporal-difference error, δt . Thus, if performing a in s leads to
positive (negative) rewards and good (bad) next states, then Q�s� a� will increase
(decrease), with the degree of change governed by α and γ.
In conventional RL, all possible states,
, are determined prior to any learning,

with each state typically a point in a space whose dimensions are the relevant envi-
ronmental factors and internal state variables of the agent. So for a maze-wandering
robot, the dimensions might be discretized x and y coordinates along with the robot’s
energy level. Conversely, in RGP, each individual GP trees determines its own
 in
a manner that generally partitions a standard RL state space into coarser regions.
Whereas a basic Q-learner would divide an N ×M maze into NM cell states and
then try to learn optimal actions to perform in each cell, an RGP individual divides
the same maze into a number (normally much less than NM) of region states and
uses RL to learn a single proper action for every cell in each region. Thus, evo-
lution proposes state-space partitions and possible actions for each partition, while
learning finds the most appropriate of those actions.
In RGP, the trail through a program tree from the root to a choice node embodies

an RL state. In other words, the Q-learning state of the agent-environment duo
can only be found by running the tree in the current context and registering the
choice node that gets activated. The program thus serves as a state-classification
tree with action options at the leaves. Hence, during Q-learning, the temporal-
difference update of Q�st� at� must wait until the succeeding run of the tree, since
only then is st+1 known.
For example, from position (2, 5) in Figure 5, if the agent moves north, then the

simulator immediately knows that the new cell is (2, 6). However, the RL states are
determined by the GP tree, not simply by a 1-1 mapping between cells and states
(as in standard RL). So the tree must run again, with the agent positioned at (2, 6),
before RGP ascertains that a state transition has occurred between R1 and R2. At
that point, Q(R1,north) can be updated via:

Q�R1, North�←Q�R1, North�+α[rt+1+γmax
a

Q�R2�a�−Q�R1, North�] (2)

To implement these Q�s� a� updates, the core activity of Q-learning, within GP
trees, RGP employs qstate objects, one per choice node. Each qstate houses a list
of state-action pairs (SAPs), where the value slot of each SAP corresponds to Q�s� a�.
For each GP tree, a qtable object is generated. It keeps track of all qstates in the
tree, as well as those most recently visited and the latest reinforcement signal. When
the tree runs in a particular context, the qstate st+1 corresponding to the newly
activated choice node is recorded by the qtable, and V �st+1� (or maxa�Q�st+1� a�)

268 downing

is then decayed, added to the last reinforcement signal (received in the transition
from st to st+1), and this sum is temporally differenced with Q�s� a� to yield an
incremental change to Q�s� a�.
This basic scheme will then support a wide array of reinforcement-learning

mechanisms, which typically differ in their methods of estimating V �st+1� and then
updating V �st� or Q�st� a� [17]. Furthermore, a few simple additions to the SAP
objects enable eligibility tracing and full backups, both of which greatly speed the
convergence of Q-learning to an optimal control strategy.
RGP employs replacing traces, a form of eligibility tracing, where each SAP has

an associated eligibility, e�s� a�, which denotes the degree to which Q�s� a� can be
updated by the current reinforcement signal. If the SAP for �s′� a′� is the most
recently active (i.e., it dictated the agent’s last action) then e�s′� a′� = 1. But for
each timestep since �s′� a′�’s last activation, e�s′� a′� decays by γλ, where λ is the
eligibility decay rate. Also, if the last active SAP was for �s′� a∗�, where a′
= a∗,
then e�s′� a′� is reset to 0, indicating that �s′� a′� should not receive reinforcements
that were earned by a competing SAP (i.e., one with the same state but a different
action).
Replacing traces then control that amount of temporal-difference error (δt) that

each Q�s� a� can use for updating:
Q�s� a� = Q�s� a� + αδte�s� a�� (3)

Figure 6 illustrates this basic process, wherein the GP tree sends a move command
to the simulator/problem-solver, which makes the move and returns a reinforcement
to the RLS, which stores it and waits until the next run of the GP tree to determine
the abstract state, st+1 = R3 of the problem solver. The RLS then computes the
temporal difference error and sends it to the most recently activated SAP, (R2,
North), which relays a decayed version to its predecessor, and so on back through
the sequence of active SAPs. Note that (R1, North) appears twice along this chain
and therefore receives two reinforcements in different states of decay. Furthermore,
(R1, West) receives the decayed reinforcement but must reset its eligibility to 0,
since (R1, North) was the most recent move from R1 that earned the reward, and
(R1, North) and (R1, West) are competing SAPs. Figure 6 separates the SAPs
from the GP tree and uses a different maze than Figures 4 and 5 only for ease of
illustration.
Replacing traces facilitate convergence to an optimal policy by allowing credit

assignment to filter back through a long chain of state-action pairs for each new
reinforcement signal. For instance, if SAPt , SAPt+1� � � � � SAPt+n is a sequence of
active SAPs that lead to a large reward at time t + n, then without eligibility tracing,
standard Q-learning would only relay a portion of the reward back to SAPt+n−1.
Further back-propagations of the reward along this chain would have to wait until
the agent repeated the subsequence SAPt+n−2� SAPt+n−1, but again, the reward
would only propagate to SAPt+n−2. So eligibility tracing enables many of the SAPs
that are involved in both successful and unsuccessful meta-actions to immediately
receive their due rewards or penalties.
By taking full backups, a reinforcement learner further enhances the spreading

of control information throughout the RLS state space. In Q-learning, full backups

reinforced genetic programming 269

are off-line transfers of evaluations from SAPs to their upstream nearest neighbors
in the activation sequences that were invoked during problem solving. To perform
full backups, each SAP, �s� a�, keeps track of the qstates that have resulted in the
past by performing action a in state s. In a complete Markovian situation, only one
such successor state will exist per SAP, but in non-Markovian models, a probability
distribution is associated with the possible successor states.
Since the reinforcement learner in RGP often works in a state space of much

coarser granularity than the underlying problem space, the transitions from an SAP
are typically stochastic at the abstract level. For example, in Figure 4, the abstraction
given by the GP tree yields one qstate per region, R1–R4. The SAP (R1, North)
will then have two possible outcomes: R1 or R2. The RLS associated with this GP
tree must therefore keep track of all transitions from (R1, North) in order to learn
the relative probability of each possibility.
With the transition distributions in place for each SAP, full backups are

synchronously computed and become the new evaluations of the SAPs:

Q�s� a� ←∑
s′
ρ̂ass′

[�̂ass′ + γmax
a′

Q�s′� a′�] (4)

where ρ̂ass′ is the transition probability from s to s′ on action a, and �̂ass′ is the
expected value of the reinforcement for that transition.
The frequency of full backups is parameterized in RGP, with a typical value being

once every problem-solving episode, where an episode is one attempt at the prob-
lem. For example, in a maze-searching problem, each agent may get n tries to find
its way from start to goal. The number of synchronous sweeps through the whole
qstate space per backup is also parameterized.
The combination of Q-learning, replacing traces and full backups equip RGP

trees with the full capabilities of conventional reinforcement learning systems, thus
enabling the embodied control strategy to adapt during fitness testing.

4.1. Maze search examples

Maze searching is a popular task in the RL literature, partly due to the clear
mapping from states and actions to 2d graphic representations of optimal strate-
gies (i.e., grids with arrows). Despite this graphic simplicity, the underlying search
problem is quite complex, since the agent lacks any remote sensing capabilities, let
alone a bird’s-eye view of the maze. So trial and error is the only feasible approach,
and learning from these errors is essential for success.
Figure 7 illustrates a 5× 5 maze with start and goal on the western edge, while

Figure 9 shows a 10× 10 maze with a start point in the southwest (a few columns
east of the western edge) and goal site on the eastern edge but hidden behind an
L-shaped barrier. Both mazes include a few subgoals along the optimal path, so
agents have opportunities for gaining partial credit. Reinforcements are 10 for the
main goals, 2 for each subgoal, −1 for hitting a wall, and 0 for all other moves.
Agents are also penalized −1 for repeating any cell that occurred within the past

270 downing

Start

?

Goal

*

*

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

Generation

F
itn

es
s

Max
Avg
Min

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

Generation

A
vg

 #
 O

pt
io

ns
 p

er
 C

ho
ic

e
N

od
e

Figure 7. Small 5× 5 maze and a successful navigation strategy developed by RGP. The question mark
denotes a cell without a hard-wired movement action, but which is never visited by this strategy.

20 (10) moves in the large (small) maze (i.e., minimum loop = 21 (11)). In the
10× 10 maze, the optimal path has 20 steps, with a total payoff of 18 (1 goal plus 4
subgoals), while the 5× 5 maze has a shortest path of 11 steps with a total payoff of
14. Thus, any agent who takes the shortest path will have an average reinforcement
per timestep, R, of 0.9 in the large maze and 1.333 in the small maze. Agent fitness
is computed as eR, so maximum fitness is 2.46 in the large maze, and 3.57 in the
small maze.
The RGP functions (with number of arguments in parentheses) are:

1. Logical: and(2), or(2), not(1), in-region(4)
2. Conditional: if(3)
3. Monitored Action: mve(0), mvw(0), mvn(0), mvs(0)
4. Monitored Choice: pickmove(0)

The in-region predicate, in-region(x1, x2, y1, y2), returns true iff the x coordinate
of the agent’s location is in the closed range [x1, x2] and the y coordinate is within
[y1, y2]. The 4 move actions are for moving east, west, north and south, respec-
tively. These actions expand into single-action choice nodes so that the resulting

reinforced genetic programming 271

Figure 8. Lisp code for the most fit individual of generation 300 of the 5× 5 maze search (above), and
its logically-equivalent intron-free version (below).

reinforcement signals can be propagated through the reinforcement learning sys-
tem to the other choice nodes. Pickmove is the only true trial-and-error learning
function. It expands into a choice node with all 4 action possibilities. The if, and,
or and not functions are standard. Terminals for an N × N maze are the integers 0
through N − 1; all maze indexing is 0-based. Strong typing of the RGP trees insures
that action and choice nodes occur only at the leaves. The GP uses two-individual-
tournament selection with single-individual elitism.
During fitness testing, each agent gets 3 attempts at the maze, i.e., 3 reinforcement-

learning episodes, with a maximum of 50 steps per attempt (i.e.,max-steps= 50). Each
choice node selects actions randomly during the first 16 visits (i.e., free trials = 16),
after which the SAP with highest value gets priority. The discount, γ, and decay, λ,
rates for RL are both 0.9, while α = 0�1 is the learning rate (i.e., step-size param-
eter). Many RL systems use a much higher α value, but a lower value seems more
appropriate for the non-Markovian situations incurred by RGP’s coarse state-space
abstractions: it is dangerous to allow the reinforcement of any one move to have
excessive influence on a Q�s� a� value when it is unclear whether action a in state s
will yield anything close to the same result on another occasion. Table 1 summarizes
these details.

Table 1. Tableau for RGP used in a 5× 5 and a 10× 10 maze-search problem

Objective: Find optimal strategy for traversing the maze from start to goal.
Terminal set: 0 · · ·N − 1 (for an N × N maze)
Function set: and, or, not, in-region, if, mve, mvw, mvn, mvs, pickmove
Standard fitness: eR

GP Parameters: population = 500, generations = 400, minimum loop = 21 pmut = 0�5, pcross = 0�7
RL Parameters: α = 0�1 , γ = 0�9, λ = 0�9, episodes = 3, max-steps = 50 free trials = 16, penalty =

−1, goal reward = 10, subgoal reward = 2

272 downing

Start

Goal

*

* *

*

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

Generation

F
itn

es
s

Max
Avg
Min

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

Generation

A
vg

 #
 O

pt
io

ns
 p

er
 C

ho
ic

e
N

od
e

Figure 9. Large 10× 10 maze and a successful navigation strategy developed by RGP. Asterisks indicate
subgoal cells.

Figures 7 and 9 show the mazes along with the fittest strategy for the final
generation, as depicted by arrows. Figures 8 and 10 display the originally evolved
and simplified intron-free code underlying each strategy. Figures 7 and 9 also
include fitness graphs and plots of the average learning effort per generation. This
is simply the average number of decisions made at all of the active choice nodes
in the population, where active means that control comes to the node at least once
during fitness evaluation. An average near 4 reveals a preponderance of pickmove
nodes, while values closer to 1 indicate a dominance of single-action choice nodes.
In both cases, note the very slow progress in the first 100 generations, followed

by a rapid increase from generation 100 to 175 (big maze) or 200 (small maze).
Since the GP uses elitism, the rugged maximum-fitness plots in these transient peri-
ods reflect stochastic behavior, which has only one source: the pickmove function.
Hence, the agents use learning to evolutionary advantage, as is characteristic of the
first stage of the Baldwin Effect. But then, near generation 175 in the 10× 10 search,
an optimally hard-wired agent emerges and fitness shoots up to the maximum value;
the 5× 5 search exhibits a gradual rise all the way to the optimal path. The stabil-
ity of the maximum curve after this ascent entails a total absence of active learning
nodes in the highest-fitness individuals, although the population-average learning

reinforced genetic programming 273

Figure 10. Lisp code for the most fit individual of generation 400 of the 10× 10 maze search (above),
and its logically-equivalent intron-free version (below).

rates remain above 1.0 until convergence, which is never complete due to the high
(0.5 per genotype) mutation rate.
The learning graphs show the classic Baldwinian progression, with an ini-

tial increase in learning rate followed by a gradual decline as learned strategy
components become hard-wired. The learning drop correlates with the fitness
increase, with the final plunge occurring during convergence: the lack of exploratory
moves on the path to the goal facilitates a maximum average reward.
In the maze figures, an arrow indicates a hard-wired move from the corresponding

grid cell, as dictated by the optimal RGP tree. Early in the evolution, these diagrams
contain many open cells, indicating multi-action choice points. Note that although
the arrowed regions guarantee an optimal path from start to goal, they do not
promise optimality from any possible start point; a good many are covered, but
several regional control strategies send the agent into a wall. Interestingly enough,
many of these satellite regions (i.e. those lying off the minimal path) evolve opti-
mal strategies during the generations in which stochastic action choices are still
being made; as long as agents are wandering off the optimal path and into the
satellites, then selection pressure for good satellite strategies still exists. But once
hard-wired optimal solutions emerge, agents cease to wander into the satellite cells,
and their regional strategies become selectively neutral, hence amenable to genetic

274 downing

drift. Starting the agents at random initial positions might provide a more robust
solution, but probably at the expense of convergence time.

4.2. Performance comparison

Any performance comparison between RGP and standard GP or other GP variants
is initially biased against RGP due simply to its increased run time. In the tests
conducted below, the RGP typically ran at half the speed of standard GP. Hence,
to justify using the RGP in general practice, we need to find hints of improved
on-line (i.e., average over all individuals and all generations) or off-line fitnesss
(i.e., absolute best over all generations). To get a rough graphic estimate of both
measures, we compare the evolutionary progressions of four EAs in a variety of
static and dynamic mazes. The four EAs are:

1. a standard GP,
2. a standard GP with one extra function-set member: randmove(0),
3. an RGP, and
4. an RGP with 20% Lamarckism (on an individual, not tree-node, basis)

As shown in Table 2, the RGP employs the same function set as in the previous
examples, while the standard GP lacks a pickmove equivalent, plus its four move
functions (one for each direction) are not monitored. For the second EA, randmove
is a function that randomly selects a move in one of the 4 directions. It does not
keep track of reinforcements nor send information to previously-called randmove
nodes. Hence, it represents the stochastic exploration of the early stages of RL, but
without the credit assignment and adaptivity.
This has the same gist as Hinton and Nowlan’s [4] classic Baldwin Effect

experiments, where wildcard genes encoded for random choices. However, in our
tests the number of episodes, 10, and maximum number of moves per episode, 15
(20 for the hardest of the 3 scenarios) give only 150–200 total possible learning
attempts per individual. This is a very optimistic estimate, since a) not all moves
will involve trial-and-error choices and b) each move is only a subset of an entire
strategy. Conversely, Hinton and Nowlan employ 1000 random search attempts per
individual, where each attempt embodies a complete solution. Thus, one would

Table 2. Tableau for evolutionary algorithms used in comparative maze runs

Objective: Find optimal strategy for traversing the maze from start to goal.
Terminal set: 0 · · · 4
Function set: and, or, not, in-region, if, mve, mvw, mvn, mvs, pickmove
Evolutionary Algorithms: GP, GP + Random Nodes, RGP, Lamarckian RGP
Standard fitness: eR̄

Runs: 100 per algorithm per maze
GP Parameters: Population = 50, Generations = 50, minimum

loop = 11 pmut = 0�5, pcross = 0�7 plamarck = 0�2
RL Parameters: α = 0�1� γ = 0�9� λ = 0�9� episodes = 10� max-steps = 15 or 20

free trials = 8, penalty = −1, goal reward = 10, subgoal reward = 2

reinforced genetic programming 275

expect a much more impressive Baldwin Effect in their experiments than with this
GP+Randmove variant.
In Lamarckian RGP, reverse encoding of learned moves into the genome is

on a per-individual basis, so 20% of the maze walkers have all of their active
multiple-move choice nodes converted into single-action nodes (for the action that
gave the best results for that choice node during the run) immediately prior to
reproduction. Intron (i.e., unexecuted) choice nodes are not subject to Lamarckian
rewrites.
All RGP and Lamarckian RGP runs employ eligibility traces but not full backups,

due to the time-consuming nature of the latter and the need to perform many runs.

4.3. Static maze comparison results

First, consider the simple 5 × 5 maze in Figure 11, which only requires the agent
to make one turn from start to goal, although other more complicated, but equally
optimal (i.e. shortest path), solutions exist, all with a fitness of 3.2. In the graphs of
Figures 11, 12, and 13, each curve represents the average of the best-of-generation
fitnesses for 100 runs of 50 individuals over 50 generations. As Figure 11 clearly
illustrates, Lamarckian RGP finds optimal solutions much faster on average than
the other 3 EAs, with basic RGP outperforming the two GP variants.
When the task becomes more difficult (Figure 12), Lamarckian RGP also

dominates, while basic RGP exhibits a very slight advantage over standard GP.
Here, maximum fitness is 5.75, and the fitness plot indicates that none of the EAs
can guarantee an optimal solution in a 50-individual, 50-generation search process.
Finally, on the most difficult of the 3 comparison tests (Figure 13), RGP overtakes

Lamarckian RGP, while the two GP variants clearly lose ground. Since maximum
fitness is 4.95, the scenario once again proves too difficult for guarantees of opti-

Start

Goal

0 10 20 30 40 50
0.5

1

1.5

2

2.5

3

3.5

Generation

A
vg

M
ax

F
itn

es
s

GP
GP+Random Nodes
RGP
Lamarckian RGP

Figure 11. Comparative fitness progressions (right) of 100 runs each of the 4 EAs on the easy 5 × 5
maze (left).

276 downing

Start

Goal*

*

0 10 20 30 40 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Generation

A
vg

M
ax

F
itn

es
s

GP
GP+Random
RGP
Lamarckian RGP

Figure 12. Comparative fitness progressions (right) of 100 runs each of the 4 EAs on a medium-difficulty
5× 5 maze (left). Asterisks indicate subgoal locations.

mality during a relatively short search process. But again, the RGP variants show
clear signs of accelerated convergence over the conventional GP.
In general, the three static-maze comparisons reveal a significant advantage to

the reinforced GPs with respect to total evolutionary effort (i.e., fitness gain per
individual tested), whether via Baldwinian or Lamarckian processes. This stems
from the RGP individual’s ability to a) test different actions and learn from the
results, and b) use evolution to regulate the degree of learning necessary for any
given search stage.

Start

Goal

* *

*

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Generation

A
vg

M
ax

F
itn

es
s

GP
GP+Random Nodes
RGP
Lamarckian RGP

Figure 13. Comparative fitness progressions (right) of 100 runs each of the 4 EAs on a difficult 5× 5
maze (left). Asterisks indicate subgoal locations.

reinforced genetic programming 277

4.4. The dynamic maze task

Intuitively, the added flexibility of learning should aid evolutionary search in
dynamic domains, but the implicit Markov assumptions behind RL may be counter-
productive in these changing environments. Clearly, an empirical study is needed.
Consider a new maze variant in which some cells act as doors, with a probability,

po, of being open on any particular timestep. Based on the primitive GP functions
used previously, both RGP and (standard) GP will encounter the same problem in
the dynamic domain: the agent lacks sensors and thus cannot see that a door is
closed until it runs into it (and incurs a collision penalty). In GP runs, the agent
will merely continue banging into the door, which may or may not re-open in time
for the agent to complete its mission. In RGP, the information gained by the col-
lision may eventually bias move selection away from the door, although possibly
after repeated attempts at the door. Conversely, if the door is open, the GP agent
will move through it and remember nothing, whereas the RGP agent may receive
positive reinforcements for the move (due to goals or subgoals encountered on the
other side of the door) and thus bias future move choices in the direction of the
door. Alternatively, if most moves into the door result in collisions, then these statis-
tics will favor moves away from the door. So regardless of whether the door opens
frequently or seldom, the RGP agent would appear to have an advantage in the
long run, since it could tailor its move probabilities to po.
However, during fitness testing, other elements come into play. Let R be the

optimal route through a maze in which all of the D doors along R are open. In
GP runs, if a genome encodes R, then the agent may run along R, meet a few
closed doors, and get sub-optimal fitness. However, it may get lucky and encounter
D open doors, thus harvesting maximal fitness on the one episode that it runs.
Now consider an RGP agent whose genome also encodes R. Since RGP agents run
through several episodes in order to learn, this agent may meet D open doors in
one episode, but the odds of this happening each time obviously diminish with the
number of episodes. Since fitness is the average performance over all episodes, the
agent will have sub-optimal fitness, even if its R strategy includes a few learning
nodes that enable it to avoid some collisions with the closed door and occasionally
take an alternate (but sub-optimal) route to the goal.
For the GP runs, any R strategist with optimal fitness will transfer its (possibly

mutated and recombined) genotype into the next generation. As the number of R
strategists increases, the probability that at least one of them will encounter D open
doors during its fitness test will increase, and thus the best-of-population individual
will remain at the optimal level for many generations. In the RGP case, the best
individuals will proliferate, but the odds against many consecutive episodes with D
open doors will remain prohibitive. Hence, the RGP fitness graph will never plateau
at the optimal fitness, and standard GP will win most comparison tests in dynamic
domains.
The legitimacy of this comparison rests on the problem interpretation. Maze

search may represent problem solving in a noisy domain, where a closed door con-
stitutes a noisy opening. In another domain, such as cryptanalysis, the noise might
be the mistaken encoding of the letter A as X, instead of the intended Y , in 60% of

278 downing

the A→ Y translations. This would correspond to po = 0�4 in the maze domain. A
good decryption scheme could then wade through the misleading X’s and eventually
capitalize on the Y s to break the code. Similarly, the good maze strategist recog-
nizes all closed doors along the optimal route as noisy openings and breaks through
them to find an optimal route. Under this problem interpretation, multiple-episode
testing of standard GP agents is clearly unecessary, since it would only increase
the computational burden and decrease progress toward the goal by masking good
solutions behind sub-optimal fitness values.
In an alternate, equally plausible, problem interpretation, the goal is to evolve

a general-purpose strategy for handling a non-static environment. Here, all agents
(using any of the 4 EAs) must run over several episodes to assess their flexibility
on the dynamic maze.
Consequently, two testing modes for dynamic mazes are employed: mandatory

multiple episodes (MME) and optional multiple episodes (OME). In MME, all EAs
run through the same number of episodes for each agent. In OME, the GP agents
run only one episode, while the GP + Randmove, RGP and RGP + Lamarckism
agents (a.k.a. learning agents) obey the following rule: if a) the maximum number of
episodes has not been run, and b) at least one choice point of the phenotype was
encountered during the previous episode, then run another episode.
In short, OME agents prematurely abort their fitness tests if the previous episode

involved no learning. This criteria does not insure that all learning has ceased,
since the dynamics of the environment can influence which leaves of the GP tree
are executed during an episode. However, it gives relatively hard-wired learning
agents a chance to derive maximal fitness from one or a few optimal episodes.

4.5. Dynamic maze comparison results

Figure 14 shows a 6×6 dynamic maze containing 5 fixed barriers, 6 doors, and 4
subgoal cells. When the lower left door and one of the two upper right doors are
open, the optimal route takes 7 moves and yields 14 reinforcement points, giving
a fitness value of e2 = 7�34. However, when the doors are rarely open, a safer
strategy takes the upper route, which involves 11 moves and pays 14 points for a
fitness value of 3.56. In the four comparison scenarios, the variant parameters are
po, tu, the number of episodes per fitness test, and the mode: OME or MME. Here,
tu is the period length (in terms of the number of agent moves) between stochastic
toggling of door states. All doors are independently considered for updating every
tu moves. As before, each EA is run 100 times with a population of 50 agents over
50 generations with the parameters of Table 2, and the comparison graphs display
the average over the 100 runs of the highest-fit agents at each generation.
In the OME scenario of Figure 15, the standard GP clearly beats the learning

GPs, as predicted above. This domination persists with smaller or larger values of
po, although it diminishes with more complex optimal paths in other mazes.
The switch to an MME scenario (Figure 16) quickly evens the score, revealing

no clear advantage for standard GP with respect to evolutionary effort. Then, by
increasing the number of mandatory episodes from 10 to 25, RGP and Lamarckian

reinforced genetic programming 279

Start

Goal

*

*

**

Figure 14. The 6×6 dynamic maze used in the 4 comparison tests of the 4 EAs. Squares with diagonal
lines denote doors, and asterisks represent subgoals.

0 10 20 30 40 50
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Generation

A
vg

–M
ax

–F
itn

es
s

GP
GP+Random
RGP
Lamarckian–RGP

Figure 15. Comparison of the 4 EAs on an optional-multiple-episode (OME) run through the dynamic
maze of Figure 14. All agents with Learning GPs used 10 episodes for fitness assessment, while GP
agents used one episode. tu = 4 moves and po = 0�2�

280 downing

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Generation

A
vg

–M
ax

–F
itn

es
s

GP
GP+Random
RGP
Lamarckian–RGP

Figure 16. Comparison of the 4 EAs on a mandatory-multiple-episode (MME) run through the dynamic
maze of Figure 14. All agents used 10 episodes for fitness assessment. tu = 4 moves and po = 0�2.

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Generation

A
vg

–M
ax

–F
itn

es
s

GP
GP+Random
RGP
Lamarckian–RGP

Figure 17. Comparison of the 4 EAs on a mandatory-multiple-episode (MME) run through the maze
of Figure 14. All agents used 25 episodes for fitness assessment. tu = 4 moves and po = 0�2.

reinforced genetic programming 281

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Generation

A
vg

–M
ax

–F
itn

es
s

GP
GP+Random
RGP
Lamarckian–RGP

Figure 18. Comparison of the 4 EAs on a mandatory-multiple-episode (MME) run through the maze
of Figure 14. All agents used 25 episodes for fitness assessment. tu = 1 move and po = 1�1.

RGP gain a slight advantage, as shown in Figure 17. Then, in Figure 18, learning
enhancement increases when the doors are updated more frequently (tu = 1) but
with lower odds of actually opening (po = 0�1). Since very low po values indicate a
nearly static maze, RGP gains an expected advantage, as documented in the earlier
comparisons.
Finally, to test adaptation to dynamics at an inter-generational timescale, the

three static 5 × 5 mazes of Figures 11, 12, and 13 were run in sequence at 20-
generation intervals in 100 OME runs of the 4 EAs. The graph of Figure 19 shows
that RGP and Lamarckian RGP hold an advantage during each of the 3 stages, as
predicted by the earlier static runs. However, the added flexibility of learning gives
no apparent cushion against the abrupt maze changes at generations 20 and 40,
since the curves for all 4 EAs drop precipitously at those two generation gaps. The
rise at generation 60 simply reflects the switch from the hardest back to the easiest
maze. In other maze sequences, RGP adapts well to some inter-generational maze
changes, but isolating and classifying those types of changes that RGP could handle
proved difficult.

4.6. Comparison summary

The comparisons indicate that the potential advantages of RGP may be greater in
static than dynamic domains, with learning providing a nice boost toward a station-
ary goal. This contradicts the general intuition that flexible agents should display

282 downing

0 10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

Generation

A
vg

–M
ax

–F
itn

es
s

GP
GP+Random
RGP
Lamarckian–RGP

Figure 19. Comparison of the 4 EAs on an optional-multiple-episode (OME) run in which maze changes
occurred only at pre-defined generational intervals: 20, 40 and 60. The maze progression involves the
easy, medium and hard 5× 5 mazes of Figures 11, 12, and 13, with a brief return to the easy maze in
the final generation.

their prowess in changing environments. Possibly the non-Markovian situation con-
founds reinforcement learning, or, alternatively, the above examples may simply
lack the complexity necessary for a thorough assessment.
One can argue that representational choice plays a key role in the comparative

results. For example, the in-region predicate clearly aids the RGP philosophy by
providing a built-in state-space abstraction mechanism. A basic GP may profit from
a different set of primitives than RGP, thus yielding true comparisons all the more
difficult. Still, on the tests above, the primitive set appears useful for all four EAs,
as evidenced by the easiest scenario, where all EAs find the optimal solution, but
at different rates.
The addition of RL increases the computational effort of a single fitness test by

about 50% for a single-episode learning test. But for multiple-episode learning, the
effort/episode ratio decreases substantially, since a) the cost of generating the RL
data structures is paid only for the first episode, and b) as learning progresses, more
actions are chosen directly rather than stochastically, more efficient solutions are
discovered, and fewer episode time-outs occur.
In general, further testing on a variety of static and dynamic problems is necessary

to judge the computational tradeoffs of RGP versus standard GP. This paper is
intended more as a proof of principle than of optimality, but the above comparisons
give some support to the claim that reinforcement learning can enhance genetic
programming.

reinforced genetic programming 283

5. The potential dual advantages of RGP

Ideally, RGP should benefit both GP and RL. As shown above, the added plasticity
that RL gives to GP trees can speed evolutionary convergence to good solutions via
Baldwinian and/or Lamarckian mechanisms. Conversely, the use of GP to determine
proper state abstractions for RL could represent a huge savings for RL systems that
get bogged down in extremely large fine-grained search spaces.
Of course, the hybrid bears added computational costs. The learning GP trees

require more space and time to execute than standard GP trees, and although
a single RL session in the abstracted state space will often run many orders of
magnitude faster than in the detailed state space, the evolutionary effort to find the
proper abstraction can dominate run-time complexity. This does not preclude the
possibility of mutual improvements, but the potential for such is clearly problem
specific and probably only empirically ascertained.
As a simple analysis, consider a fine-grained state space of size nm with m

dimensions defined by variables V1� � � � � Vm, where each variable has n possible dis-
crete values. Although the space contains nm points, it has a maximum of only nm
possible variable values, and a minimum of n. It is these legal values that form the
basis for GP’s terminal set. For example, the between and in-region functions use
the (shared) possible X and Y coordinate values as their terminal arguments.
If the GP has F functions with at most k arguments each, and the trees have

maximum depth d, then assuming all trees are full, the search space has size
FN−1�mn�N , where N = kd. Thus, the search space and hence the computational
complexity of the GP is polynomial in both m and n. Conversely, in the fine-grained
reinforcement learner, the complexity scales exponentially with m as ATnm, where
A is the size of the RLS’s action set, and T is the number of free trials. Clearly,
GP complexity greatly exceeds that of RL for all practical sizes of m�k and d, but
in the limit, as m exceeds N , the GP’s state-space partitions would appear to ben-
efit RL. However, to evolve appropriate abstractions for large m may also require
increases to k and/or d, so even in the extreme case, the comparison of search
spaces gives no convincing argument that GP can assist RL. Everything hinges on
the GP’s ability to cleverly manage its search of the abstraction space, and this type
of efficiency defies any convincing proof for the general case.
In the previous static maze tests, standard RL finds solutions several orders of

magnitude faster than RGP, thus confirming the advantage of RL over RGP on
small-scale typical RL problems. Our own computational limitations prevented RL-
RGP comparisons on huge mazes, but as discussed below, Iba’s [7] GP/RL hybrid
yields performance improvements over RL on certain tasks.

6. Related work

Essentially, RGP inverts the typical control flow of a tree-based genetic program.
For example, whereas Koza [9] attacks the broom-balancing-on-a-moving-cart prob-
lem with a set of primitives whose aggregated program returns a cart-movement

284 downing

command from the top of the tree; the corresponding RGP solution involves primi-
tives that attempt to classify the current problem state (in terms of the cart’s veloc-
ity, the broom’s angle, etc.) and thereby funnel control to a leaf node that houses
a movement command or a monitored reinforced choice of such commands. Thus,
RGP enforces a different modelling scheme, one which typically requires strong
typing of the primitive functions. As with standard GP, designing function sets is
more of an art than a science in RGP, but the task is no more complicated, and
possibly more natural, when viewed from RGP’s classify-and-act perspective.
No discussion of hybrid evolutionary algorithms and reinforcement learners can

ignore the extensive research on classifier systems (CS) [5, 11, 16, 24]. Both RGP
and CS employ a classify-and-act cycle to solve problems, and both perform learning
and evolution on a single representation. Since each path from root to leaf in an
RGP tree represents the antecedent of one rule—while the leaf houses a (possibly
non-deterministic) consequent—the entire tree embodies a rule set. Thus, evolu-
tion in RGP works on collections of rules, akin to the Pittsburgh model of classi-
fiers [3]. Conversely, learning occurs at the individual rule level in both RGP and
CS. Whereas classic bucket-brigade learning involves elegant, but indirect, credit
assignment, RGP uses the direct transfer of (decaying) reinforcements among rule
consequents. However, just as eligibility tracing and full backups speed up rein-
forcement passing in RL, a host of feedback accelerators exist for classifiers as well
[14, 15].
To date, the only direct combination of tree-based GP and RL is Iba’s QGP sys-

tem [7]. It uses GP to generate a structured search space for Q-Learning. Given a
set of possible state variables (e.g. w, x, y, z), QGP evolves Q-tables with variable
combinations as the dimensions. For example, the genotype (TAB (*×y) (+ z 5))
specifies a 2-d table with xy as one dimension and z+ 5 as the other. The individual
states in this table have the same level of abstraction and scope: each circumscribes
the same volume in the underlying continuous state space. In several multi-agent
maze-navigation tasks, QGP generates useful Q-tables to simplify RL, and in sit-
uations with many possible state variables, QGP outperforms standard RL, which
flounders in an exponential search space.
In contrast to QGP, which applies GP to improve RL, RGP uses RL to enhance

GP. While Iba constrains his GP trees to a small set of functions and terminals
for generating well-formed Q-tables, RGP sanctions the evolution of amorphous
decision trees that embody heterogeneous abstractions of the RL search space.
One qstate in RGP may represent a single maze cell, while another, in the same
GP tree, can encompass several rows and columns or even a concave region or a
set of disjoint regions. This reflects the philosophy that the proper abstractions are
not necessarily homogeneous partitions of a select quadrant of the search space.
Unfortunately, our approach incurs a much larger evolutionary search cost than
Iba’s, yielding the present RGP an unlikely aid to standard RL. But for improving
standard GP, RGP holds some promise, since it endows GP trees with behavioral
flexibility.
Whereas QGP strongly couples GP and RL, RGP allows evolution to determine

the degree of learning needed for a particular problem, thus facilitating the standard

reinforced genetic programming 285

Baldwininan transition from early plasticity to later hard-wiring in static problem
domains.
In the other previous GP/RL hybrid, Teller’s use of credit assignment in neural

programming [19] more closely matches the goals of our RGP research: to supple-
ment genetic programming with internal reinforcements in order to increase search
efficiency. However, the differences between RGP trees and neural programs are
quite extreme, as are the associated reinforcement mechanisms. While RGP trees
are typically control-flow structures, neural programs involve data flow between
distributed neural processors. Internal reinforcement of neural programs (IRNP)
closely resembles supervised learning in conventional artificial neural networks: the
desired system outputs are compared to the actual outputs over a series of train-
ing instances, and correlations between the two form the basis for internal updates.
Conversely, RGP is designed for reinforcement learning in the stricter sense of the
word [17]: situations where the environmental feedback signals constitute rewards
or punishments but do not explicitly indicate the correct problem-solver output.
The two key characteristics of RL: trial-and-error search and (potentially) delayed
rewards, are intrinsic to RGP. This makes it amenable to a host of control tasks,
whereas IRNP appears more tailored for classification problems.
The collective results of QGP, RGP and IRNP indicate that combinations of GP

and credit-assignment harbor potential benefits for the whole spectra of adaptive
systems from supervised and reinforcement learners to evolutionary algorithms.

7. Discussion

RGP supplements evolutionary search with reinforcement learning, providing a
hybrid approach for attacking problems where the GP program will run several
times during the course of a single fitness evaluation, and the results of each run
may alter the problem environment in a manner that affects succeeding runs. Con-
trol tasks are a prime example. However, as the extraordinarily successful appli-
cations of RL to tasks such as backgammon playing [20] and space-shuttle task
scheduling [26] indicate, a wide range of diverse domains become amenable to the
powers of reinforcement learning when approached from the proper angle. Thus,
RGP may have utility beyond our current scope.
Although this paper focuses on maze-search applications, RGP has been applied

to a few other control problems: pursuit in a 2-d virtual world, and broom-balancing
[9]. No detailed comparisons have yet been performed, but clearly, these and addi-
tional applications are critical to future assessments of RGP’s general utility.
The maze examples all employ choice nodes exclusively at the leaves of the

program tree. Hence, the last activity of each program execution is a call to the
problem solver, which returns a reinforcement to the relevant state-action pair.
However, RGP also handles internal choice nodes that dispatch and monitor gen-
eral control activities. Hence, tree code can include several monitored branch points
such that RGP gradually learns the best of the competing options, which can then
be hard-wired into future genomes via Baldwinian or Lamarckian means.

286 downing

As a simple example, the scenario of Figure 13 was run with an RGP that included
two additional functions: picknum2(2) and picknum4(4). These take only arithmetic
arguments and then monitor the usage of each. Strong typing in the GP insures that
picknums only appear as arguments to in-region. This transfers some of the state-
space abstraction process to the reinforcement learner. Preliminary results show
behavior on-par with the best EA in Figure 13, but not significantly better. Given
the excessive run-time cost (300–500% of RGP) of this addition, no justification for
these extra choice nodes currently exists. Evolution alone may be the best process
for handling adaptations to internal structure.
The primary potential advantages of RGP stem from the integration of learning

directly into a tree-structured GP, thus opening the way for Baldwinian and
Lamarckian performance enhancements without the need for a second learning
structure. One of the true beauties of classifer‘ systems [5] is their integration of
problem-solving, learning and evolution into a single representation. RGP has a
similar aesthetic appeal, but further research is needed to assess the practical utility
of this hybrid approach.

Appendix: Implementation of RGP in Common Lisp

RGP is implemented in Allegro Common Lisp and runs on Unix and Windows
operating systems. Both the GP and RL modules are standard algorithms, but the
connection between the two involves some finesse, exploiting two of Lisp’s most
powerful utilities: macros and closures.
When a genotype RGP tree is converted into running Lisp code (a.k.a. the

phenotype), most of the primitive GP functions map directly to simple Lisp func-
tions or macros. However, choice nodes are a key exception. They are implemented
as macros that expand into closures, i.e., pieces of code with local memory. In each
closure, this memory houses a qstate object: the hook to RL. The closure’s body is
simply a message call, perform-action, to the qstate object.
In addition, the entire phenotype is wrapped within an outer closure, whose main

local variable is a qtable object in which all qstate objects are registered. Hence, all
RL data structures are local to the phenotype. This avoids any global bookkeeping
chores associated with running hundreds or thousands of reinforcement learners.
Lamarckian runs require a correspondence between the original choice nodes of

the genotype and the closures and qstates of the phenotype, since a Lamarckian
learner will have the results of RL back-coded into the genotype (i.e., choice nodes
are replaced by direct actions). Lamarckian agents are therefore pre-processed dur-
ing morphogenesis so that a unique index is appended onto each choice call. During
macro expansion, this index is then saved with the qstate. Simpler mechanisms
are possible, but they require assumptions about the order of macro expansion, a
potentially platform-dependent issue.
The claim that RGP integrates learning and evolution into the same GP

representation is clearly one of perspective. At the implementation level, the claim
is clearly false, since RGP’s genotype is an s-expression, while the phenotype is a
compiled lambda expression with expanded macros. But at the functional level, the
genotype and phenotype differ only marginally in that the phenotype executes in a
tree-like manner, with reinforcements being transferred among the leaves.

reinforced genetic programming 287

References

1. D. H. Ackley and M. L. Littman, “Interactions between learning and evolution,” in Artificial Life
II, C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen (eds.), Addison-Wesley, Reading, MA,
1992, pp. 487–509.

2. J. M. Baldwin, A new factor in evolution, American Naturalist vol. 30, pp. 441–451, 1896.
3. K. A. DeJong, “Genetic-algorithm-based learning,” in Machine Learning, Y. Kodratoff and

R. Michalski (eds.), vol. 3, Morgan Kaufmann: San Francisco, 1990, pp. 611–638.
4. G. E. Hinton and S. J. Nowlan, “How learning can guide evolution,” Complex Syst. vol. 1, pp. 495–

502, 1987.
5. J. H. Holland, Adaptation in Natural and Artificial Systems, 2nd ed., The MIT Press: Cambridge,

MA, 1992.
6. C. R. Houck, J. A. Joines, M. G. Kay, and J. R. Wilson, “Empirical investigation of the benefits of

partial Lamarckianism,” Evolutionary Comput. vol. 5, pp. 31–60, 1997.
7. H. Iba, “Multi-agent reinforcement learning with genetic programming,” in Genetic Programming

1998: Proc. Third Annual Conf., J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo,
D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo (eds.), Morgan Kaufmann:
San Francisco, 1998, pp. 167–172.

8. H. Kitano, “Deisgning neutral networks using genetic algorithms with graph generation system,”
Complex syst. vol. 4, pp. 461–467, 1990.

9. J. R. Koza, Genetic Programming: On the Programming of Computers by Natural Selection, MIT
Press: Cambridge, MA, 1992.

10. J. B. Lamarck, “Of the influence of the environment on the activities and habits of animals, and
the influence of the activities and habits of these living bodies in modifiying their organization and
structure,” Zool. Philos., pp. 106–127, 1914.

11. P. L. Lanzi and S. W. Wilson, “Toward optimal classifier system performance in non-markov
environments,” Evolution Comput. vol. 8, pp. 393–418, 2000.

12. G. Mayley, “Landscapes, learning costs and genetic assimilation,” Evolutionary Comput. vol. 4,
1996.

13. G. F. Miller, P. M. Todd, and S. U. Hedge, “Designing neutral networks using genetic algorithms,”
in Proc. Third Int. Conf. Genetic Algorithms, Morgan Kaufmann: San Francisco, 1989, pp. 379–
384.

14. R. L. Riolo, “Bucket brigade performance: I. Long sequences of classifiers,” in Proc. Second Int.
Conf. Genetic Algorithms, J. J. Grefenstette (ed.), Lawrence Erlbaum Association: Mahwah, NJ,
1987, pp. 184–195.

15. R. L. Riolo, “Lookahead planning and latent learning in a classifier system,” in Proc. First Int. Conf.
Simulation of Adaptive Behavior: From Animals to Animats, J.-A. Meyer and S. W. Wilson (eds.),
MIT Press: Cambridge, MA, 1991, pp. 316–326.

16. G. G. Robertson and R. L. Riolo, “A tale of two classifier systems,” Machine Learning vol. 3,
pp. 139–159, 1988.

17. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press: Cambridge,
MA, 1998.

18. S. Taylor, “Using Lamarckian evolution to increase the effectiveness of neutral network training
with a genetic algorithm and backpropagation,” in Artificial Life at Stanford 1994, J. R. Koza (ed.),
Stanford Bookstore: Stanford, CA, 1994, pp. 181–186.

19. A. Teller, “The internal reinforcement of evolving algorithms,” in Advances in Genetic Programming
3, L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline (eds.), MIT Press: Cambridge, MA,
1999, pp. 325–354.

20. G. Tesauro, “Temporal difference learning and TD-Gammon,” Commun. ACM vol. 38, pp. 58–68,
1995.

21. P. Turney, L. D. Whitley, and R. W. Anderson, “Introduction to the special issue: Evolution,
learning, and instinct: 100 years of the Baldwin effect,” Evolutionary Comput. vol. 4, pp. iv–viii,
1997.

22. C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, pp. 297–292, 1992.

288 downing

23. D. L. Whitley, V. S. Gordon, and K. E. Mathias, “Lamarckian evolution, the Baldwin effect
and function optimization,” in Parallel Problem Solving from Nature—PPSN III, Y. Davidor,
H.-P. Schwefel, and R. Manner (eds.), Springer-Verlag: Berlin, 1994, pp. 6–15.

24. S. W. Wilson and D. E. Goldberg, “A critical review of classifier systems,” in Proc. 3rd Int. Conf.
Genetic Algorithms (ICGA89), J. D. Schaffer (ed.), Morgan Kaufmann: San Francisco, CA, 1989,
pp. 244–255.

25. L. Yaeger, “Computational genetics, physiology, metabolism, neutral systems, learning, vision and
behavior or polyworld: Life in a new context,” in Artificial Life III, Proc. vol. XVII, C. G. Langton
(ed.), Addison-Wesley, Reading, MA, 1994, Santa Fe Institute Studies in the Sciences of Complexity,
pp. 263–298.

26. W. Zhang and T. G. Dietterich, “A reinforcement learning approach to job-shop scheduling,” in Proc.
Int. Joint Conf. Artificial Intelligence, C. S. Mellish, (ed.), Morgan Kaufmann: San Francisco, CA,
1995, pp. 1114–1120.

