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1 Abstract
The Baldwin Effect [2] (B.E.) is a very plausible, but unproven, biological theory
concerning the power of learning to accelerate evolution. Simple computational
models in the 1980’s gave the first constructive proof of its potential existence,
and subsequent work in evolutionary computation has shown the practical,
computational, advantages of hybrid evolution-learning systems. However, the basic
theory, particularly it’s second phase (involving genetic assimilation of acquired
characteristics) is difficult to reconcile in systems controlled by neural networks.
This paper gives a brief overview of early B.E. research, describes one of our earlier
projects involving B.E. and trilaterally adaptive systems, and sketches our current
focus on the investigation of B.E. in trilaterally-adaptive neural networks.

2 The Effects of Learning upon Evolution
One of the first proposals that learning could accelerate evolution was Jean-Baptiste
Lamarck’s (1744-1829) inheritance of acquired characteristics, wherein physical
and mental changes incurred during one’s lifetime could be passed on directly
to offspring. Contemporary knowledge of the germ-soma distinction permits a
recasting of Lamarckism in modern Neo-Darwinian terms, as depicted in Figure
1. Thus, the theory entails a reverse transcription of the modified phenotype back
into the genotype, a process that is fully realizable and often useful in evolutionary
algorithms, but biologically unrealistic except in a few rare cases.

In 1896, James Baldwin postulated an indirect mechanism for the eventual
inheritance of acquired characteristics [2]. This Baldwin Effect involves two stages.
In phase I (Figure 2), assume a set of genotypes spread uniformly about a sub-
optimal region, D1, of the fitness landscape. If phenotypes have plasticity, then
each can essentially perform local search in the fitness landscape (as shown by the
circles with horizontal arrows), and a rough estimate of phenotypic fitness will be
the time-averaged landscape locations of the phenotype. Clearly, those phenotypes
lying near the base of the optimal peak will have better opportunities to learn
their way to higher fitness. Hence, they will have a selective advantage, and the
population distribution will move from D1 to D2. Basically, learning smoothes the
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Figure 1: Neo-Darwinian Interpretation of Lamarckian Inheritance of Acquired
Characteristics: During their lifetimes, phenotypes (circles) can improve and thus
climb the fitness landscape away from their innate position and toward the optimal
phenotype, P*. Any phenotypic improvements are then reverse transcribed into the
genome (changing from filled to open square) prior to reproduction.

fitness landscape and enhances selective pressure such that the population moves
toward the optimal phenotype, denoted by P* on the phenotype axis.

To move, and not merely redistribute, the genotype pool, evolution relies
on genetic operators (mutation, crossover, inversion, etc.). If the genotype and
phenotype space are well correlated [12], then genetics can initiate the emergence of
innately optimal phenotypes, natural born P*s, and, in general, lead to a flattening
of distribution D2 into D3 (Figure 3). Additionally, if learning has a cost, as it
normally does [12], then the P* learners will pay it but the natural-born P*s will not,
thus giving the latter a selective advantage and moving the population distribution
from D3 to D4, where the learned phenotype, P*, becomes fully innate.

Thus, in the Baldwin Effect, learning accelerates evolution; and then, if the
fitness landscape is static, evolution obviates learning via genetic assimilation.

3 Simulating the Baldwin Effect
Since the Baldwin Effect involves both learning and evolution, it is extremely hard to
test in controlled biological settings. Although some lab animals (typically insects)
can be bred quickly, they exhibit much less learning than vertebrates and mammals,
which, in turn, have longer maturation and reproductive cycles. It is no wonder that
little progress had been made on the phenomena since Baldwin’s original paper in
the late 19th century.

However, in the mid 1980’s, Hinton and Nowlan performed a diabolically simple
(yet elegant) set of simulations to illustrate the essence of the Baldwin Effect [7].
They used a standard genetic algorithm to evolve ternary vectors, with each gene
have a value of 0, 1 or * (star, the wildcard). The ultimate goal of GA search was
to find a particular binary string (of 0’s and 1’s but no wildcards). Since there was
just ONE particular goal string, and since no partial-credit was given for evolved
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Figure 2: The Baldwin Effect Phase I: All phenotypes have the ability to learn, but
only those near the base of the peak can achieve fitness increases over the innate
value. This selective advantage moves the genotype/phenotype distribution from
D1 to D2, hence closer to the optimal phenotype, P*. As depicted by the dotted
curve, learning effectively smoothes the fitness landscape.

bit strings that were close, but not exactly correct, this was termed a needle-in-
the-haystack problem, upon which evolution achieves no better performance than
random search.

However, their model incorporated learning via the wildcard genes. Essentially,
any gene that was 0 or 1 was fixed. If any such gene did not match the goal string,
then fitness was zero, regardless of the number of correct genes. But a wildcard
gene opened the possibility for local search within the subspace defined by the
fixed genes, where this search simply involved random guesses of 0’s and 1’s for
the wildcard spots. If, in the course of k out of a maximum M random guesses
(of values for each of the wildcards), the target string was found, then the original
genome received a non-zero fitness, that declined from the maximum fitness as k

M

increased. In general, a genome that was close to the target (and did not include
any incorrect fixed genes) could be randomly adjusted in less than M attempts to
achieve the target, and thus would receive some partial credit. Thus, this guessing
(a very primitive analog of learning) provided a selective advantage to genomes
that were within striking distance of the target string (and without incorrect fixed
genes), and the population gradually moved toward the target. Wildcard genes were
an important part of the early phases of evolutionary search, and their cardinality
gave a quantitative measure of the amount of learning.

The Hinton and Nowlan experiments showed a clear increase in wildcards (i.e.
learning) during the early phases of evolution, thus mimicking phase I of the Baldwin
Effect. However, since learning included a cost (due to the inverse effect of k

M

upon fitness), there was selective pressure to replace wildcards with (correct) fixed
bits, which, in turn, led to a decrease in the average number of wildcards in the
population; but all the while, average fitness kept increasing, illustrating phase II of
the Baldwin Effect.

This classic simulation showed that early learning helped guide evolution toward
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Figure 3: The Baldwin Effect Phase II: Genetic operations spread the population
distribution from D2 to D3, producing individuals with hard-wired optimal
phenotypes, P*. Due to the cost of learning, these natural-born P*s have a selective
advantage over the learned P*s, and the distribution moves from D3 to D4.

a difficult goal, but as the population approached the target, the flexible portions of
the genotype/phenotype became hard-wired to the correct values, thus jettisoning
the (costly) learning capabilities.

4 Development and the Baldwin Effect
There are two critical preconditions to phase II of the Baldwin Effect: a) learning
must have a cost (in terms of delayed maturation and reproduction, vulnerable
periods of juvenile ignorance, or many others outlined in [12]), and b) there is
a strong correlation between genotype and phenotype space [12]. Without this
correlation, the changes accomplished by phenotypic plasticity have little chance of
eventually becoming encoded in the genome via chance genetic operations; or, if
they do, they may happen to random individuals as opposed to those poised and
waiting nearby in genotype space.

Unfortunately, nature promises no such correlation, particularly when the
phenotype space encompasses mental activities. The transition from genome to
fully-functioning brain is extremely intricate, even in very simple animals. In short,
the developmental process that governs the transition from genome to embryo to
juvenile poses serious, possibly insurmountable, problems for the Baldwin Effect.
Development converts a linear string of DNA into a 3-dimensional organism by
a fascinating process, but one that severely confounds the genotype-phenotype
mapping.

However, correlations do exist between the spatial locations of a) homeobox
genes on the chromosomes of all animals from drosophila to humans, and b) body
parts (such as an insect’s thoracic and abdominal segments) [17]. In fact, some
homeobox gene locations even correlate with regions of the hindbrain, which is the
evolutionarily most primitive brain region. However, each neural module consists of
thousands or millions of neurons whose heterogeneous activation patterns determine



the animal’s overt behavior. No single pattern or group of similar patterns, hence no
single behavior, maps directly to a gene. Hence, learned behaviors have no obvious
possibilities for assimilation into the genome.

To illustrate the absurdity of any strong cognitive Baldwin Effect, consider
the human brain, which consists of roughly 1011 neurons and 1014 synapses, the
properties of which are largely believed to realize the knowledge contents of any
brain. This knowledge would be difficult to directly encode in the human genome,
which consists of a mere 30-40 thousand genes.

Despite this major impediment, mental Baldwinism could be rescued via an
acceptable refinement: although learning makes very specific behavioral changes,
there could be corresponding genetic changes for that same general type of behavior.
Thus, while a chess player learns specific opening moves, general board formations
and effective move sequences, these are manifest in synaptic changes to localized
parts of brain regions such as the basal ganglia. Then, the coarse genetic correlate
might be the modification of a few genes whose phenotypic consequences are
slight changes in postnatal concentrations of particular neurotransmitters and
neuroreceptors across the entire basal ganglia. Thus, the child may have innate
talent for activities requiring good sequence memory, although no immediate prowess
at chess. Similarly, the words of human language have no direct genetic correlates,
but the ability to acquire language may have genetic components [14]. In fact, Pinker
and Bloom claim that the Baldwin Effect is instrumental in the emergence of both
language and Chomsky’s proposed language acquisition devices [4]. Interestingly
enough, simple ALife experiments reveal an evolving predisposition toward language
([13, 3]).

Unlike Lamarckianism [11], Baldwinism remains a viable biological possibility.
However, regardless of biological blessing or condemnation, both Lamarckianism
and Baldwinism are useful tools for evolutionary computation [9, 1, 5], since they
supplement evolution with learning to improve overall search. Furthermore, evo-
lutionary algorithms have increasingly exploited indirect genomic representations,
which are converted to phenotypes by an (often complex) developmental process.
These are particularly useful for difficult search problems such as circuit design [10].
So, even if biological research eventually shows that development so dramatically
corrupts the genotype-phenotype mapping as to soundly dismiss the Baldwin Effect,
there will remain a need to understand the interactions between development and
the Baldwin Effect in artificial adaptive systems.

5 The TRIDAP System
To synthetically explore the effects of development on the Baldwin Effect, one needs
a system with three adaptive components: evolution, learning and development
(where the latter may not be adaptive in silico though it is in nature). Summarized
in Figure 4, the Trilaterally Adaptive System (TRIDAP) [6] combines the standard
genetic algorithm (GA) [8] with simple developmental and learning procedures.

Each GA chromosome encodes both the rules for a Turing Machine (TM) and an
initial tape. Both the TM and tape have sizes and contents determined by evolution,
with these sizes encoded in the genome as well. So the initial tape may be innately
long and complex, or short and simple. Similarly, the TM may contain many rules
or few. The goal is to evolve a good combination of initial tape and developmental
recipe such that the fully-developed tape matches a target bit string, with or without



the help of learning.
Development in TRIDAP consists of running the TM on the initial tape, which

often results in significant changes (e.g. overwrites and/or insertions of symbols).
The developed tape then plays the same role as a genotype in Hinton and Nowlan’s
system: it consists of 0’s, 1’s and wildcards, where the latter serve as learning
(i.e. guessing) sites. As described in [6], the fitness measures used in TRIDAP are
similar to those used by Hinton and Nowlan, with special modifications to speed up
the evaluation of long strings.
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Figure 4: Overview of the TRIDAP system, which combines evolution, development,
and learning in the abstract problem domain of binary-string search.

Blueprints versus Recipes in TRIDAP
As discussed earlier, development confounds the Baldwin Effect by greatly
complicating the genotype-phenotype mapping, such that a learned change to
the phenotype becomes nearly impossible to reverse engineer into the genotype.
So phase II of the Baldwin Effect, genetic assimilation, can suffer under
developmentally-dominated mappings. However, oddly enough, this does not
preclude development from assisting a learning-driven evolutionary process. In
fact, in many of our simulations [6], development is a necessary condition for both
evolutionary progress and the Baldwin Effect.



Many of these simulations exhibit a clear interaction between two strategies:
blueprint and recipe. The former involves a lengthy initial tape and very little TM
development, so the genome directly encodes the phenotype. Conversely, the recipe
strategy employs development to grow the phenotype from a very short initial tape.
Both strategies can exploit learning equally, since both can produce phenotypes with
many wildcards.

To rephrase the problem of developmental Baldwinism in these terms: a recipe
strategy has difficulty encoding learned patterns back into the recipe itself. A
blueprint strategy has no such difficulty, since the phenotype and the initial tape
of the genotype correlate so well. For blueprints, phase II of the Baldwin Effect
involves simply replacing some wildcards with the appropriate 0’s and 1’s. This
evolutionary instantiation process can continue until the complete target pattern is
encoded in the initial tape. Learning simply buys evolutionary time for the genome,
while it gradually instantiates the wildcards. But while wildcards are relatively safe,
wrong instantiations are fatal, given the fitness functions above. So instantiation
proceeds very slowly, with many failed attempts going extinct.

Blueprints and recipes compete for dominance of the genome, with the amount of
repetition in the target patterns often brokering the tradeoffs between winner-take-
all and cooperative outcomes. While simple repetitive patterns are more easily found
by developmental recipes, a small increase in sub-pattern complexity opens the door
for blueprinting. Within a particular target-pattern-size category (e.g. 20-cells, 40
cells, etc.) all patterns are equally easy/difficult to generate via blueprinting. So as
subpattern complexity increases in repetitive targets, blueprinting takes over only
because development has greater difficulty designing string generators. It still finds
them, but at a slower rate than does blueprinting, so natural selection favors the
latter.

Perhaps the most interesting results are those of the random 40-cell patterns,
where neither strategy has any clear competitive advantages. However, development
gives evolution a small, but very significant, start, and cooperation with blueprinting
then finds good results, with respect to the fitness function and the high number
of learning trials. Basically, development provides scaffolding for the progressive
expansion of a blueprint. Without these simple repetitive recipes, evolution simply
cannot guess enough correct bits.

For example, consider a random 40-cell pattern:

1100100110100010111011010100000011000010 (1)

Intuitively, neither blueprinting nor development should have a chance of finding
this pattern. However, the combination can often get close. As shown in Figure
5, the early solutions convert a simple initial tape into a large wildcard string.
Although far from the target, these have a non-zero probability of learning the
target, so the fitness function fphn gives them a small positive value - just enough
to bias evolution in the proper direction. Then, over the course of a few hundred
generations, the initial tape fills up with non-wildcard cells while maintaining at
least one wildcard, which serves as the seed for the TM to grow the central wildcard
region. These, along with many of the other simulations from [6] show a clear
Baldwinian progression as learning initially aids search but then gradually abates
as more bits become assimilated. Development thus helps get genotypes in the
ballpark, where the Baldwin Effect can then take over. The final solutions are then



a combination of many hard-wired bits (i.e. partial blueprints) and developmental
recipes, for producing a segment of wildcards of sufficiently short length to enable
learning to complete the search for the needle-in-the-haystack random pattern. The
combination of development and blueprinting thus facilitates a complete Baldwin
Effect in domains that are either too large for blueprinting alone or too intricate for
development alone.

?00001 ? ?00010 −→ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 00001 ? ?00010
11 ? 0011 ? 00010 −→ 11 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?0011 ? 00010

?000011000010 −→ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 000011000010
?000011000010 −→ ?1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0000011000010
?000011000010 −→ ?10010 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?0011000010
?000011000010 −→ ?10010 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 00011000010

11001001101 ? 000011000010 −→ 11001001101 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 000011000010
11001001101 ? 000011000010 −→ 11001001101 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?0000011000010

Figure 5: A sequence of best-of-generation phenotypes from ascend-
ing, but non-contiguous generations for the 40-cell random target
1100100110100010111011010100000011000010. Wildcards are represented by
?, and arrows denote a developmental process from the initial TM tape on the left
to the phenotypic tape on the right.

Since living organisms are complex in terms of both component cardinality
and intricacy, it seems fair to generalize from this example and speculate that
development in the biological world could indeed enhance the Baldwin Effect via
a cooperative arrangement between genes that control general wide-scale properties
of embryogenesis and those that have a more direct link to spatially localized
phenotypic traits. In evolutionary computation, this cooperation might also
be exploitable in problem domains where a) solutions are complex but house
intermittent structure, and b) a hybrid recipe-blueprint genome is feasible, with
evolution governing their relative contributions.

6 Development and the Baldwin Effect in Neural
Networks

Hinton and Nowlan [7] draw the rough analogy between their evolved bit strings and
neural-network connection patterns, and thus we, by association, could claim that
TRIDAP is evolving neural-net-like structures. But anyone even vaguely familiar
with the field recognizes the huge gap between this abstract problem domain and
that of designing fully-functional, learning, neural networks.

Furthermore, our TRIDAP work gives no indication that genetic assimilation (i.e.
phase II of the Baldwin Effect) can occur back across a developmental scheme, since
development can so severely decorrelate the genotype-phenotype mapping. Still,
we have no proof that it always scrambles the mapping. As mentioned earlier,



there are numerous correlations between homeobox genes and the longitudinal axis
of vertebrate bodies and brains.

So to further explore the issues of development and the Baldwin Effect with
respect to cognitive evolution, we must move beyond simple bit-string phenotypes
and experiment with more brain-like representations, such as neural networks.

Figure 6 portrays the most common characterizations of development and
learning in neural networks, based both on contemporary neuroscientific evidence
and practical issues of artificial neural network deployment. Here, development
involves the generation and linking of neurons, while learning consists solely of
the fine-tuning of synaptic strengths; and the two processes occur in lock step,
with development ending before learning begins. Furthermore, development is
largely controlled by the innate genome (a.k.a nature), while the environment (a.k.a
nurture) governs learning.

Genotype

Phenotype

Development Learning

Environment

Figure 6: Illustration of the basic lock-step model of development and learning
in neural networks, where neurogenesis and connectivity constitute development,
while synaptic tuning embodies learning. The genome and the environment have
monotonically decreasing and increasing roles, respectively (depicted by arrow size),
during maturation.

This model causes significant problems for the Baldwin Effect. After all, how
do the results of learning (i.e. local synaptic change) become assimilated into the
genome, which primarily controls neurogenesis and connectivity - both at a relatively
coarse level?

This lock-step framework does admit one opening for the reverse engineering of
synaptic change into the genome. As shown in Figure 7, if some of the synaptic
strengths between neurons in regions A and B are modified during learning, this
can be roughly approximated by genetically-controlled connectivity changes in later
generations. With more (or less) connections between A and B in the future, there
are more (or less) opportunities for synaptic enhancement via Hebbian learning.
Since standard Hebbian learning (via long-term potentiation) relies on correlated



firing (between neurons in regions A and B in this case), there is a greater chance
of such correlation (and thus a promising starting-point for synaptic strengthening)
when more synapses (of even weak efficacy) link areas A and B.

Generation M Generation M+K

Learning

Development

Baldwin
Effect

Phase II

Figure 7: Simple illustration of the reverse engineering of a synaptic change (during
learning) into a similar (though certainly not identical) developmental process, which
should facilitate a similar learning change, though possibly requiring less time and
environmental influence.

Another interesting angle on development and the Baldwin Effect stems from
evidence that the lock-step model, though correct to a rough approximation,
neglects new neurobiological evidence of temporal overlap between neurogenesis,
synaptogenesis, and synaptic tuning.

For example, many studies (summarized in [15]) find high levels of long-term
potentiation (LTP) and long-term depression (LTD) - both forms of synaptic tuning
- during development. In fact, the rates of LTP and LTD (i.e. learning rates) are
actually very high during development and much lower during adult life.

In addition, recent work by Shors [16] reveals that a) neurogenesis occurs
throughout life, particularly in the dentate gyrus (DG) of the hippocampus, but
b) those neurons only hook up to other neurons (and ultimately survive) if the
organism subsequently performs cognitively-challenging tasks.

This new evidence motivates a reinterpretation of the Baldwin Effect in neural
networks. Instead of viewing the second phase as one of converting synaptic-strength
changes (i.e. classic learning) into genomic codes for controlling neurogenesis and
synaptogenesis (i.e. classic development) - which represents the reverse encoding
of the results of one process into two dramatically different processes - we have an
alternative that involves a quantitative, rather than a qualitative, conversion.

To wit, the second (assimilation) phase of the Baldwin Effect may only involve
a change in the rates of neurogenesis, synaptogenesis and LTP/LTD across an
organism’s life stages, as shown in Figure 8. Under the view that adaptive changes
in later life are predominantly governed by the environment, not the genome, a



Baldwinian modification could simply be to move more of that adaptive change into
earlier life stages, where genomic control may dominate. For example, when the
biochemical bases for LTP and LTD arose in evolution, both processes may have
been very active throughout life, requiring constant environmental signaling to tune
neural circuitry. However, over many (thousands of) generations, genomic changes
could have arisen such that the early stages of development utilized neurogenesis,
synaptogenesis and high LTP/LTD to form much of this circuitry with a minimum
of environmental influence. Similarly, the rates of neurogenesis and synaptogenesis
could have originally been much less variable throughout life, but evolution has
gradually found genomes coding for an acceleration of these processes in early
development; and thus, more of these activities became governed by genomic rather
than environmental factors.
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Figure 8: An alternate phase II of the Baldwin Effect in which the rates of
neurogenesis, synaptogenesis and LTP/LTD (learning) change over the course of
evolution such that each process is more active earlier in life. However, within a life
stage, the differences between the three processes fit the traditional view: neuro- and
synaptogenesis dominate early life, while learning accounts for most neural change
in adults.

We are currently exploring models of evolving neural networks in which the
classic developmental and learning processes are interleaved, with the genome
controlling the rates of each throughout the different life stages. We hope that
this will provide further insights into the neurocognitive aspects of the Baldwin
Effect.
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