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Abstract

Many neuroscientists view prediction as one of the core brain functions. However, there is
little consensus as to the exact nature of predictive information and processes, nor the neural
mechanisms that realize them. This paper reviews a host of neural models believed to underlie
the learning and deployment of predictive knowledge in a variety of brain regions: neocortex,
hippocampus, thalamus, basal ganglia and cerebellum. These are compared and contrasted in
order to codify a few basic aspects of neural circuitry and dynamics that appear to be the heart
of prediction.

1 Introduction

Keen predictive abilities have long been recognized as special talents. Those who can consistently
determine what the future brings often enjoy high salaries and elevated social standing. In early
human civilizations, the well-being of an entire tribe was contingent upon the ability to foresee a
rough winter or a pending enemy attack, while today, in a world governed by a perplexing interplay
between complex systems such as climate, politics and international markets, predictive prowess is
at an absolute premium.

Yet despite its well-respected role in society, prediction often goes unappreciated as a fundamental
component of intelligence. Recently, several prominent scientists [34, 23] have championed the
primacy of prediction in cognition. In On Intelligence, computer scientist and founder of the
Redwood Neuroscience Institute, Jeffrey Hawkins [23] argues for a more prediction-centered view
of intelligence:

Intelligence and understanding started as a memory system that fed predictions
into the sensory stream. These predictions are the essence of understanding. To know
something means that you can make predictions about it .. We can now see where Alan
Turing went wrong. Prediction, not behavior, is the proof of intelligence.. (pp. 104-105)
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In Hawkins’ view, the brain is constantly predicting future states, and these expectations combine
with sensory inputs to produce our perceived reality.

In i of the Vortex [34], the renowed neuroscientist Rodolfo Llinas states:

The capacity to predict the outcome of future events - critical to successful movement
- is, most likely, the ultimate and most common of all global brain functions...(pg. 21)

Llinas [34] begins with the earliest mobile lifeforms and their demands for accurate sensorimotor
control in a world whose tempo often exceeds the maximum speeds of neurally-controlled perception
and action. Without prediction, mobile animals cannot choose, at time t, the proper actions for
time t + 4a, based on the state of the world at time t − 4p, where 4p and 4a are the delays
for sensory processing and motor activation, respectively. Control theorists are well aware of the
problems imposed by these types of delays [22], and mechanisms for predicting future system states,
such as Kalman filters [30], are a common solution. Neuroscientists [52, 34] generally agree that
the brain needs similar predictive abilities, and they cite areas such as the cerebellum [52], basal
ganglia [27], hippocampus [19] and neocortex [23] as central to this endeavor.

As we discuss in [15, 14], these predictive facilities may underlie our common-sense understanding
of the world and may provide support for cognitive incrementalism [10] - the view that cognition
arises directly from sensorimotor activity - which, in turn, is a motivating philosophy of situated
and embodied artificial intelligence (SEAI). However, we also point to the pronounced differences
between procedural and declarative knowledge [47] (and the brain areas that appear to facilitate
them), which leave considerable doubt as to whether a single corpus of predictive information could
support both sensorimotor activity and higher-level cognition.

This paper continues our quest to better understand the role of prediction in the brain. We examine
a host of neural subsystems and associated computational models to distill a set of basic anatomical
and physiological factors that support predictive behavior. Although Hawkins [23] focuses on the
cortex, and Llinas [34] on the cerebellum, we find interesting predictive architectures, as proposed by
experimental and computational neuroscientists, in five different systems: cerebellum, basal ganglia,
hippocampus, neocortex and thalamocortical. The former two embody procedural predictions,
while the latter three have a more declarative nature.

The key difference between the procedural and declarative predictive forms resides in the explicit
awareness of the connections between spatiotemporal states that embody predictive knowledge.
For example, a basketball player is explicitly aware of the fact that a strong rebound and quick
outlet pass often predict a fast break, but she may not know what shooting movements can predict
a successful shot, even though she can feel whether a shot will hit or miss the instant it leaves her
fingertips.

As we will see, these two types of prediction, the explicit and implicit, require different architectures.
However, within separate regions of the brain, the same types of architectures for procedural and
declarative prediction, respectively, seem to reoccur. This apparent duplication of prediction-
supporting machinery supports claims that prediction is a fundamental brain process, both at the
conscious and subconscious level.
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We begin by defining prediction for our neuroscientific purposes. Procedural prediction in the
cerebellum and basal ganglia is then explored, with detailed anatomy and physiology of both regions
presented and analyzed. We then move on to declarative prediction, where the hippocampus,
neocortex and thalamocortical system are dissected, as are a collection of computational models,
all by different researchers. We discovered a very interesting commonality across these models,
which served as the prime motivation for this article. This common abstraction is summarized in
our Generic Declarative Prediction Network (GDPN) prior to the presentation of the individual
models. Next, we compare the 5 predictive systems to find a) key similarities between those
supporting the same type of prediction and b) key differences between those underlying different
predictive modes. Finally, we conclude with general remarks on the role of prediction in brain
science.

2 Defining Prediction

From a psychological or social perspective, prediction denotes a wide range of abilities, many of
which involve the capacity to learn temporal correlations among events or world states. One can
predict the consequences of actions by using acquired associations between those acts and the world
states that have, in the past, immediately succeeded them. One can predict the world state that
normally follows another world state, where, presumably the earlier state includes some hints as
to the key processes governing the state change. When viewing a snapshot of a baseball player
running full speed across the warning track, we can predict that one of the following states involves
the same player crashing into the outfield wall. We connect the two states via the action, hard
running, so clearly evident in the first state.

The dictionary [1] gives two primary definitions of predict :

1. to declare or indicate in advance, and

2. to foretell on the basis of observation.

Here, the latter definition essentially supplements the former by implying that observations are the
basis for the advance declaration or indication. For our purposes, the definitions of declare and
indicate have significance as well.

To declare is to make known formally, officially or explicitly, while to indicate is to be a sign,
symptom or index of [1]. In short, the declarative form of prediction is more concrete and direct,
while the indicative form is more indirect and implicit. As a simple example, one may declaratively
predict an upcoming sunny day by explicitly stating, ”Tomorrow will be a sunny day.” Conversely,
one can indicate that prediction by various preparatory acts such as purchasing sunblock, retrieving
the lawnmower from the deep recesses of the garage, etc.

Interestingly, these two forms of prediction map quite well to distinct neural structures. The
explicit variant seems to coincide with cortical and hippocampal activity, while the implicit type
maps to commonly-proported cerebellar and basal gangliar functions, which are often described as
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procedural or non-declarative [46]. Consequently, the terms declarative and procedural will be used
to denote the explicit and indicative forms of prediction, respectively.

Recognition

Associative Learning

Prediction

Time

Figure 1: (Above) Recognition depicted as the formation of a brain state (drawn as lightning on
the forehead) that becomes correlated with a physical event (lightning). (Middle) Learning the
association between one event (lightning) and its successor (thunder) by linking the brain states
that correlate with each. (Below) Declarative prediction entails recognizing one event (lightning)
and forming the succeeding brain state for thunder prior to (or even in the absence of) the real-world
event with which it correlates.

Figure 1 illustrates the basic conception of declarative prediction from a neural perspective. First,
recognition is defined as attaining a brain state, S, that has previously exhibited a strong correlation
with the (now familiar) experience (e.g., object, event or state of the agent itself). Informally, S is
that brain state that is both a) most likely to arise under the given experience, e.g. lightning, and b)
not likely to arise under other conditions. Along these same lines, declarative predictive knowledge
involves two such correlations between brain states and experiences plus a link between the two
brain states such that one can trigger the other prior to (or even in the complete absence of) the
latter’s associated experience. This link need not be bi-directional, so the experience of lightning
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may lead to the brain state corresponding to the experience of thunder, but not necessarily vice
versa.

In the framework of Figure 1, predictive learning is essentially a special case of associative learning
in which the related items represent events having at least a small temporal deviation such that
the start of event A precedes that of event B. Then, during the interim between the two starts,
prediction proves its worth by indicating B (and thus enabling the animal to prepare for B) prior to
B’s occurrence. This preparatory window gives prediction a survival advantage above and beyond
that of non-temporal association. In the latter, an antelope can link the sight of a tiger to fear (and
its consequences such as hiding or fleeing), but without the ability to associate events over time,
the antelope could not link the rustling of bushes at time t with the appearance of a tiger at time
t+d, much to the antelope’s detriment.

Figure 2 depicts procedural prediction. Here, the agent (a monkey) has acquired a link between a
brain state that weakly correlates with lightning (a diamond) and one that weakly maps to thunder
(a star). These are weak in the sense that they may not be completely specific for these events, such
that any flashing light would trigger the diamond state, and any loud noise would trigger the star
state. Thus, it is difficult to claim that the monkey declaratively predicts thunder. In contrast to a
declarative representation, the general, weakly correlated state would not stimulate other conscious
thunderstorm thoughts such as the association with dark rain clouds, the potential dangers, exam-
ples of destructive effects, etc. However, an observer may easily interpret the monkey’s procedural
act of covering its ears as an explicit prediction of thunder. When the agent’s actions, but not its
brain state, appears to foretell a specific event, the prediction is procedural.

The difference between the two predictive forms is probably most easily discernible in humans, since
our communicated descriptions of future states often indicate a declarative component, whereas
many physical situations require us to act quickly and appropriately, but without forming clear
neural correlates of the next situation. For example, in watching the slow-motion replay of a tennis
serve, a coach may predictively describe where and how the ball will land, but in playing the return
shot herself, she would simply run to the appropriate spot and adjust her body to the speed, angles
and spin expected of the incoming serve. Only a naive outside observer would infer that she had
explicit knowledge of those parameters.

In the sections that follow, five neural systems, all of which have been posited as centers of predic-
tive activity by several authors, are examined both in general and with respect to prediction. In
many cases, the focus is on computational models of those systems, as these typically provide more
thorough - albeit unproven - mechanistic explanations than do the more traditional neuroscientific
findings. These systems are the cerebellum and basal ganglia, both viewed as procedurally pre-
dictive engines, and the hippocampus, neocortex, and thalamocortical loop, each of which shows
strong declarative tendencies.

3 Procedural Prediction in the Cerebellum

The cerebellum has a well-established role in the learning and control of complex motions [31, 6],
and many believe that this involves the use of predictive models [52, 2]. A brief anatomical overview
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Observer

Time

Figure 2: Procedural prediction, wherein the agent’s actions indicate specific knowledge of a future
world state, even though the agent (monkey) has no explicit brain state that strongly correlates
with the world state. The agent’s ear-covering behavior can easily lead an observer to infer that
the agent has the strongly-correlated brain state, i.e., explicit knowledge of the upcoming thunder.
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(based on [6]) of the cerebellum appears in Figure 3, which indicates the highly ordered structure
of this region.

As shown in Figures 3 and 4, the cerebellar input layer, the granular cells, receive a variety of
peripheral sensory and cortical signals via mossy fibers stemming from the spinal cord and brain-
stem. These signals experience differential delays before converging upon the granular cells, with
an average of 4 such inputs per cell [44] The large number of such cells, approximately 1011 in
humans [31], combined with their tendency to laterally inhibit one another, via the interspersed
golgi cells, indicates that the granular cells serve as sparse-coding detectors of relatively simple (i.e.
involving just a few integrated stimuli) contexts [44]. Since delay times vary along the mossy fibers,
each context has both temporal and spatial extent.

Parallel Fibers

Granular
 Cells

Mossy
Fibers

Climbing
Fibers

Purkinje
Cells

Inferior
Olive

Inhibition of
deep cerebellar

neurons

To 
Cerebral
Cortex

To
Spinal
Cord

Sensory + Cortical
Inputs

Somatosensory (touch, pain, body position) 
+ Cortical Inputs

Golgi
Cells

Efference Copy

Figure 3: The basic organization of the cerebellum, an abstraction and combination of more complex
diagrams in Bear et al. [6], originally appearing in [15].

One parallel fiber emanates from each granular cell and synapses onto the dendrites of many
Purkinje cells, each of which may receive input from 105 to 106 parallel fibers [31]. Since the
Purkinje outputs are the cerebellum’s ultimate contribution to the control of motor (and possibly
cognitive) activity, the plethora granular inputs to each Purkinje cell would appear to embody a
complex set of preconditions for the generation of any such output. Since the PF-PC synapses are
modifiable [31, 44], these preconditions are subject to learning/adaptation.

As shown in Figure 3, climbing fibers from the inferior olive send signals to the PF-PC synapses.
The climbing fibers transfer pain signals from the muscles and joints controlled by those fibers’
corresponding Purkinje cells, and these affect long-term depression (LTD) of the neighboring PF-
PC synapses [31, 44]. Thus, the climbing fibers provide a primitive form of supervised learning [16]
wherein the combination of parallel fibers that cause a Purkinje cell to fire (and thus promote a
muscular movement resulting in discomfort) will be less likely to excite the same PC in the future.
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In short, the feedback from the inferior olive and clmbing fibers helps to filter out inappropriate
contexts (embodied in the parallel fibers) for particular muscle activations.

et

et+2

et+1

et-2

et+1

et+1

Granular
Cells

Mossy
Fibers

Golgi
Cells

Parallel Fibers

et+3

et+1

Figure 4: Granular cells realize sparse coding for temporally-blended contexts. Events (e) of various
temporal origins (denoted by subscripts) simultaneously activate granular cells due to differential
delays - roughly depicted by line length, with longer lines denoting events that occurred further in
the past -along mossy fibers.

Plasticity at the PF-PC synapse relies on post-synaptic long-term depression (LTD). When a CF
forces a PC to fire strongly, those PC dendrites that were recently activated by parallel fibers
undergo chemical changes that reduce their sensitivity to glutamate (the neurotransmitter used by
PFs). Hence, the influence of those PFs on the PC declines [6].

Somewhat counterintuitively, the simplest behaviors often require the most complex neural activity
patterns. For example, it takes a much more intricate combination of excitatory and (particularly)
inhibitory signals to wiggle a single finger (or toe) than to move all five. Hence, the tuning of PC
cells to achieve the appropriate inhibitory mix is a critical factor in basic skill learning.

Figure 5 gives a hypothetical example of a behavioral rule implemented by a cerebellar tract. A
baseball outfielder receives a variety of sensory inputs with different temporal delays, shown here
as converging on the same granular cell. The granular output then affects several Purkinje cells,
including those whose ultimate effect is to adjust the player’s orientation and leg angle in the
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attempt to rapidly accelerate toward the projected destination of the ball.

Mossy
Fibers

Granular 
Cell

Sent signal to legs 
to begin running at

Time = 150 ms
Saw batter swing

hard and upward at
Time = 0 ms

Heard solid 
crack 

of the bat at
Time = 250 ms

Felt slippery turf 
beneath feet at
Time = 300 ms

Send signal to press 
feet down at a more 

vertical angle at
Time = 500 ms

Saw direction of ball 
as angles V 

(vertical) and H 
(horizontal) at 
Time = 50 ms

Purkinje
Cells

Send signal to orient 
toward expected 

destination of ball at
Time = 500 ms

Figure 5: Temporally-mixed sensory and proprioceptive experiences of a baseball outfielder. These
form a context for increasing vertical foot plant while accelerating to catch a fly ball.

The predictiive nature of this and similar rules involves the integration of sensory stimuli, whose
temporal relationships are highly salient, to determine proper actions. Thus, cross-sections of the
past determine present decisions about future behaviors. As depicted in Figure 6, the detection of
any salient consequences or errors comes even later, due to sensory-processing delays. That error
signal should then provide feedback regarding the decisions made earlier.

To maintain an approximate record of what channels were active, and when, and thus what synapses
are most eligible for modification, the cerebellum and many other brain areas utilize a complex bio-
chemical process that essentially yields a synapse most receptive to LTP or LTD about 100 msec
after high transmission activity (as discussed in [32, 26]). This eligibility trace, in the parlance of
reinforcement learning theory [50], helps compensate for the time delays of sensory processing and
motor activation. Eligibility dynamics have probably coevolved with the sensory, motor and pro-
prioceptive apparatus to support optimal learning. Figure 7 shows the eligibility traces associated
with several context-action pairs, with those occurring within a narrow time window prior to error
detection having the highest values.
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Purkinje Cells
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Figure 6: The temporal scope of cerebellar decision making. Context from the past affects present
action choices whose actions are realized in the future and whose consequences are perceived even
further in the future.

Considering that the human cerebellum consists of over a million parallel fibers, each of which
embodies a context-action association, physical skill learning may consist of the gradual tuning
and pruning of this immense rule set. Links of high utility should endure, while others will fade
via LTD. Importantly, since contexts reflect states of the world prior to action choice and action
performance - again, due to inherent sensory-processing delays - the actions that they recommend
should be those most appropriate for states of the body and world at some future time (relative
to the contexts). Recommendations that lack this predictive nature will produce inferior behavior
and be weakened via LTD. By trial and error, the cerebellum learns to support the most salient
predictions, which are those that properly account for the inherent delays in sensory processing
and motor realization.

From the viewpoint of an outside observer, the cerebellum’s actions would appear to involve explicit
knowledge as to future states, such as L, the location of the baseball 3 seconds after contact with
the bat. However, the cerebellar rule need only embody the behavior that will eventually move
the player to that spot, without an explicit representation of the spot itself. With respect to our
definition of declarative prediction (as drawn in Figure 1), there is not necessarily a brain state
that correlates with L, and even if there is, it need not be stimulated by the cerebellar activity that
helps move the player to L.

For example, in the eye-tracking simulations and primate trials of Kettner et. al., [32], both monkeys
and computer models anticipate future points along complex visual trajectories by shifting gaze
to the appropriate locations. In describing these systems as predictive, the authors refer to overt
behaviors that indicate, to the outside observer, explicit knowledge of future locations. However,
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Figure 7: Cerebellar eligibility traces, drawn as rectangles on the condition-action arcs, with taller
rectangles denoting higher eligibility. Synapses are most eligible for modification approximately
100 milliseconds after they transmit an action potential.
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neither system is claimed to explicitly house representations (i.e. correlated brain states) for those
sites. The predictive knowledge is purely procedural. Knowing how and when to look at a location
is a lot different than explicitly knowing about that spot.

4 Regressive Procedural Prediction in the Basal Ganglia

In the basal ganglia, prediction arises in the course of reinforcement learning (RL) [50], which many
researchers view as a central capability of this region [16, 26, 39]. RL systems learn associations
between environmental (and bodily) states and various rewards or punishments (i.e. reinforcements)
that those states may incur, either immediately or at some time in the future. Thus, the system
learns to predict the reinforcement from the state. Naturally, RL provides a survival advantage,
since it enables organisms to behave proactively instead of merely reactively.

However, the extent of prediction in RL is somewhat suspect: animals are not necessarily foretelling
future states in any great detail. Instead, they may only possess basic intuitions about impending
pleasure or pain. As shown in Figure 8, the selective advantage stems from recognizing these
reinforcements based on earlier, and often more subtle, clues. Thus, the predictive ability regresses
in time. For example, a monkey that anticipates thunder at the first sight of atmospheric light can
more consistently protect its ears than one dependent upon the sight of a lightning bolt, which,
when close to the observer, strikes almost simultaneously with the thunder blast.1

Time

Trial 1

Trial 2
Trial k

Figure 8: Regressive prediction: the agent recognizes earlier and earlier indicators of the emotive
event.

Sketched in Figures 9 and 10, the BG are large midbrain structures that receive convergent inputs
1What follows is a modified version of section 5.2 in [15], enhanced to incorporate a slightly wider range of

anatomical information and to highlight the predictive role of the basal ganglia.
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from many cortical areas onto the striatum (consisting of caudate nucleus and putamen) and the
subthalamic nucleus (STN). The striatal cells appear to function as a layer of competitive context
detectors [25], since a) each neuron receives inputs from circa 10,000 cortical neurons, b) their
electrochemical properties are such that they only fire if many of those inputs are active, and c)
they have intra-layer inhibitory connections.

Putamen

Caudate
Nucleus

VL Nucleus
of Thalamus 

STN

Substantia
Nigra

Globus
Palllidus 

(GP)Endopedunclar

Nucleus (EP)

Striatum

Cortex

Inhibit

Excite

Figure 9: Basic anatomy of the basal ganglia in one hemisphere, shown as a coronal cross-section.
Based on diagrams in [6, 40]

Strong evidence [48, 21] indicates that the BG are arranged in parallel loops wherein a striatal
cell’s inputs come from a region of a particular cortex, such as the motor cortex (MC). Their
outputs to the substantia nigra pars compacta (SNc), substantia nigra pars reticulata (SNr) and
entopeduncular nucleus (EP) are eventually channeled back to the MC in the form of both action
potentials (via the thalamus) and the neuromodulator dopamine. A great majority of these loops
appear to involve the prefrontal cortex (PFC)[25, 31, 48], thus indicating BG contributions to
attention, possibly as the mechanism for gating new patterns into working memory [21, 38].

Accounts of GB functional topology vary considerably [25, 26, 40, 21, 20], but several similarities
do exist. First, the the striatum appears to consist of two main neuron types: striosomes and

13



Neocortex

Striatum

STN

Thalamus

GP

EP SNrActors Critic

Hyperdirect
Pathway

Direct
Pathway

Direct
Pathway

Indirect
Pathway

Inhibit

Excite

Striosome

Matriosome

Midbrain
&

Brainstem

SNc

Dopamine

Primary reinforcement
from the limbic system

Figure 10: Functional topology of the basal ganglia and their main inputs, derived from text and
diagrams in [25, 26, 40, 21]. The actor denotes the direct outputs of the BG: EP and SNr, while
the critic consists of the diffuse neuromodulatory output from SNc. Matriosomes are primarily
gateways to the actor circuit, while striosomes have direct-pathway links to both actors and critics.
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matriosomes, where the former are surrounded by the latter. Several prominent researchers [5, 26]
characterize the BG as a combination of actor and critic, with the matriosomes and pallidal neurons
(EP and SNr) as the actor’s input and output ports, respectively, while the striosomes and SNc
comprise the critic. Although this characterization is not completely consistent with other sources,
such as [28], the matriosomes and striosomes are often characterized as respectively supporting
action selection and state assessment (via dopamine signalling from SNc). See [27, 21] for overviews
of the empirical data and theoretical models.

From an abstract perspective, the BG map contexts to actions. When a context-detecting matrio-
some fires, it inhibits a few downstream pallidal (GP and EP) neurons. In stark contrast to the
striatum, the EP consists of low-fan-in neurons, most of which are constantly firing and thereby
inhibiting their downstream counterparts in the thalamus [25]. When a striatal cell inhibits a pal-
lidal neuron, this momentarily disinhibits the corresponding thalamic neuron, which then excites
a cortical neuron, often in the PFC. The cortical excitation links back to the thalamus, creating a
positive feedback loop that sustains the activity of both neurons, even though pallidal disinhibition
may have ceased. Thus, the striatal-pallidal actor circuit momentarily gates in a response whose
trace may reside in the working memory of the PFC for many seconds or minutes [25, 39].

Since the PFC is the highest level of motor control [18], its firing patterns often influence activity in
the pre-motor (PMC) and motor (MC) cortices, while the MC sends signals to the muscles via the
spinal cord. In addition, the sustained PFC activity provides further context for the next round(s)
of striatal firing and pallidal inhibition that embody context detection and action selection, re-
spectively. Via this recurrent looping, the basal ganglia execute high-level action sequences. The
situation-action rules housed within the BG may comprise significant portions of our common sense
understanding of body-environmental interactions, whether consciously or only subconsciously ac-
cessible.

The BG learns salient contexts via dopamine (DA) signals from the SNc, which influence the
synaptic plasticity of regions onto which they impinge [31]. DA acts as a second messenger that
strengthens and prolongs the response elicited by the primary messenger. For example, when a
striatal neuron, S, is fired via converging inputs from the cortex, the primary messenger is the
neurotransmitter from the axons of the cortical neurons (C) that recently fired. The immediate
response of those S’ dendrites (D) connected to the active axons is to transmit an action potential
(AP) toward S’s cell body. The summation of these D inputs will lead to S’s production of a
new AP. If dopamine enters these dendrites shortly after AP transmission, a series of chemical
(and sometimes physical) changes occur which make those dendrites more likely to generate an
AP (and a stronger one) the next time its upstream axon(s) produce neurotransmitters. Since the
chemicals involved in this strengthening process are conserved, those dendrites that did not receive
neurotransmitter may become less likely to fire an AP later on, even when neurotransmitters reach
them. Thus, in the future, when the C neurons fire, the likelihood of S firing will have increased,
whereas other cortical firing patterns will have less chance of stimulating S. In short, S has become
a detector for the context represented by C. Without the dopamine infusion, S develops no bias
toward C and may later fire on many diverse cortical patterns.

In unfamiliar situations, the SNc fires upon receiving stimulation from various limbic structures,
such as the amygdala (the seat of emotions [33]), which triggers on painful or pleasurable experi-
ences. The ensuing dopamine signal encourages the striatum to remember the context that elicited
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those emotions - the stronger the emotion, the greater the learning bias. Due to the biochemical
temporal dynamics [26], the striatal neurons that become biased (i.e., learn a context) are those
that fired approximately 100 ms prior to the emotional response. Hence, the BG learns a context
(C) that predicts the reinforcing situation (R).

Since dopamine signaling is diffuse, the matriosomes and striosomes in a striatal module are both
stimulated to learn. Hence, the critic not only learns to predict important states, but assists in the
learning of proper situation-action pairs by the actor circuit.

Figure 11 portrays the changes in a single context-action link in the basal ganglia as initiated by
a reinforcement signal and modulated by an eligibility trace. The key difference between this and
the situation in the cerebellum (Figure 7) involves the connections from the STN to the SNc. By
strengthening these links, the basal ganglia allow contexts to directly predict rewards, as shown by
the arrow from C3 to the internal reward signal at the bottom of Figure 11. This, in turn, allows
earlier contexts (C2) to predict the same reward during later trials. Hypothetically speaking, a
similar functionality in the cerebellum would require tuneable direct links from granular cells (the
context detectors) to the inferior olive (the source of feedback signals).

Again, descriptions of the critical topological elements differ - see [28] for a review - but many
experts name two paths from the cortex to SNc [21, 40]. The first, often called the hyperdirect
pathway, bypasses the striatum and directly excites the subthalamic nucleus (STN), which, in turn,
excites SNc. The second, termed the direct pathway, involves a strong inhibitory link from striatum
to SNc. The hyperdirect pathway is quick but excites SNc for only a short period. Conversely, the
direct pathway is slower, but it inhibits SNc for a much longer period.

This timing difference between excitation and inhibition enables these predictions (of reinforcement
based on context) to regress backwards in time such that very early clues can prepare an organism
for impending pleasure or pain. As pointed out by Joel et. al. [28], physiological evidence indicates
that the excitatory and inhibitory signals to SNc cannot both come from the striatum, but more
likely from the prefontal cortex (via the hyperdirect pathway) and the striatum, respectively.

Consider the simplified scenario of Figure 12, in which an animal experiences a temporal series of
sensorimotor contexts: X, Y and Z before attaining the reinforcing state R. When this sequence
first occurs, the attainment of R will be the first indicator of success, and the limbic reward signal
will excite SNc and STN, causing dopamine-induced learning of context Z in both. The BG has
learned a predictive rule that Z eventually leads to R: Z ; R.

On a later trial, the occurrence of Z will initially stimulate SNc, and the ensuing dopamine will
assist learning of a salient context immediately prior to Z, which is Y. Thus, another striosome
is recruited to recognize a new context and notify SNc upon its detection. The system has thus
learned Y ; Z ; R, but only implicitly in the sense that from Y, the agent knows the actions
needed to attain Z, without necessarily knowing of Z and its relationship to Y. An outside observer
might infer declarative knowledge of the Y ; Z ; R sequence, but its true nature need only be
procedural.

When R is attained, the limbic system still signals SNc, but by that time, Z’s inhibitory signal has
reached SNc, thereby preventing further dopamine dissemination. Neuroscientists [31, 27] have long
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Figure 11: Temporal regression of predictive competence using eligibility traces and reinforcement
signals in the basal ganglia. C2 and C3 are contexts detected by the striatum and STN, while A2
and A3 are accepted/chosen versions of C2 and C3, respectively.
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known that dopamine signals only occur when a reinforcement is not expected, i.e., not predicted by
a prior context. The temporal aspects of the biochemistry and the critic-circuit topology provide a
clear explanation: when a context predicts a reward, its latent inhibition of SNc blocks subsequent
attempts to stimulate it.

Finally, on a still later trial, the occurrence of Y will stimulate SNc, causing X to be encoded by a
striosome and X ; Y ; Z ; R to be implicitly learned.

In the end, what predictive information does this model of the BG produce? An outside observer
might infer that, indeed, the sequence X ; Y ; Z ; R is now explicit knowledge of the sys-
tem. However, this model indicates that only the following associations have been acquired, in
approximately the order shown:

1. Z ; R, so state Z is a good state to attain.

2. When in Z, perform action az to attain the reward state R.

3. Y ; R, so state Y is a good state to attain.

4. When in Y, perform action ay, which just happens to put the system in state Z, although the
system itself has no direct knowledge of this Y ; Z connection.

5. X ; R, so state X is a good state to attain.

6. When in X, perform action ax, which just happens to put the system in state Y.

Sequence learning is often posited as a key faculty of the basal ganglia [27, 40, 21], but the above
description implies that the BG only learns how to get from one element of a sequence to the next,
just as the outfielder’s cerebellum helps him get to the ball. Actual knowledge of the links between
sequence elements need not be explicitly represented anywhere in the system.

5 Predictive Topologies

Despite their many anatomical and (apparent) functional differences, the neural networks of the
cerebellum and basal ganglia share several important features:

1. The entry points to each - granular and striatal cells, respectively - have high fan-in, strongly
inhibit one another, and appear to serve as detectors of contexts with significant temporal
extent.

2. The downstream pathways from these context cells are parallel tracts, with little integration.

3. Outputs have direct effects upon physical actions (cerebellum) or planning states that prepare
the agent for action (basal ganglia).
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4. Synaptic biochemistry embodies eligibility traces with maximum values appearing along path-
ways that were active just prior (i.e. 100 msec) to the supervisory/reinforcement signal.

As described earlier, the tuning of the plethora context-sensitive rules is driven by error or reward
signals, and modulated by eligibility traces. It yields procedurally predictive controllers that are
adapted to the inherent sensory and motor delays of the organism.

The contextual input neurons for precedural prediction appear to detect complex multi-modal
patterns, but intra-layer competition among these neurons and the parallel tracts of their efferents
seem to preclude the actual representation of complex contexts in any manner that would support
explicit reasoning about them. It permits contexts to serve as atomic triggers for action, but little
else.

Declarative prediction requires different machinery, i.e. that which can associate two patterns,
both of which have strong correlations with external states. The review, in the three upcoming
sections, of several neural models of declarative prediction reveals a common connection scheme,
which forms the basis of our Generic Declarative Prediction Network (GDPN).

Figure 13 sketches the basic GDPN framework, in which a set of sensory inputs map directly to a
set of low-level detector neurons (A,B, and C). Above these lies a second (higher) level of neurons
(W,X,Y and Z). This topology provides one, relatively simple, mechanism for learning temporal
correlations among events, such as the fact that stimulus A is normally followed by stimulus B.

In this diagram, it is important to note that low-level inputs to higher levels occur proximally, i.e.
close to the soma,, whereas top-down signals, such those from X to A, B and C, enter via distal
dendrites. In general, this means that low-level signals can more easily drive the activity of their
high-level neighbors, while the high-level signals have a much weaker effect upon lower levels.

Consider a situation in which stimulus A precedes stimulus B. The following series of events explains
how the network learns to predict B when A occurs in future situations.

First, at time t1, stimulus A has a strong effect upon neuron A, via its proximal synapse. Neuron
A then fires and sends bottom-up signals to W,X,Y and Z. At this level, as in all levels of the
brain, neurons fire randomly, with probabilities depending upon their electrochemical properties
and those of their surroundings. Assume that neuron X happens to fire during, or just after (i.e.
within 100 msec of) neuron A. Assuming that synapse S1 is modifiable, the A-X firing coincidence
will lead to a strengthening of S1, via standard Hebbian learning. In reality, several such high-level
neurons may coactivate with A and have their proximal synapses modified as well.

When X fires, it sends signals horizontally and to both higher and lower levels. These latter top-
down signals have a high fanout, impinging upon the distal dendrites of neurons A, B and C.
Since entering distally, along unrefined synapses, these signals have only weak effects upon their
respective soma, so at time t3, neurons B and C are receiving only mild stimulation. At this stage,
we can metaphorically say that a) X is waiting for B and C (and thousands or millions of other
low-level neurons) to fire, and b) X hedges its bets by investing equally and weakly in each potential
outcome.
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Figure 13: The Generic Declarative Prediction Network (GDPN). Neurons A, B and C serve as
low-level detectors for stimuli A, B and C, while W-Z represent neurons at a higher level. Only
the axonal projections from X are shown, though W, Y and Z have similar links to the lower level.
The T1 - T4 diamonds represent time steps, while S1 and S2 denote important synapses, as further
discussed in the text.
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At time t4, when event B occurs, neuron B will fire hard due to the proximal stimulation from
below. This will cause further bottom-up signalling, as when A fired, but the critical event for
our current purposes involves the LTP that occurs at synapse S2. Previously, stimulation from X
alone was not sufficient to fire neuron B. But if synapse S2 houses NMDA receptors, as do many
dendrites throughout the brain, then the coincidence of B firing and S2 being (even mildly) active in
the 100-msec time window prior to t4 will lead to strengthening of S2 [31]. Thus, in the future, the
firing of X will send stronger signals across S2, possibly powerful enough to fire neuron B without
help from stimulus B.

Through one or several A-then-B stimulation sequences, S1 and S2 can be modified to the point
that an occurrence of stimulus A will fire neuron A, as before, but this will then directly cause X
to fire, which in turn will fire neuron B. Thus, stimulus A will predict stimulus B.

Over time, neuron X ceases to hedge its bets and achieves a significant bias toward neuron B. This
stems from both the strengthening of S2 and the weakening, via long-term depression (LTD), of X’s
synapses upon other low-level neurons, as explained below. Thus, X simply becomes a dedicated
link between A and B. In a larger system, X and other neurons in its level, would become links
between a pattern of activation in the lower level, P1, and a subsequent pattern, P2.

From the viewpoint of synaptic electrophysiology, the acquisition of declarative predictive models
within this hierarchical network has a very plausible explanation based on bi-modal thresholding.
As illustrated in Figure 14, Artola et al. [4] have shown that weak stimulation of neurons (in the
visual cortex) leads to long-term depression (LTD) of the synapses that were active during this
stimulation, while stronger stimulation incurs long-term potentiation (LTP) of the active synapses.

Three learning cases are worth considering with respect to a) a particular neuron, N, b) its low-level
sensory inputs, S, with proximal synapses onto N, and c) its high-level predictive inputs, P, with
distal synapses onto N.

First, if S is active but P is not, then the effects of S on N will produce a high enough firing rate in
N to incite LTP of the S-to-N proximal synapse. Hence, N will learn to recognize certain low-level
sensory patterns.

Second, if both P and S provide active inputs to N, then an even higher firing rate of N can be
expected, so LTP of both the S-to-N and P-to-N synapses should ensue. In essence, the predictive
and sensory patterns create a meeting point at N by tuning the synapses there to respond to the
P-and-S conjunction. In fact, after repeated co-occurences of S and P, the synapses in N may
strengthen to the point of responding to the P-or-S disjunction as well, in effect saying that it
trusts the prediction P even in the absence of immediate sensory confirmation.

In the third case, when only P is active, the distal contacts of the P axons may only suffice to weakly
stimulate N, thus leading to LTD: a weakening of the P-to-N synapses. Hence, future signals from
P will not suffice to fire N, and thus P’s predictions will not propagate through N in the absence
of verification from S. In short, the system learns that P is not a good predictor of S.

These three scenarios provide a very simple mechanism for the synaptic tuning that gradually
converts a blanket of bet-hedging anticipatory links into a few dedicated connections between
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Figure 14: (Above) Top-down, predictive, distal and bottom-up, sensory, proximal inputs to a
neuron. (Below) Changes in synaptic strength as a function of post-synaptic stimulation intensity.
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associated neural patterns.

In the following three sections, the neocortex, hippocampus and thalamocortical system are ana-
lyzed with respect to prediction, with each showing clear evidence of the bet hedging and refinement
so characteristic of the GDPN.

6 Declarative Prediction in the Neocortex

The neocortex provides a very straightforward instantiation of the GDPN, with individual neurons
replaced by cortical columns. The neocortex is the thin outer surface of the cerebrum, only a
few millimeters in thickness and composed of 6 cell layers. These cells appear to be grouped
into vertical columns [36] which are often viewed as processing modules [23, 18]. In mammals,
it is convenient, and reasonably accurate, to view cortical columns near the back of the head as
processors of primitive sensory information, particularly visual, while the more anterior columns
process and represent higher-level concepts [18, 31] Under this abstraction, bottom-up sensory-
driven interpretation processes involve cascades of activation patterns moving from the back to the
front of the neocortex. Conversely, top-down, memory-biased processing moves front to back, as
shown in Figure 15.

Within each cortical column, the neurons capable of emitting the strongest and most influential
signals to other columns are large pyramidals with cell bodies residing in the lower layers, 5 and
6 [36]. Axons emanating from these two layers tend to synapse on lower-level cortical columns
[23, 44], particularly motor neurons, and the thalamus, a subcortical structure known as a key
relay station for sensory signals and believed to play a key role in integrating information [45]. The
dendrites of these large pyramidal cells extend up to layer 1, which is essentially a mat of axons
coming from both higher-level cortical columns and subcortical structures such as the thalamus,
hippocampus and basal ganglia. Signals from layer 1 reach the large pyramidals either directly, via
the latter’s dendrites, or indirectly via small neurons in layers 2 and 3.

Incoming axons from other columns can synapse with the large pyramidals at just about any point
along their dendrites, from layer 4 up to layer 1. Proximal synapses (i.e., those close to the cell
body, such as in layer 4) typically have a stronger effect upon the pyramidal’s firing activity than
will distal synapses at layer 1 or relay pathways through layers 2 and 3 [36].

Of critical importance to understanding predictive-model learning in the neocortex is the fact that
the axonal inputs from lower-level (i.e., posterior) cortical columns tend to enter higher-level cortical
columns in layer 4, with some synapses also forming at layer 6 [23, 36, 31] . Thus, the low-level
inputs form synapses near the cell bodies of the large pyramidals, whereas the inputs from higher-
level (i.e., anterior) columns normally connect via layer 1. The immediate implication is that
low-level sensory signals, which essentially represent the organism’s current sensation of reality,
have a stronger influence upon a cortical column than do the high-level thoughts (i.e. predictions)
that often bias perception.

Hawkins emphasizes the branching factors of bottom-up versus top-down pathways [23] in the
neocortex. In general, the number of cortical columns decreases in moving up the processing
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Figure 15: Abstract view of cortical columns and top-down versus bottom-up information flow.
Bottom-up flow (solid lines) goes from layers 2 and 3 of the sending column to layer 4 of the higher-
level column, but with additional synapses onto the large pyramidals in layers 5 and 6 (pentagons).
In the top-down pathway (dotted line), large pyramidals output to layer 1 of lower-level columns,
with the signal eventually reaching layers 5 and 6 via either the layer 2-3 relays or directly via long
dendrites from the large pyramidals.

hierarchy. Hence, bottom-up pathways appear convergent in that many primitive sensory neurons
feed into the same higher-level neurons. Likewise, top-down pathways appear divergent, with one
associative neuron signalling many lower-level columns. Hence, a predictive high-level neuron, P,
may initially supply many lower-level neurons, in effect encoding a bet-hedging expectation that
many different sensory patterns will be active when P fires. Through experience, many of these
divergent connections will be pruned as their synapses weaken due to unfulfilled expectations and
the resulting LTD.

Learning of a temporal correlation between stimulus states A and B follows the basic GDPN
protocol in the cortex. Low-level cortical columns serve as detectors for specific features and
(in moving up the hierarchy) combinations of features. Assuming column CA detects stimulus
A, its layer 2-3 neurons will fire, sending signals to the proximal dendrites of layer-5 neurons in
higher-level columns. Any of those neurons that randomly fire in that same time frame will thus
have their synapses from CA strengthened. Assume X is one such layer-5 pyramidal. It will send
divergent axons to layer 1 of many lower-level columns, thus hedging all bets and waiting for the
next stimulus detector to fire. When stimulus B arrives, its detector column, CB, activates (i.e.
its layer-5 pyramidals fire) and the links between X and layer 1 of CB are enhanced. After one
or several occurrences of A-then-B, CA will fire X, which will then fire CB, even in the absence of
stimulus B.

Another key aspect of this model concerns temporal relationships. Assume an initial sensory
scenario, S1 at time t1. This will propagate up the cortical hierarchy but will also evoke top-down
predictive signals in layers that house expectations associated with S1. For these expectations to
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propagate further down the hierarchy, they will need to match new sensory data (thereby firing
the layer-5 pyramidals that send signals to lower levels). Due to the inherent time lag in neural
signalling pathways, the predictions related to S1 will need to match up with ascending sensory
data from situation S2, which occurred at a slightly later time, t2. Hence, the natural time delays
in the system will insure the learning of predictions between states at time t1 and time t2, thus
neatly corresponding with our general conception of causal knowledge.

Over time, a network of cortical columns with the topology and learning mechanisms described
above will adapt its synaptic strengths to form a system that can both interpret sensory data and
use top-down expectations to a) complete partial sensory states, and b) predict future states. In
fact, under the general view of a context as an amalgamation of related information with some
degree of temporal scope, the completion of a partial context could essentially involve the recall of
future states associated with states closer to the present. Hence, many acts of pattern completion
embody prediction as well, and the cortex seems particularly adept at this task.

One final aspect of Hawkins’ theory of cortical function [23] deserves mention. He postulates
that sensory inputs will propagate up the cortical hierarchy until they reach a level at which
expectations/predictions (presumably based on previous inputs and/or brain states) match the
reality embodied in the current inputs. The correspondence between prediction and reality will then
block further upward progress. In short, surprise travels upwards until it ceases to be unexpected.
If it confounds all predictions and reaches the higher associational areas, it then feeds into the
hippocampus and (assuming significant emotional content) spurs learning, which helps insure that
it will not be such a surprise on its next occurrence. Our discussion of the thalamocortical loop (in
a later section) sheds further light on these ideas.

7 Declarative Prediction in the Hippocampus

The hippocampus (HC) resides in the temporal lobe and is commonly viewed as the seat of long-
term memory formation, but not necessarily of storage [46, 19, 35]. Anatomically, it resembles
a horn [3], as shown at the top of Figure 16. A wide variety of high-level associational areas
send inputs to HC, most of which are funneled through the entorhinal cortex (EC). As implied at
the bottom of Figure 16, the HC and surrounding regions employ high convergence to compress
information between the neocortex and area CA3, and a complementary expansion (via divergence)
on the return path through CA1 and Subiculum [44, 3]. The topology of the HC proper is a main
loop with several shortcuts from the EC to CA3 and CA1 [3].

Only CA3 contains extensive recurrence, with each neuron connected to 1 to 4% of the others [44, 3].
This indicates that CA3 performs associative learning by standard Hebbian means: neurons that
fire together wire together [24]. The high convergence from a diverse array of neocortical areas onto
CA3 hints of the holistic nature of these patterns. In rats, individual neurons in CA3 and CA1
are known as place cells [7], since they fire only when the animal is at a particular location, while
in monkeys, they are called view cells, since they fire when the primate merely looks at such a
location [44]. Discovery of these cells has motivated a plethora of artificial neural network (ANN)
models of HC-based navigation, as summarized in [7, 41]. Many of these involve implicit predictive
knowledge in CA3 and CA1, wherein place cells fire before the animal arrives at the corresponding
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Figure 16: (Above) Basic anatomy of the mammalian hippocampus. (Below) Primary hippocampal
areas and their connectivity. Box dimensions roughly illustrate relative sizes of neural populations
in each area; all connections are excitatory. Based on pictures and diagrams in [3, 37, 44].
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location.

In one of the more popular models, Burgess et al. [37] propose a layer of goal cells (possibly
in the subiculum) that receive inputs from many CA1 place cells. Goals represent very salient
locations, often those involving reinforcements. As a simulated rat moves about, the goal cells fire
at frequencies correlated with the rat’s proximity to their target fields, so navigation is achieved by
choosing movements that increase the firing of focal goal cells.

Another interesting variant [29] posits CA3 as the site of predicted situations and CA1 as the site
of real situations (via direct inputs from EC). Mismatches between the two drive learning in CA3
and thus improve the accuracy of future predictions.

The model that we now consider in detail is that of Wallenstein et. al. [51]. It provides an intricate
mechanism for predictive learning that is a) centered largely in CA3, b) able to connect events
separated by significant temporal delays, and c) quite similar to our GDPN.

Their model utilizes the key differences between proximal and distal contacts to CA3 pyramidal
cells. As shown in Figure 17, afferents from the dentate gyrus have proximal targets on CA3
neurons, while CA3’s recurrent collaterals have distal synapses. Hence, DG inputs, when active,
tend to drive CA3 pyramidals, enforcing external conditions (via EC and its cortical afferents)
upon them. However, the authors cite the well-known 4-10 Hz theta oscillations [31, 8] as a simple
switching mechanism between afferent-driven and collateral-driven CA3 activation. Hence, CA3
can receive DG inputs during one phase of a theta wave and exploit internal computations (via
recurrence) during the opposite phase.

The following detailed example, based on the Wallenstein et. al. model, reveals very clear GDPN
dynamics within CA3, but without the need for a hierarchy of layers.

Assume that the system will learn the association between two temporally distinct events, E1 and
E2, where E1 involves two sensory features, 1 and 3, while E2 involves features 2 and 6. In the initial
phase, shown in Figure 18, features 1 and 3 enter CA3 via DG. Each DG granular cell projects to
a small number (around 15) CA3 cells [3]; this is abstractly depicted as a 1-1 relationship in our
figures, where the DG is drawn with 6 output ports.

When neurons 1 and 3 fire, they send signals to all neurons with which they have recurrent con-
nections. In the hippocampus, this would be 1-5% of all CA3 neurons. Hence, many CA3 neurons
receive weak, distal stimulation.

As is common in CA3 and many other brain areas, neurons randomly burst (i.e. produce action
potentials) at all times, although normally at lower rates than those of neurons that receive many
inputs. In the upper left of Figure 18, neurons 4 and 5 happen to be bursting within approximately
the same 100 msec window as the arrival of stimuli 1 and 3. Hence, neurons 4 and 5 fire while
receiving distal inputs from 1 and 3. The NMDA receptors on these distal dendrites will then detect
this coincidence (of presynaptic input and postsynaptic firing) and strengthen the distal synapses.
The connection between 1-3 and 4-5 would thereby strengthen.

Neurons 4 and 5 are referred to as context neurons. As shown below, they form the glue between
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Figure 17: Two main sources of input to CA3 neurons: proximal connections from the dentate
gyrus and distal, recurrent inputs from CA3 itself. Each CA3 neuron has recurrent links to 1-5%
of the others [44, 3].

E1 and E2, even when many seconds (or minutes) separate the two events.

At this point, CA3 has learned the association between 1-3 and this context. It must now learn
to connect the context to E2. It is therefore important that the context remains active while
simultaneously sending out monitoring signals to other CA3 neurons, in anticipation of future
inputs from DG. The upper right of Figure 18 shows this state, wherein the context sends distal
signals to many neurons, including 4 and 5. Note that since 4 and 5 are firing hard during the
arrival of these self-monitoring inputs, their distal synapses will strengthen, as shown on the bottom
left of the figure, making the context an autocatalytic activation pattern, and thus one that can
remain active for long periods of time. Neurons 1 and 3 are now inactive, since a) event E1 is
completed, and b) the system experiences the second half of a theta oscillation, the half in which
internal dynamics dominates extrinsic influences.

After a delay of seconds or even minutes, event E2 occurs, sending signals for features 2 and 6
into CA3 via EC and DG. These proximal inputs force neurons 2 and 6 to fire, but, as shown
on the bottom left of Figure 18, the key learning now occurs on the distal dendrites to 2 and 6,
which were active during monitoring. This LTP strengthens the links between context neurons
4-5 and neurons 2 and 6. Although not discussed in [51], the distal links from context to neurons
1 and 3 could weaken by LTD, since the monitoring inputs did not coincide with postsynaptic
activity in those 2 neurons. Note that all of this assumes that the context and, more importantly,
its monitoring signals, remain active during the E1-E2 delay. Contexts are able to achieve this
prolonged activation if they consist of enough neurons and can quickly strengthen autocatalytic
connections.
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Figure 18: Learning a predictive association in the hippocampus. In these diagrams, a) large
arrows extending from DG indicate active output ports, and b) CA3 neurons are separated into 3
groups for explanatory purposes only. (Upper left) Input of pattern 1-3 from the dentate gyrus via
proximal synapses onto CA3 pyramidals. (Upper right) Context neurons send distal monitoring
signals to their recurrent connections and to themselves. This causes weak activation of distal
dendrites throughout CA3 and incites autocatalytic learning within the 4-5 context. (Lower left)
distal monitoring inputs from the 4-5 context coincide with DG-forced firing of neurons 2 and
6 (as a consequence of event E2). This leads to LTP at the distal synapses of neurons 2 and 6.
(Lower right) Using the learned association between events E1 and E2: when E1 occurs, 4-5 context
neurons and then neurons 2 and 6 fire, thus predicting the future occurrence of E2.
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As shown by the large arrows on the bottom right of Figure 18, the links from E1 detectors to
context and then to E2 detectors have all been enhanced. Thus, when E1 occurs, its distal contacts
suffice to fire the context neurons, and their distal contacts can then a) keep the context active,
and b) excite neurons 2 and 6. This constitutes a prediction that E2 will occur.

Since inputs to HC come from high-level associational cortices, they need not have direct links to
immediate sensory and proprioceptive activity. For example, sequences of activation states in these
cortices may represent different steps in a reasoning process. Hence, the predictive learning in CA3
can also encompass associations between any mental states, but particularly when they have high
emotional content, since emotions trigger neuromodulators that enhance activation and learning in
areas such as CA3 [33]. For instance, when pondering the events of a mystery novel, thoughts of
the butler may initiate a chain of inferences ending in the conclusion that he must be the murderer.
The emotional content of this deduction may lead to a strong link in CA3 between butler and
murderer, with many of the intervening (emotion-free) inferences eventually being forgotten.

8 Declarative Prediction in the Thalamocortical Loop

Although neuroscientists previously viewed the thalamus as merely a transfer point for signals from
sensory periphery to cortex, it is now known that only about 20% of thalamic inputs are ascending
pathways (i.e. upward along the spinal cord) from the senses, while most of its remaining afferents
descend from the cortex [31, 45]. Hence, the thalamus is now seen as a key component and integrator
of several brain functions, including predictive/sequential learning [43].

As shown in figure 19, the thalamus is divided into several nucleii, each of which relays sensory
signals to and receives top-down feedback from a specific cortical region, such as auditory, visual
or multi-modal cortices. Two key neuron types in each nucleus are the core and matrix cells. The
former are large and have sparse, topographic connections to layer-4 neurons in the corresponding
cortical area, while the latter are smaller and send diffuse projections to the layer-1 dendritic mats
of many cortical columns within a region.

Inputs to core cells come from a) ascending sensory pathways, b) cortical feedback, and c) the
nucleus reticularis, a strong inhibitory module. Conversely, matrix cells receive the vast majority
of their afferents from layer 5 of the cortex [45, 43]. Thus, they are important for thalamocortical
feedback but not for the initial sensory relay.

The nucleus reticularis (NR) maps topographically to core cells, with excited NR cells strongly
inhibiting their core counterparts. As shown in Figure 20, descending pathways from cortical layer
6 link to the corresponding NR and core cells. Since NR neurons have proximal links to core neurons,
their inhibitory effect is very strong, tending to override sensory input from ascending pathways.
As pointed out by Granger [20], the chemistry of excitatory glutamate versus inhibitory GABA
synaptic potentials is such that the former persist for a mere 15-20 msec, while inhibition last from
80-150 msec. This, combined with the transmission pathways of Figure 20, implies that a sensory
stimulus will briefly excite a core thalamus cell, causing further activation of the corresponding
cortical column; but feedback from this column, via NR, will then silence the core neuron for a
considerably longer period.
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Figure 19: Basic anatomy of the thalamocortical system, based on similar drawings in [45]. The
cortex is divided into regions, vertical columns, and the 6 well-known horizontal layers. Each
core cell maps to layer 4 of a specific cortical column and receives feedback from layer 6. Matrix
cells receive cortical afferents from layer 5 and send signals to the layer-1 dendritic mats of many
columns.
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Figure 20: Sketch of thalamocortical loops for three columns of a cortical region. Core, matrix and
nucleus reticularis (NR) cells are separated into three modules for illustrative purposes. The main
types (but not all instances) of connections are drawn. Within a column, the key connections are
a) entry layer 4 links to layers 2 and 3, b) layer 2-3 stimulation of layers 5 and 6, and c) layer
1 excitation of layers 2, 3 and 5. In general, the column is considered active when layer 5 and 6
neurons fire at high frequency.
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The models of Rodriguez et. al.[43] and Granger [20] provide excellent insights into the emergence
of predictive associations within thalamocortical loops. As sketched in Figure 21, two stimuli are
linked via thalamic and cortical activation, monitoring and learning. Figure 21d then illustrates
the recall process wherein stimulus 1 leads to the expectation of stimulus 2.

Initially (Figure 21a), stimulus 1 enters the core thalamus via ascending pathways, firing core neuron
1, which then relays to layer 4 of column 1. This excites layers 2 and 3, which then stimulate layers
5 and 6. Layer 6 then sends positive feedback to both the original core neuron and its antagonistic
NR cell, while layer 5 excites matrix thalamus neurons. Those matrix cells that happen to randomly
burst within this time frame (drawn as solid circles) accrue stronger synapses via LTP.

Next, (Figure 21b), the active matrix cell (now linked to column 1 via LTP) sends monitoring
signals to the layer-1 dendritic mats of many cortical columns. In addition, the active NR cell
(pentagon 1) inhibits its core thalamus counterpart (circle 1), despite the potentially continuous
presence of stimulus 1. This gradually de-activates cortical column 1.

Stimulus 2 now activates the core thalamus (Figure 21c), which relays excitation to column 2. The
coincident activation of deep-layer neurons and layer-1 dendrites lead to NMDA-driven LTP in
column 2, thus forging a strong link between matrix neuron 1 and column 2. Inhibition of core
neuron 1 remains in effect, so even if stimuli 1 and 2 are co-present, only 2 has an effect at this
stage.

Figure 21d illustrates the recall of the newly-formed predictive association. The occurrence of
stimulus 1 fires core neuron 1, which stimulates cortical column 1. In turn, this excites matrix
neuron 1, which then drives column-2 activity. The firing of layer 5 and 6 neurons in column 2
embodies recall of stimulus 2 as a consequence of stimulus 1.

Although they serve our purpose well, these models were originally designed to show the role of
thalamocortical activity in perceptual processing. In that case, stimulus 1 represents the set of most
salient features in a percept, typically known as the invariants: the most common features among
instances of a perceptual class. For example, in the elephant category, these might include size and
the presence of a trunk. Once recognized, the effects of these features should be damped such that
other, more specific, attributes can be processed in order to perform fine-grained discrimination,
when necessary. The negative feedback loop from cortical level 6 to the nucleus reticularis to core
thalamus performs this function. It allows stimulus 2 (which represents a set of secondary features)
to dominate processing for a few fractions of a second.

The link formed between stimulus 1 and stimulus 2 is indeed anticipatory, but for this classification
task, the prediction is between one stage of perceptual processing (represented by a neural activity
pattern) and another, with no direct connection to temporally sequential events in the external
world: the trunk and large body of the elephant do not actually enter our visual field before the
other features, they are merely processed first.

Clearly, a sensorimotor system benefits from this incremental processing, since immediate reac-
tions, when necessary, can be mobilized on the basis of only the most salient features, and thus
with minimal delay. Thus, evolution would favor such an approach over an all-perception-before-
action scheme reminiscent of early artificial intelligence and robotics [42]. More general predictive
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Figure 21: Learning of a predictive sequence in the thalamocortical circuit. Only the main active
connections are shown. (a)(upper left) Entry of stimulus 1 stimulates the corresponding core
thalamus neuron and cortical column, as well as a random matrix thalamus neuron. (b) (upper
right) Matrix stimulation leads to distal monitoring of diverse cortical columns. (c) (lower left)
Entry of stimulus 2 adds proximal stimulation to (already distally stimulated) cortical column
2, producing distal synaptic strengthening. (d)(lower right) In future trials, stimulus 1 leads to
excitation of column 1, then 2, thus embodying a prediction of stimulus 2.
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knowledge, involving temporally-contiguous real-world events, could then capitalize on the same
basic thalamocortical system. The only significant difference is in Figure 21c, where only stimulus
2 would appear, not both 1 and 2. In short, our predictive capacities stem directly from our ability
to incrementally classify, or vice versa.

Finally, the thalamocortical model helps explain Hawkins’ theory [23] that surprise propagates up
the cortical hierarchy. As in Figure 21d, assume that stimulus 1 has primed column 2, which now
fully expects to see stimulus 2. If it arrives, it does so via the core thalamus and then level 4 of
column 2. This further stimulates layers 2-3 and then layers 5 and 6. Since layer 6 fires very hard,
this sends strong signals to NR, which swiftly inhibits core neuron 2, thus removing the excitatory
input to level 4, which in turn removes a strong excitatory input to layers 2 and 3. Since layers 2
and 3 are the main output ports for propagation up the cortical hierarchy, further ascent is blocked
or significantly reduced.

Conversely, if stimulus 2 arrives in column 2 without the simultaneous presence of expectation-
driven firing (beginning in layer 1), then layer 6 may not fire hard enough to completely inhibit
core neuron 2. Thus, column 2 would remain active, sending signals up and down the cortical
hierarchy.

This conflicts somewhat with our original description of stage 1 of thalamocortical predictive learn-
ing in Figures 21a and 21b, in which the NR neurons are stimulated (and the corresponding core
neurons blocked). However, the dynamics are probably more continuous than discrete, such that
NR excitation reduces core and then cortical activity to varying degrees, depending upon NR firing
levels.

This view hints of a learning model wherein, upon seeing an object for the first time, cortical
columns corresponding to the most salient features fire, but at levels too weak to fully stimulate
NR. Hence, secondary features go largely unnoticed during the early trials as primary features
dominate cortical activity. However, with repeated presentation of the object, the salient columns
begin to fire harder, due to synapses strengthened by simple Hebbian means during earlier trials.
Thus, NR becomes a more active player, helping to shut down salient core neurons and columns,
thereby allowing access to secondary and eventually tertiary stimuli. In short, we learn the most
important features first and require repeated trials to fully absorb the details. Stated differently, the
learning of a feature set S entails the ability to make predictions about S, and as these predictions
become more accurate, less processing time is required (and used) for S, and more can be devoted
to other features.

Along the same lines, a predictive sequence cannot be learned in its entirety, but piecemeal, with
links between temporally later events forming only after earlier segments have become familiar.

9 General Features of Predictive Circuitry

A high-level topological comparison indicates the differential predictive functionality of the proce-
dural and declarative circuits. Under the reasonably standard view that our explicit representations
(i.e., those that we can attend to, reason about, etc.) consist of a good deal perceptual information
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(i.e., that based on past or present sensations), it makes sense that a predictive association between
two such representations involves connections within the more perceptually-oriented areas of the
brain. If these patterns represent similar world states, then, due to the topological nature of much
of the brain, they probably reside near one another and may even have many shared active neurons.
A birds-eye view of these two patterns and the active synapses that embody the predictive link
would indicate a tight mesh of intra-layer and intra-region connections: high recurrence.

Conversely, the cerebellum and basal ganglia have little recurrence. They exhibit parallel tracts
that map sensorimotor contexts to actions. The basal ganglia appears slightly more cognitive in
that it may be gating sensorimotor contexts - that embody perceptions plus intended actions - into
prefrontal areas, where they can then influence future motor acts and reasoning.

The procedurally predictive areas are therefore hard pressed to link representation R1 for world-
state 1 to R2, the representation for world-state 2. However, they can learn to map R1 to actions
and action plans that are appropriate for world-state 2. And in a fast-moving world, this is often
all that is required, or permitted.

As shown in Figure 22, a key difference between the procedural and declarative predictive mecha-
nisms involves space. In the procedural areas, activation patterns move along parallel tracks, and
the learning initiated by a salient event (such as an error or reinforcement signal) targets synapses
between one area and the next. For example, in the cerebellum, the competing contexts stem from
diverse brain regions whose axons converge upon the granular cells, while the winning contexts are
those whose granular cells can maintain activity in the face of inhibitory signals from other granular
cells. By linking the granular cells to the Purkinje cells, the parallel fibers provide a distinct spatial
location for the transfer from contexts to actions. The basal ganglia house similar parallel tracks,
although the direct connection between any BG area and action is less obvious, since most BG
outputs target high-level cortical areas.

In learning declarative predictions, the brain must link contexts to contexts, and these often reside
in the same brain region. Hence, learning involves a modification of recurrent arcs, as shown at
the bottom of Figure 22, and as detailed by the previous models of the cortex, hippocampus and
thalamocortical system.

As reviewed by Dominey [13], artificial neural network (ANN) experiments indicate that recurrence
alone will not suffice to learn pattern sequences, since the delayed neuromodulatory feedback has a
credit assignment problem: difficulty targeting the relevant activation rounds that accounted for an
action. However, as Dominey et. al. [12] show, an ANN with a combination of a) leaky integrator
neurons with a diverse range of time constants, and b) synaptic modification restricted to a small
portion of the network, can learn temporal sequences.

The models in this article indicate other factors that may be critical for learning in recurrent regions,
including eligibility traces (which seem to be a standard component of biologically-plausible learning
rules [17]), a wealth of available neurons to serve as links between two stimulus patterns, phasic
toggling between external driving and recurrent signalling, and the general monitoring mechanism
involving distal dendrites.

Evolution has clearly endowed the brains of higher mammals with considerable recurrence, and
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Figure 22: Abstract comparison of the procedural (top) and declarative (bottom) predictive mech-
anisms, with relative time points given as t0 - t4 and vertical cell columns indicating brain regions.
(Top) In procedural prediction, neural patterns corresponding to competing contexts, winning
contexts, and proposed actions have distinct spatial locations in the brain. Salient events and the
ensuing feedback (via neuromodulators) then alter synapses between these regions, such as between
granular cell contexts of the cerebellum and the action-regulating Purkinje cells. Similar spatial
localization occurs in the basal ganglia. (Bottom) In declarative areas such as the hippocampus,
cortex and thalamocortical system, active patterns have considerably more spatial overlap such
that neuromodulatory feedback effects recurrent (often distal) connections within a region. The
competition among contexts thus occurs in place.
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thus with more sophisticated declarative predictive abilities. The hippocampus was the first major
step [49], with both a) high recurrence within CA3, and b) the loop organization of the entire
hippocampal region, with most signals entering and leaving via EC. The neocortex, with its massive
intra- and inter-region feedback elaborates that trend. With increased evolutionary size, the cortex
also sends a greater density of axons to diverse neural regions, both higher and lower. Thus, the
most advanced predictive machinery attains a higher degree of control in the mammalian, and
particularly primate, brain.

A finer grained analysis of the five systems above reveals several features that many share. These
properties involve neurons, synapses and circuitry.

Obviously, LTP and LTD are essential for strengthening relevant and weakening irrelevant connec-
tions between neurons. When Hebbian LTP governs synaptic change, the random bursting becomes
a vital characteristic of predictive networks as well. In all of the models above, randomly bursting
neurons form convergence points for the active neurons of a salient context. This is evident in
granuler cells of the cerebellum, striatal cells of the basal ganglia, CA3 cells of the hippocampus,
and matrix cells of the thalamus. Also, in cortical columns, neurons of layers 4 and 5 exhibit
higher degrees of bursting than those of other layers [36]; as the primary input port for convergent
lower-level signals, layer 4 also appears to perform a context-detecting role.

In discussing their hippocampus model, Wallenstein et. al. [51] point to asymmetric connectivity
as a critical topological factor. If neurons (or nuclei or columns) A and B are connected, then
asymmetry entails that the connections are not bi-directional, or they may be bi-directional but
differ in density or synaptic location (i.e. proximity to the soma, layer of entry, etc.).

Completely symmetric connections may confound the learning of uni-directional predictive se-
quences, since, if the neurons of event 1’s activity pattern (E1) have symmetric bi-directional
couplings to those of E2, then E1 will predict E2 just as often as E2 predicts E1. Since recurrence
in CA3 is only 1-5% (which is still very high compared to the cortex, when viewed as a single
module), there is little chance of symmetry. Hence, it becomes unlikely that, while enhancing the
connections from E1 to E2, the hippocampus simultaneously strengthens those from E2 to E1.

The density and synaptic-location aspects of asymmetry are apparent in the neocortex. First,
the distribution of connections between lower and higher cortical areas is far from bi-directionally
equivalent. For example, the general view that the bottom-up signally pathways are convergent,
while the top-down are divergent implies that a low-level cortical module may only send axons
to a few higher modules but receive axons from a diverse array of such modules. Also, there
is a clear trend of increasing top-down control in the brains of higher organisms [49, 11], and
this coincides with the presence of far more top-down than bottom-up connections [23]. Second,
as discussed earlier, top-down axons tend to have distal targets, whereas bottom-up projections
typically synapse close to the soma of large pyramidals [31, 23]. Thus, low-level activity will have
different effects upon high-level activity than the latter will have on the former: a lower level can
often drive a higher level, while the latter often has a more controlling or monitoring effect upon the
former. This monitoring ability is central to the GDPN and its manifestation in the hippocampal,
cortical and thalamacortical systems.

Several authors [51, 43, 20] cite mode-switching as essential to the proper functioning of their
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focal networks. In the hippocampus, the primary influences upon CA3 neurons must alternate
between external (from DG) and internal (via recurrent links). The theta cycle (4-12 Hz) appears
to govern this switching. In the thalamortical loop, thalamic and cortical inhibitory neurons are
active periodically, with frequencies in delta (1-4 Hz), theta (4-12 Hz) and even gamma (30-40 Hz)
bands. Excitatory inputs are received and propagated during the down phases of these periods.

These phases agree with the general view that neural networks for declarative memory require at
least two modes of activity: storage and retrieval. In the former, sensory inputs should govern
activity such that the scenario is mainly remembered as is, without a lot of embellishment. During
retrieval, partial clues often require the pattern completion provided by spreading activation. Hence,
the network needs a mechanism for modulating the expanding wave of excitation.

The thalamotical modellers [43, 20] also mention timing differences as critical: while excitatory
post-synaptic potentials (PSPs) have durations of 15-20 msec, inhibitory PSPs last for 100-150
msec. This insures that the effects of early (and/or most salient) stimuli are muted while other
signals arrive (even when the early stimuli remain present), thus allowing unique elements of a
sequence (or features of a scenario) to be handled relatively independently, and thereby avoiding
blending and loss of information.

Similarly, in the basal ganglia, the quick but fleeting excitatory effects of context detectors upon
the SNc (via the hyperdirect pathway) lead to a timely jolt of dopamine, which is then muted
for the (possibly lengthy) remainder of the context sequence by slow, but persistent, inhibition
of SNc. This insures that only the most newly-recognized salient context is learned, and not a
less-informative blend of several sequential contexts.

Timing appears in other guises as well. In the basal ganglia model, the chemistry of LTP in
the striatum insures that contexts at time t are associated with reinforcements at approximately
time t+100 ms. In contrast, the CA3 model allows the association of events across a wide range
of temporal gaps, due to the auto-catalytic nature of the context/monitoring neurons. In the
cerebellar model, each context includes events with different time stamps, due to the differential
delays along mossy fibers. However, these delays are on the order of 5-120 msec, not seconds, as
in the CA3 model. However, the authors [32] do include eligibility traces on the parallel-Purkinje
synapses, wherein they remain eligible for modification (via LTD) for up to a half second after
activation.

Finally, the more general phenomena that surprise stimulates learning appears in both the proce-
dural and declarative predictive mechanisms. Hawkins [23] proposes that sensory signals propagate
up the cortical hierarchy but stop at the level where they agree with expectations, as described in
the above discussion of the thalamocortical loop. Those signals that confound all predictions spread
to the higher association layers and into the hippocampus, where they can begin to be learned and
(in the future) predicted. Similarly, the basal ganglia, particularly the SNc, does not respond to
expected reinforcements nor to well-known cues to reinforcement, only to relatively new (i.e. still
somewhat surprising) cues. Since the SNc response indirectly stimulates Hebbian synaptic change
via dopamine signalling, the connection between surprise and learning is again evident.

Adaptive Resonance Theory [9] and its corresponding ANNs have been used to model a wide
variety of cerebral circuitry, including the neocortex and basal ganglia. Its cornerstone match-based
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learning algorithm triggers on inputs that are either completely new/surprising or very similar to
expectations, with the former being quickly and forcefully imprinted onto the network, while the
latter promote only small changes.

None of the above characteristics are unique to the predictive functionality of the brain. However,
since prediction pervades many conscious and unconscious activities, they may actually constitute
essential aspects of sensorimotor behavior and cognition. In general, they are ubiquitous factors
in neuroscience. One important reason for summarizing them here is to alert neural modelers
to several components that may prove pivotal to their systems, particularly when prediction is a
primary goal.

10 Conclusion

Although relatively well-understood at the conscious behavioral level as an ability to foresee the
future, the concept of prediction becomes significantly more diffuse when one searches for neural
correlates. Readers who accept the general definitions of declarative and procedural prediction
presented above, along with the key mechanisms of the real and artificial neural systems discussed
throughout, should come to the general conclusion that prediction is not localized to any one part
of the brain but is distributed, in various forms, to many cortical and sub-cortical areas.

Researchers such as Llinas [34] and Hawkins [23] elevate prediction to the pinnacle of cerebral
functionality - the essence of simple and sophisticated intelligences alike. Their arguments do
carry a lot of weight, but a deeper investigation paints a more complex picture in which prediction
seems to play an important role, but probably as one of many vital functions. However, this
says little about the origins of complex brains, and how, as Llinas argues, they may have arisen
to satisfy the predictive needs of motion. In that view, other cerebral functions have exapted the
predictive machinery, and, from an evolutionary perspective, indeed, all neural functionality derives
from prediction. Ultimately, this evolutionary interpretation may rule the day, but in looking at
the myriad complex neural mechanisms, it is often beyond current neuroscientific knowledge to
ascertain their potentially predictive origins.

Unfortunately, neither Llinas nor Hawkins gives a clear description of the predictive neural process,
although Hawkins does present a detailed cortical sketch that captures many of the key structures
and some of the behavioral dynamics. In attempting to further clarify the links between structure
and function, this research has summarized several systems and mechanisms that appear to embody
prediction at the neural level. The ubiquity of these mechanisms in the brain could support either
of the following conclusions:

1. Prediction is the basis of all neural functionality and the driving force behind neural evolution.

2. The basic elements of neural behavior are employed for a wide variety of tasks, including
prediction, but it has no special status with respect to brain evolution.

We adopt an intermediate stance by postulating that the predictive perspective is a very useful
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one to take when analyzing many areas of the brain, both in terms of their origins and current
functionality. This viewpoint may provide more leverage than the more general interpretation of
the brain as a pattern-association machine. Thus, although we cannot completely isolate prediction
from other functions, predictive glasses, as worn in the writing of this article, may reveal improved
insights into many aspects of brain and behavior.

As briefly discussed earlier, predictive learning is a special case of associative learning in which
the linked brain states correspond to real-world events whose starting points have at least a small
amount of temporal disparity. The preparatory window provided by prediction lends an additional
survival advantage to that accrued by other forms of associative learning. Thus, from an evolu-
tionary perspective, it makes sense to at least consider predictive interpretations of neural behavior
when analyzing a brain region, since prediction could indeed constitute the raison d’etre of that
structure.

In terms of basic neurophysiology, the delays inherent in synaptic plasticity (that manifest eli-
gibility traces) as well as those of neural signal transmission, naturally facilitate the linkage of
non-simultaneous events. Furthermore, since the bandwidth limits of sensory processing can pre-
clude immediate, detailed snapshot capture of events, the brain must link temporally sequenced
inputs (for example, from visual saccades) into a holistic perception. In this case, the inputs are
linked together via associations that essentially encode the prediction of what aspect of the image
the organism will next perceive, as described earlier in the perceptual paradigm supported by the
thalamocortical models of Rodriguez et. al. [43] and Granger [20].

If correct, those models indicate that the basic mechanisms for predictive learning help to overcome
perceptual bottlenecks and give the important illusion that the mental correlates of single real-
world events can be simultaneously active in the brain. More generally, they imply that predictive
associations are a necessary support for memories of complex events even when those events lack
salient temporal aspects such as causal associations. Consequently, vanilla associative learning
may not scale up to complex events without predictive associations (about one’s own perceptual-
processing sequence). Prediction may be fundamental to associative learning.

In the case of the thalamus, predictive goggles highlight a potentially fundamental process: linking
successive sensory-processing states, which provides a mechanism for sequential learning of both
external events and internal brain states. This would help support the emerging view [45] that the
thalamus is much more than a relay station for sensory input.

These goggles are firmly in place throughout Hawkins’ analysis of the neocortex [23]; we have
merely elaborated a few of the physiological details while summarizing his basic model, most of
which fits nicely into our Generic Declarative Prediction Network (GDPN) framework, particularly
his emphasis on distal layer-1 synapses as the carriers of expectations. It is these relatively weak,
yet influential, connections that are vital to many of the models. From alternate perspectives, these
connections might be overlooked, but predictive glasses magnify them significantly.

In the hippocampus, the predictive perspective helps expand the concepts of memory and memory
formation beyond that of snapshots, despite the fact that this brain region appears to realize quick
imprinting [3, 46]. Wallenstein et. al. [51] show that events separated by substantial time windows
can still be linked (again with the help of distal signalling) in CA3, a hippocampal region often
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viewed as the brain’s ultimate pattern associater [44].

The phenomena of phase precession in hippocampal place cells [7, 37], whereby a neuron that codes
for location L begins to fire at locations prior to L along an often-travelled path, seems quite logical
if prediction is seen as a vital aspect of navigation. Since strong evidence links the hippocampus to
both memory formation and spatial navigation [3], the reasonably obvious potential contribution
of prediction to the latter could further implicate it as an aid to the former.

In the more procedural regions, such as the cerebellum and basal ganglia, predictive roles are often
posited, but we argue that the correct interpretation is that these areas aid the organism in doing
the right thing in the immediate future without necessarily having an explicit representation of
future world states. Thus, the distinctions between procedural and declarative predictions appear
very real, and the architectural differences between these two types of regions indicate divergent
functionality. In this case, the predictive viewpoint aids in the clarification of declarative versus
procedural processing, since they can be further differentiated with respect to their contributions
to the task of prediction: foretelling future states versus proactively selecting the actions to best
handle those states.

In the end, we hope that this article helps to make prediction a less nebulous concept within
neuroscience, where it is often tossed around without formal grounding. We have sought these
principled underpinnings in neuroscience itself, not philosophy nor psychology, since modern-day
understanding of neural circuitry does facilitate bottom-up investigations, though they are still
plagued with constrained speculation.

In Rhythms of the Brain, Gyorgy Buzsaki [8] begins by stating:

The short punch line of this book is that brains are foretelling devices and their
predictive powers emerge from the various rhythms they perpetually generate (pg. vii)

He then goes on to show the importance of brain oscillations for producing the stability and linearity
required for expectations and predictive processes. Along the way, he emphasizes that many of the
standard cognitive scientific concepts such as attention, intentionality and reasoning map only
poorly to neural mechanisms. The useful metaphors for understanding the brain may lie elsewhere,
in control- or dynamic-systems theory, he suggests. And while these fields do provide nice tools for
mathematically analyzing complex-system behavior, your average phase diagram says very little
about functionality.

Evolution, on the other hand, has a lot to say about functionality, and it seems quite natural to
infer that the basic neural mechanisms arose and evolved to serve a very primitive, but useful,
purpose in early organisms - a purpose such as prediction. Although Llinas’ claim that prediction
is the brain’s ultimate function [34] can be endlessly debated, if predictive circuitry can be verified
in a cross-section of brain regions (such as those discussed in this article), then the general primacy
of this useful capability will be hard to ignore.
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