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1 Abstract

The game of Tantrix™provides a challenging, mathematical and graphic domain for evolutionary
computation. The simple task of forming long loops of colored arcs quickly becomes a search
nightmare for humans and computers alike as the number of game pieces scales linearly. This
paper introduces Tantrix-GA, a genetic algorithm that solves several types and sizes of Tantrix
puzzles but still falls well short of (at least a few) human Tantrix experts. By introducing this
problem to evolutionary computation researchers, we hope to motivate an evolutionary attack on
the holy-grail Tantrix puzzles, one of which has yet to be solved by any intelligence, real or artificial.
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2 Introduction

In 1987, Mike Mcmanaway, a New Zealand backgammon champion and puzzle-shop owner, invented
The Mind Game, a two-person board game involving two-colored hexagonal tiles. The game enjoyed
regional popularity and by 1991 had evolved into Tantrix, a versatile set of 4-color tiles supporting
both a 2-4 player game and host of individual puzzles. A set of 5 Super puzzles was added in 1994,
the Tantrix internet site (www.tantrix.com) appeared in 1996, and the first world championships
were held in 1998. Tantrix now appeals to a broad international audience, with many of the best
players coming from Hungary, Israel and New Zealand.

Basic Artificial Intelligence (AI) has been on the scene since 1999, when the first automated players
of multi-person Tantrix were released. Today, the Tantrix web site includes a ”robot” competition
in addition to the highly competitive human tournament.

The purpose of this paper is twofold: 1) to introduce Tantrix as an interesting and enjoyable domain
for evolutionary computation (EC) teaching and research, and, 2) to present a first approach to
solving Tantrix puzzles with a genetic algorithm.

The wide range of Tantrix puzzles can be co-opted to provide everything from a) simple and
nicely graphical examples of indirectly-coded GAs, to b) challenging EC homework and project
assignments, to c) extremely difficult search problems is highly-deceptive landscapes, to d) currently
unsolved holy-grail puzzles that would probably tax even the largest EC-dedicated Beowulf.

This paper introduces Tantrix-GA, a genetic algorithm [7, 5] for solving Tantrix puzzles. We have
used it to solve all 5 of the Tantrix Rainbow Puzzles, the 3- (trivial) to 30-block (very difficult)
Discovery Puzzles, and the 5 Super Puzzles. The Unsolvable puzzles are currently well-beyond its
reach. So, in addition to gaining basic insights into the application of GA to Tantrix, the reader
may become inspired to join the hunt for solutions to the most perplexing Tantrix brain-twisters.

3 Tantrix Basics

The Tantrix Game Pack consists of 56 hexagonal tiles, each containing 3 arcs of different colors.
Each of a tile’s 6 edges is intersected by one of the 3 arcs. The tiles are numbered from 1 to 56,
and the 4 groups of tiles 1-14, 15-28, 29-42, and 43-56 have a special significance with respect to
the coloring scheme. All told, there are 4 possible arc colors in the 56-tile set: red, green, blue
and yellow. However, each of the 4 groups of 14 employs a different set of 3 colors: 1) red, yellow,
blue; 2) red, yellow, green; 3) red, green, blue; and 4) blue, green, yellow, respectively. To view the
complete Tantrix tile set, see www.tantrix.com.

Orthogonal to this color scheme is a second 5-color labelling of the tile numbers. Each tile’s number
is written in one of these 5 colors on the back of the tile. There is no simple explanation for the
assignment of these 5 colors, but they partition the 56 tiles into 5 sets: 1) Green - 10 tiles, 2) Yellow
- 12 tiles, 3) White - 9 tiles, 4) Blue - 10 tiles, 5) Red - 15 tiles. These groups are the basis for the
Rainbow puzzles explained below. In general, any reference to, say, the blue tiles refers to these 10
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Figure 1: Solutions to the 10- and 14-tile Discovery puzzles.

tiles and not to all tiles containing a blue arc.

In general, the goal of all Tantrix games and puzzles is to form a single two-dimensional cluster
of tiles (called the tantrix ) containing long lines or loops of the arc colors, while abiding by The

Golden Rule: the shared edge between any two tiles must have the same arc color on both sides. For
example, the tantrix on the left of Figure 1 shows a red loop involving tiles 1-10. This constitutes
a solution to the 10-puzzle from the Discovery set. Similarly, the rightmost tantrix solves the
14-puzzle, using a different color, blue.

Along with The Golden Rule, a second constraint is important in puzzle solving: the tantrix cannot
contain holes, i.e., open cells completely enclosed within the tantrix. Figure 2 shows a 10-tile tantrix
that contains a hole and thus is not a valid solution.

The Golden Rule and the hole restriction are the only hard constraints in Tantrix puzzle solving.
A puzzle then consists of a given set of tiles, e.g. all 10 green tiles, and a (very general) description
of the desired pattern, e.g., a loop containing all 10 green arcs. In no case is the exact shape of
the complete curve or cycle given in the problem description, but in a few cases, the form of the
tantrix is specified as a pyramid. Otherwise, the cluster’s shape is also unconstrained, as long as it
has no holes.

In the multi-person Tantrix game, each player has a different color and tries to form long curves or
loops with it. However, all players share the same tantrix and alternate adding tiles to it. The rules
for tile placement are more complicated than for the puzzles, involving a 3-step process in which
one player can conceivably add dozens of tiles to the tantrix on a single turn. Further information
on the multi-player game is available at the Tantrix web site.

This paper focuses on the puzzles, of which there are many. However, most fall into one of the
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4 categories below. Tantrix puzzles have been proven NP-complete via a reduction of the circuit-
synthesis problem to a Tantrix task [8].
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Figure 2: An invalid solution to the 10-puzzle, due to the hole.

3.1 Discovery Puzzles

These puzzles are the simplest to describe but vary in complexity from trivial to extreme. They
involve the tiles numbered 1-30. For the k-tile (3 ≤ k ≤ 30) Discovery puzzle, the problem is simply
to use the tiles numbered 1-k to build a tantrix with a single k-segment loop. The required color
of the loop corresponds to the color code of the kth tile. For example, the 10th tile is in the red
group, while the 14th is blue.

3.2 Rainbow Puzzles

These involve the 5 color groups and are named after the color of the group. The specifications
vary. The green (10-tile) and yellow (12-tile) puzzles require a tantrix containing a loop of 10 (12)
green (yellow) arcs. The blue (10-tile) and red (15-tile) puzzles require a pyramid-shaped tantrix
containing a non-looping segment of 10 (15) blue (red) arcs. Finally, the white puzzle requires a
tantrix containing a loop (in an unspecified color) of the 9 white tiles. For example, Figure 3 shows
the solutions to the two pyramid puzzles.

3.3 Super Puzzles

For these puzzles, a diverse set of 10 or 12 tiles are given, and the solution involves one or two

loops or segments using all arcs of the given color(s). The tile sets, with their official names, are
as follows:
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Figure 3: Solutions to the blue and red Rainbow puzzles.

1. Junior (10 tiles) - 3,5,8,12,14,43,46,50,52,54

2. Student (10 tiles) - 19, 21, 24, 25, 29, 31, 32, 40, 41, 42

3. Professor (12 tiles) - 2, 11, 15, 17, 20, 30, 38, 39, 44, 45, 51, 56

4. Master (12 tiles) - 18, 22, 23, 26, 27, 33, 34, 35, 36, 47, 53, 55

5. Genius (12 tiles) - 1, 4, 6, 7, 9, 10, 13, 16, 28, 37, 48, 49

The Junior, Student and Master puzzles require the formation of a single 10- (12-) arc loop in an
unspecified color. The Professor puzzle requires the formation of two loops of unspecified colors,
where each loop involves all the arcs of its color, while the Genius puzzle requires two non-looping
segments using all arcs in two unspecified colors. There are 3 known solutions to the Genius puzzle,
two involve red and yellow, and one involves blue and red.

For puzzles in which the colors of the target pattern are not specified in the problem statement,
some colors can be eliminated from consideration by a simple arc-counting method. For each color,
there are only 3 types of arcs: straight line, sharp 120◦ turn, and gentle 60◦ turn. If a set of arcs
form a loop, then we can begin at any point on the loop and follow the arcs, updating our current
orientation on each new tile. At the end of the loop, the orientation must be the same as at the
start. For this to occur, there must be an even number of 60◦ turns. Hence, any color with an odd
number of these gentle turns cannot form a loop with all its arcs. This simple test usually filters
out a few colors. For example, it helps in determining that the loop color for the Master puzzle is
green. Figure 4 shows one solution.
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Figure 4: One of a few possible solutions for the Master puzzle.

3.4 Unsolved Puzzles

There are two holy-grail, Unsolved Tantrix puzzles, one of which remains unsolved as of this writing.
Both involve the entire 56-tile set. The Curve puzzle requires a tantrix that contains 4 continuous
curves, one in each color, while the Loop puzzle requires that the 4 curves be closed.

Each color appears on 3

4
of the 56 tiles, so there are 42 arcs of each color. Thus, in theory, a

perfect solution to the Loop or Curve puzzle would use all 4 × 42 arcs, yielding a score of 168,
where the score is simply the sum of the number of arcs used in the longest segment or loop of
each color. However, according to the Tantrix manual, computer analyses have shown that the
maximum possible scores for the Curve and Loop puzzles are 146 and 136, respectively.

The manual also reveals that Jack Kuiper solved the Loop puzzle in 2003 (without the aid of a
computer), while the best recorded score on the Curve puzzle is 140. Somewhat counterintuively,
in multi-color puzzles, several loops are easier to discover than several open-ended segments.

And if this is not enough of a challenge, Tantrix products include 10 different, but compatible,
10-tile Discovery packs that enable extensions of the basic Discovery puzzles from 30 to 100 tiles.

4 The Evolutionary Computational Challenge/Appeal of Tantrix
Puzzles

The combinatorics of Tantrix solutions are quite daunting. First of all, most puzzles involve an
unspecified form for the cluster/tantrix; the only constraint is that it is connected and contains no
holes. The Golden Rule (i.e., all colors match) greatly restricts the possibilities, but it is difficult
to compute its quantitative effect upon this or other contributions to search-space size.
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Second, given a pre-defined cluster form, the k tiles must be placed within it and rotated in one
of 6 ways. For all except the first tile placed in a cluster, at most 2 of the rotations will match
colors with the adjacent tiles in the current tantrix. Hence, given a pre-defined cluster shape, the
worst-case size of the search space is:

Sizess = 6(k!)2k−1 (1)

This yields 11147673600 for the 10-tile case and 7653247968377485393920000 for the 20-tile case,
and this does not include the combinatorics of the space of legal cluster shapes!

Finally, the fitness landscape (given most straightforward fitness measures) is quite rugged and
deceptive. The neighbors formed by swapping any pair of tiles of a k-1 tile loop may all be non-
loops or even illegal configurations. Although some k-tile solutions stem from small modifications
to k-1 tile solutions, this is hardly a general rule. In fact, in the Discovery puzzles, the solution to
the k-1 puzzle may involve a different color entirely from that of the k-tile puzzle.

5 Tantrix-GA

Figure 5 illustrates the conversion from genotype to phenotype (i.e., development) in Tantrix-GA.
The chromosome consists of two regions, one for determining the growth pattern of the tantrix
cluster, and the other for prioritizing the blocks and selecting their orientations (in cases where
several rotations are valid).

The shape region simply encodes a sequence of k-1 moves for a k-tile problem, where each move
is either South (0), Southeast (1), Northeast (2), North (3), Northwest (4) or Southwest (5). The
move dictates the next cell to consider filling; it is always a neighbor of the previously-filled cell.

The second half of the genome consists of k pairs, one for each of the k blocks in the puzzle. The
first element of each pair gives a priority to the block - low numbers indicate high priorities - thus
determining its placement within the sorted priority list. The second member of the pair is used to
choose an orientation for the block in cases where 2 or more orientations would validly match the
existing tantrix. For the first block in the list, the tantrix will be empty, so this number will choose
one of 6 orientations with which to begin building. All other blocks will have at most 2 feasible
orientations. For target patterns with a fixed shape (given by a template to be filled by the tiles),
this choice among 6 rotations of the first tile is important. When the shape template is not given,
any initial orientation will suffice.

The developmental process is straightforward. The first block is removed from the priority list
(which is sorted by ascending priority number) and placed in the middle of the board. The first
move is then read from the developmental sequence and the specified neighbor cell becomes the
one to fill. The block list is then searched from start to finish until a block that fits into the cell is
found. To fit, the block must not only obey The Golden Rule, but it must match up with at least
one tantrix edge containing a focal color, i.e., a color that is believed to comprise one of the solution
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loops. For example, in the blue Rainbow puzzle, the focal color is blue, while in the Genius puzzle,
there are 2 focal colors. Development continues until either all blocks are used or the next chosen
cell cannot be filled by any remaining blocks.

Let us trace through the development of the 5-tile Discovery puzzle in Figure 5, with red as the focal
color. The shape region of the chromosome yields a 4-move sequence: North, Southeast, North,
and Northwest. The priorities in the second half of the chromosome dictate the following block
ordering: 3,5,1,4,2. Hence, the 3rd block is placed on the board and rotated 5 60◦ units clockwise,
since 65 is the value of tile 3’s orientation gene, and 65 mod 6 = 5. The neutral (0◦) orientations
are given in the Tantrix manual and are shown for blocks 1-5 in Figure 5, directly beneath their
respective chromosomal regions.

Control then moves to the Northern neighbor of tile 3, and tile 5 (next on the priority list) is given
the first chance to fill the spot. At this early stage of the solution, two orientations of tile 5 are
valid: 0◦ and 180◦ clockwise rotations. Either will match the border color(s) to that cell, and in this
case, the only border color is the red arc emanating from tile 3’s northern edge. Tile 5’s orientation
gene, 131 is used to choose among these 2 alternatives: 131 mod 2 = 1, so the latter rotation, 180◦,
wins.

Control then moves to tile 5’s Southeast neighbor, which is also tile 3’s Northeast neighbor. Tile
1 gets the first chance to fill this spot and successfully does so, but with only one of its rotations,
so the disambiguating orientation gene is not needed. The next move is straight North, and tile 4
satisfies this spot with a unique rotation. Finally, tile 4’s Northwest neighbor is filled by tile 2 and
the puzzle is successfully completed.

The entire tile-placement algorithm is slightly more complicated than shown in the above example.
From newly-placed tile T, the shape portion of the genome actually specifies the first of T’s neigh-
bors, N1, to investigate. If N1 is not on a side that matches a focal-color arc (emanating either
from T or from one of the other neighbors of N1), then the algorithm departs from N1 and moves
counter-clockwise around T in search of the first neighbor, N*, that does border on a focal-color
arc. The building process halts if N* is not found. Otherwise, N*, and the remaining neighbors
moving counterclockwise from N* around T, are returned as a set, C. Each remaining tile is then
tested for a color match with N*. If no match is found, the next element in C is tested against all
remaining tiles, and so on. This algorithm strongly biases the tantrix growth process toward the
formation of long segments and loops in the focal color(s).

Note that nothing in this developmental scheme safeguards against hole creation, nor the forma-
tion of long thin segments with no chance of looping back upon themselves. In the multi-person
Tantrix game, special move constraints protect against hole formation, while in Tantrix-GA, these
restrictions are handled implicitly (and imperfectly) by the fitness function.

5.1 The Fitness Function

In Tantrix GA, fitness assessment of a tantrix involves 4 factors:
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Figure 5: Development of a solution to the 5-tile Discovery puzzle from genotype to phenotype. The
tiles labeled 1-5 are the first 5 in the Tantrix Game Pack. The rightmost part of the chromosome
determines the priority ordering of these tiles and their preferred orientations, while the leftmost
segment defines the overall shape of the tantrix via a growth sequence.

9



1. Segments (S)

2. Cycles (C)

3. Compactness (M)

4. Holes (H)

For each of the focal colors, the algorithm counts the longest segment and longest cycle in that
color. Then either both, or their maximum, become addends for the fitness function. Compactness
is simply the average number of tiles surrounding each tile. It is positively weighted in the fitness
function to discourage long thin phenotypes, which, typically, cannot involve long loops unless they
take wide turns and leave big holes in the middle of the tantrix. Any open cell in the interior of
the tantrix constitutes a hole and is penalized severely.

The complete fitness function appears in equation 2:

Fsum = kcoM − khoH +

Nfc∑

i=1

ksegSi + kcycCi (2)

where 1 . . . Nfc are indices of the focal colors, and Si and Ci are the largest segment and cycle,
respectively, in focal-color i. M is the average compactness of all tiles, and H denotes the number
of holes in the tantrix. Unless otherwise stated, the evolutionary runs presented in this article used
the following parameter values: kco = kseg = kcyc = 1, and kho = 10.

Fsum denotes the fact that sizes of the largest segment and cycle are summed for each focal color.
An alternate fitness measure, Fmax (equation 3) used for the 12-piece, two-colored Super puzzles,
takes the maximum of the segment and cycle contributions for each focal color.

Fmax = kcoM − khoH +

Nfc∑

i=1

max(ksegSi, kcycCi) (3)

In this case, kcyc should exceed kseg in order to favor cycles over non-cyclic segments. We use
kcyc = 1.5 and kseg = 1 for the Professor puzzle, and kcyc = 0 and kseg = 1 for the Genius puzzle,
which requires non-looping solutions.

In both fitness functions, cycles should not be favored over simple segments to too large a degree,
otherwise small (i.e., sub-optimal) cycles dominate the solutions. Ideally, long, convoluted segments
evolve and eventually loop back upon themselves.

5.2 Genetic Operators

Tantrix chromosomes are subjected to a variety of genetic operators. First, standard bit-flipping
mutation and single-point crossover are employed, with all crossover points restricted to gene bound-
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aries. In addition, Tantrix GA uses headless chicken crossover [10, 1], wherein parents are occasion-
ally crossed over with randomly-generated individuals. This often functions as a macro-mutation.
In the runs reported below, the (bit-wise) mutation rate is 0.01, and the crossover rate is 0.5,
wherein 10% of these are the headless-chicken variety.

Two specialized operators are also included: inversion and priority-swapping. During inversion, a
random-length sequence of shape genes (the first part of the chromosome) is sliced out of its current
location and spliced into a random new location within the shape portion of the same chromosome.
This permits basic spatial patterns to change locations within a tantrix. Inversion is performed on
child chromosomes with probability pinv, which has a value of .02 in the runs reported herein.

Priority swapping simply exchanges the alleles of two priority genes. However, only certain types
of genes can swap alleles. This process mimics a common strategy used by humans to solve
Tantrix puzzles: tiles with the same arc angle for a focal color are swapped. At the beginning
of a run, 3 priority-swapping bins are formed, one for each of the 3 possible subtended arc angles:
60◦, 120◦, 180◦. Tiles are then placed in all bins for which they have a focal-colored arc of the
corresponding angle. Then, during priority-swapping mutation, only genes representing tiles that
share a bin can swap alleles. The probability of applying a swapping mutation to a child chromo-
some, pswap, takes a value of .2 in the simulations reported below. Also, after deciding to swap,
Tantrix GA may perform a random number of swaps from the uniform distribution 1 . . . Nsw, where
Nsw = 3 in the reported simulations.

5.3 Selection Procedure

During each generation, all genotypes are converted into phenotypes and evaluated for fitness,
with the worst 50% of the population being removed. Those that remain are subjected to sigma-
scale selection [16], which scales fitness values by their standard deviation. This helps to combat
premature convergence to suboptimal solutions.

A small fraction of each generation stems from elitism, wherein the top 5% genotypically-distinct
individuals are copied, without mutation, to the next generation. 85% of the next generation is
formed by crossover and mutation of the top 50% from the previous generation, while the remaining
10% comes from randomly-generated individuals. This continuous re-injection helps to avoid con-
vergence in a search space where a) many randomly-generated individuals have reasonable fitness,
and b) small modifications to good solutions are often lethal. Basically, many useful genotypes
drop out due to mutation and crossover, so random replenishment helps to maintain a viable gene
pool.

6 Results

Tantrix-GA runs were performed on all Discovery, Rainbow and Super puzzles. Solutions were
found for each; every tantrix figure in this document was discovered by Tantrix-GA. Although the
algorithm performs well on most of the smaller puzzles and manages to find multiple solutions for
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the 30-tile Discovery puzzle, it has major problems with the 12-piece Genius puzzle, which, to date,
it has only solved once (in hundreds of attempts).

6.1 Solving Discovery Puzzles

For the Discovery puzzles of 20 tiles or less, Tantrix-GA with a population size of 100 and a
maximum of 100 generations consistently discovers solutions. Beyond 20 tiles, larger populations
and generations are required, as shown in Table 1. Still, it manages to find 4 (completely different)
solutions to the 30-tile puzzle in 20 attempts. Unlike the Genius puzzle, which has only 3 known
solutions, the many-tiled Discovery puzzles have several solutions. However, they are difficult to
find due to many misleading local optima in the search space.

Figure 8 shows solutions to the 26- to 29-tile puzzles. Note that none is a simple modification of
the other. Figures 9 and 10 show the sequence of landmark phenotypes (i.e. those having higher
fitness than any predecessor) in a successful run on the 30-puzzle. Although the phenotypes show
few relationships to one another in early phases, from generation 55 and beyond, the figure traced
out by the red curve ressembles a growing embryo with a blue eye (formed in generation 13) and
mouth (first appearing in generation 55). The different stages share many groups of adjacent blocks
but also vary significantly. The solution is nearly formed at generation 88, where 29 pieces are used,
but not until generation 230 are the proper transformations discovered. The step from generation
230 to 241 merely improves fitness by increasing compactness.

To illustrate the difficulty of the search space, at many times during the simulation, the best-of-
generation individual is tested by analyzing all immediate neighbors in genotype space (i.e., those
within a 1-bit Hamming distance). In almost all cases, the neighborhood in the fitness landscape
resembles a plateau with many small cracks (leading to precipitous drops in fitness), as shown
in Figure 6. Most such cracks map to the high-order bits of the priority genes. In the Discovery
problems, fewer cracks map to the shape genes, although these become more essential for the multi-
segment/loop targets in the Super puzzles. Most importantly, there are no spikes leading upwards.
Only when genotypes are tested in very early generations does the occasional upward spike appear.
Hence, the fitness landscape appears full of high plateaus that are very hard to hill-climb toward.

As a more standard measure of landscape ruggedness, Figure 7 provides a scatter plot of pairs
(4G,4F ): differences in genotype (Hamming distance) versus differences in fitness. Here, the best-
of-generation individual, B, is compared to 5000 randomly-generated genotypes that are between
1 and 100 bit mutations away from B, with 50 genotypes generated for each mutation/Hamming
distance. This example yields a Pearson correlation coefficient [4] just over 0.2, and the plot clearly
shows no signs of a correlation. Several similar tests during different Tantrix-GA runs on different
puzzles yield the same general result: a correlation coefficient between 0.1 and 0.35 but no visible
relationship between 4G and 4F . In short, the fitness landscapes appear quite rugged.
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Figure 6: Fitness of all genotypes within a Hamming distance of 1 from a best-of-generation
individual during a run of Tantrix-GA on the 30-tile Discovery puzzle. Note the increased sensitivity
to mutations of the priority and orientation bits, which begin at location 150, while the shape bits
(0-149) are less significant.

Puzzle Population Generation Trials Number Average Solution
Size Limit Solved Generation

10-tile 100 100 20 20 5.5

12-tile 100 100 20 20 11.7

15-tile 100 100 20 20 20.8

20-tile 100 100 20 4 51.0

20-tile 200 200 20 15 78.9

25-tile 200 200 20 4 142.2

25-tile 300 300 20 6 148.0

30-tile 500 300 20 4 186.8

Table 1: Summary of multiple Tantrix-GA runs on assorted Discovery puzzles.
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Figure 7: Relationship between genotypic Hamming distance and fitness difference. Given B, the
best-of-generation individual (fitness = 52.2) after 100 generations of a run of Tantrix-GA on the
30-tile Discovery puzzle, this looks at mutation classes about B involving 1 to 100 bits, with 50
random samples taken from each class. For each sample, S, the fitness difference between S and B
is plotted as a function of the Hamming distance between S and B. All genotypes for this run have
a total length of 595 bits. The Pearson correlation coefficient is 0.22
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Figure 8: Solutions found by Tantrix GA for the 26- to 29-tile puzzles, all having red as the focal
color.
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Figure 9: Early stages of the evolutionary progression for the 30-piece Discovery puzzle. The best-
of-generation phenotypes for most of the landmark generations are shown. The population size is
500.
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Figure 10: Later stages of the evolutionary progression for the 30-piece Discovery puzzle, again
showing only the landmark phenotypes.
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Puzzle Target Population Generation Trials Number Average Solution
Size Limit Solved Generation

Green 10-loop 100 100 20 17 25.9

Yellow 12-loop 100 100 20 17 54.2

White 9-loop (blue) 100 100 20 20 1.6

Blue 10-pyramid 200 200 20 17 67.7

Red 15-pyramid 200 200 20 2 72.0

Table 2: Summary of multiple Tantrix-GA runs on the 5 Rainbow puzzles. The focal color is
the same as the name of the puzzle, except for the White puzzle. Both pyramid puzzles have
non-looping target segments.

6.2 Solving Rainbow Puzzles

These 5 puzzles vary considerably in degree of difficulty. The White puzzle is trivial, while the
Red puzzle (and the author’s frustration in repeatedly almost solving it by hand) was the original
impetus for Tantrix-GA. As shown in Table 2, the system has no problem with the first 4 puzzles
but also meets its match with the Red puzzle.

The pyramid puzzles are the only ones with a pre-defined topology. Hence, no shape genes are
required and the cell-filling algorithm can simply move through the cells of the pyramid in a fixed
order, always taking the next tile in the priority list that legally fits the current cell. These pyramids
are the only puzzles where a more direct-encoding genome has potential utility; but, as shown later,
performance decreases significantly with the more direct scheme.

6.3 Solving Super Puzzles

The Super puzzles pose the greatest challenges relative to their size. None exceeds 12 tiles, but
the paucity of solutions and the rugged, deceptive landscapes make them much more difficult than
Discovery puzzles of comparable (and larger) size. For example, in comparing Tables 1 and 3, note
that the 12-tile Discovery puzzle requires an average of 11.7 generations (rightmost column) to find
a solution, while the 12-tile Master puzzle needs 34.1 generations. Similarly, the 10-tile Discovery
puzzle uses only 5.5 generations, on average, while the 10-tiled Junior and Student puzzles need
15.2 and 10.6 generations, respectively. Still, for unknown reasons, none of the single-color Super
puzzles were as difficult for Tantrix GA as the Yellow Rainbow puzzle (Table 2), which required
54.2 generations, on average.

The two-colored Professor and Genius puzzles immediately compound the complexity and further
scramble the search space. For example, in comparing Generations 64 and 106 of the Professor
solution in Figure 12, note that the yellow loop involves nearly the same tiles in both cases - as it
must since there are only 9 yellow tiles in the puzzle - but tracing clockwise around each loop from
tile 45 yields the following tile sequences:
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Puzzle Population Generation Trials Number Average Solution
Size Limit Solved Generation

Junior 100 100 20 16 15.2

Student 100 100 20 18 10.6

Master 100 100 20 18 34.1

Professor 200 200 20 9 74.1

Genius 300 300 20 0 -

Table 3: Summary of multiple Tantrix-GA runs on the 5 Super puzzles.

Generation 64: 45, 20, 51, 17, 11, 44, 2, 56

Generation 106: 45, 15, 11, 56, 2, 51, 44, 20, 17

Notice that the only adjacency pair common to both sequences is (2, 56); all others are scrambled.
Apparently, evolutionary progress required a dramatic reconfiguration. The evolved solution to the
Genius puzzle in Figure 13 shows similar discontinuities along both the yellow and red lines between
generations 145 and 192. The fact that Tantrix-GA has solved all other puzzles repeatedly but has
only once stumbled upon a Genius solution indicates the needle-in-a-haystack nature of that search
space. The fitness progressions for the Professor and Genius puzzles are shown in Figure 11. These
are quite typical of Tantrix-GA runs in terms of their step-wise, punctuated equilibria.

7 Alternate Representations and Strategies

The quest for improved search efficiency on the Red Rainbow puzzle, the large Discovery puzzles,
and the Genius puzzle inspired a variety of alternate genome representations, genotype-phenotype
mappings, fitness functions and selection strategies. Unfortunately, none yielded noticeable im-
provement, and several were largely disastrous.

7.1 Relaxing The Golden Rule

The Tantrix manual recommends solving puzzles by initially ignoring The Golden Rule and focusing
on composing the desired focal-colored loop. Once formed, tiles with equivalent arcs in the focal
color can be swapped until The Golden Rule is eventually satisfied.

To incorporate this possibility into Tantrix-GA, the concept of slack was defined as the number of
mismatches that a tile could have with its neighboring arcs and still be considered legally deployed.
A mismatch penalty was added to both fitness functions (Fsum and Fmax) so that tantrices with
mismatches scored worse than those without. With slack > 0, Tantrix-GA could easily compose
long-looped clusters with many mismatches, but coming up with the proper tile swaps (if they
even existed) to remove the mismatches proved nearly impossible. Adding slack seems to have only
increased the size of the search space without providing any scaffolding that could be exploited by
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Figure 11: Fitness plots for runs of the Professor and Genius super puzzles, with populations of
100 and 200, respectively, using the Fmax fitness function of equation 3.

our genome or genotype-phenotype mapping. Future work could involve changes to these latter
elements to better accomodate search in a space dominated by illegal (but potentially helpful)
clusters.

7.2 A More Direct Representation

Slack also plays a role in a more direct form of genotype-phenotype mapping that, at least theoret-
ically, could be employed to solve fixed-topology problems such as the pyramid puzzles. In these
cases, the shape genes are unecessary: a fixed sequence of cells in the pyramid can simply be filled
in order by the priority-sorted tile genes. As explained earlier, Tantrix-GA’s standard approach
simply uses the first tile in the priority list that legally fills a cell (and matches a focal color arc),
then it moves on to the next cell in the list. A more direct-encoded solution simply pairs up the
cell list and the prioritized tile list such that the kth member of the tile list is always placed in
the kth cell, and then oriented according to its rotation gene. Of course, this leads to mismatches,
which are penalized by the fitness function. Unfortunately, by expanding the phenotype space to
include this multitude of illegal solutions, the direct encoding only seems to exacerbate the search
problem.

In effect, the direct encoding forces the use of slack = 6, although in practice the effects of all slack
values of 3 or more are the same, since the filling algorithm for pyramids never places a new tile
in a cell with more than 3 occupied neighbors; hence a maximum of 3 mismatches are possible at
tile-placement time.

Figure 14 illustrates the effects of slack on the fitness landscape. Each graph depicts the fitness
of all genotypes a Hamming distance of 1 from the best-of-generation individual. Note that with
Tantrix-GA’s standard (indirect) coding and no slack, there are many flat plateaus, indicating
neutral local landscapes. Provided that these plateaus are not too large, they can be advantageous
for evolutionary search [12, 19, 14, 15]. With the addition of more slack, the plateaus shrink. Since
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Figure 12: Evolutionary Progression for the 12-piece Professor puzzle, which requires both a yellow
and a blue loop. The best-of-generation phenotypes for each landmark generation are shown.
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Figure 13: Evolutionary Progression for the 12-piece Genius puzzle, which requires both a yellow
and a red non-looping segment. The best-of-generation phenotypes for most landmark generations
are shown.
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Figure 14: Comparison of fitness landscapes around the best-of-generation individual after 100
generations with a population size of 100 on the 10-tile Blue pyramid puzzle.
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direct coding necessitates high slack, it produces difficult, low-neutrality landscapes.

Furthermore, the landscapes appear to become more rugged with the addition of slack. To see this,
we can compare runs with and without slack on the 30-tile Discovery puzzle . In the (4G,4F )
scatter plot of Figure 15, from the run using slack = 4, notice that the majority of points are
proportionately much higher on the y axis than on a similar run without slack, shown in Figure 7.
Hence, the sensitivity of fitness to a change in genotype is even stronger when using slack. However,
note that there is a slight correlation (upward sloping trend) within the first 10-15 mutations (along
the x axis), but even in this region, a small change in the genotype has large fitness consequences.

In general, runs using slack > 0 rarely find solutions to even the simple puzzles. Slack appears to
increase ruggedness and decrease neutrality. It may also increase the deceptiveness of landscapes,
since it adds more legal partial solutions that may appear to be just a few tile swaps away from
perfection, but are not. Although this may not rule out the use of all direct representations for
Tantrix puzzles, the developmental approaches seem to show greater promise, particularly when
cluster shapes are not pre-determined.

7.3 Learning and Lamarckianism

The needle-in-the-haystack nature of certain puzzles motivated the use of local search and partial
Lamarckianism [6, 13, 9]. In this scheme, each genotype learned by exploring the immediate
neighborhood of N 1-swap genotypes (i.e., those formed by swapping 2 priority genes in the original).
The fitness of the original was then the fitness of the best such neighbor, and a certain percentage
(usually 30) of the learned results were back-coded into the genome prior to reproduction. This
only dramatically slowed evolution by adding a factor of N fitness evaluations, and it showed no
signs of improved solution-finding on the tough puzzles.

7.4 Genome Simplification

Another potential improvement involves a more efficient chromosomal encoding for the Discovery
puzzles. The astute reader may notice that for puzzles involving a single focal color, the Tantrix-GA
developmental algorithm is only weakly sensitive to changes in the shape genes. In the developmen-
tal algorithm, remember that tiles that can match a focal-color arc are preferred. This means that
for single-color puzzles, each new tile will normally extend the current focal-color segment. Hence,
when the k+1st tile is played, the kth tile will have only one open (i.e. unconnected) focal-color arc
end (since the other end will be covered by the k-1st tile). So the shape gene seems superfluous,
since there will only be one open neighbor of the kth tile that can provide a focal-color match for
the k+1st tile. The only possible exception is when the growing segment loops back to the first tile,
which will still have one open end. Then both the kth and first tile will have an open focal-colored
thread. However, if the puzzle is solved correctly, then the k+1st tile will match both the kth and
first arc to complete the loop.

In general, only the very first tile will have use for a shape gene, since this tile will have two open
ends of its focal-color arc immediately after being played. However, since a loop could be built by
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Figure 15: Relationship of genotypic Hamming distance to fitness difference. Given B, the best-of-
generation individual (fitness = 35.2) after 100 generations of a run of Tantrix-GA on the 30-tile
Discovery puzzle with slack = 4, this looks at mutation classes about B involving 1 to 100 bits,
with 50 random samples taken from each class. For each sample, S, the fitness difference between
S and B is plotted as a function of the Hamming distance between S and B. All genotypes for this
run have a total length of 595 bits. The Pearson correlation coefficient is 0.35.
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choosing either one of these ends first, it should be possible to arbitrarily (but consistently) choose
one of them and to grow a successful loop in that direction. Thus, even the first shape gene seems
superfluous.

As for the orientation genes, they need not encode 6 values, only 2. In Discovery puzzles, the
orientation of the initial tile is immaterial, since loops can be grown in any direction, and the
hexagonal cell array is, in theory, infinite in both dimensions. Only when the puzzle’s shape is
pre-determined (as in the pyramid puzzles) is the exact orientation of the first tile critical. So the
only potential source of ambiguity is which focal-colored end of the k+1st tile should match up
with tile k’s open focal-colored end.

Together, these two observations allow us to greatly simplify the chromosome for Discovery puzzles
by removing the shape genes and using a single bit to encode orientations. Only the priority genes
remain the same. Although this simplication does not degrade performance, it yields no significant
improvement. Quite possibly, the smaller genotype search space is offset by decreased neutrality.

7.5 Diversity Enhancement

Although the reinjection of 10% random individuals in each generation plus the macromutations
of headless-chicken crossover helped avoid total convergence, they could not insure that multiple
peaks of the fitness landscape were being explored simultaneously. To better provide for a diversity
of good individuals, as opposed to just diversity, sharing [5] and clearing [17, 18] were introduced
into the selection algorithm.

To wit, individuals were sorted into groups based on similarity (of either their raw fitness values
or their genotypical bit strings). A fixed number, k (usually 3) individuals in each group were
alloted their full normal fitness, F, while the remaining M-k individuals shared F; i.e., each received
an adjusted fitness of F/(M − k), where M is the group size. In general, this gave no significant
performance improvement. In particular, it did not help in the quest for a consistently effective
search for the Genius puzzle solutions.

7.6 Self-Organizing Approaches

Since most of the Discovery puzzles have multiple (if not many) solutions, the entertaining idea of
self-organizing solutions seems much more plausible in the Tantrix domain than in games where
only unique solutions exist. To investigate this, we devised a Swarm-based Tantrix in which tiles
randomly move around the hexagonal grid, with the only restriction being that tiles cannot dock
in violation of The Golden Rule.

The model includes a persistence state variable for each tile, with high persistence indicating a
stochastic tendency to stay put. To encourage the formation of long loops and segments in the focal
color, a tile’s persistence positively correlates with the number of adjacent tiles having matching
focal-colored arcs. Hence, tiles that participate in a focal-color segment are less likely to move.
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Although this routinely grows segments of 8-12 focal-colored arcs, it rarely grows loops. Doing so
might require more complicated signaling, thus moving well beyond the Swarm philosophy.

Alternatively, the Tantrix blocks could be interpreted as metabolizing organisms in an artificial-life
world, with chemical recycling embodied in loop formation. Successful ecosystems would then be
those that formed clusters of organisms that recycled several chemicals, i.e., housed many loops
in their tantrix. With an additional mechanism for clusters to move as units, collide, etc., the
ecosystem could involve clashes among populations, resulting in dissolving, fusing, and in general,
reorganizing clusters.

In short, the abstract nature of the Tantrix tiles and the constrained but not overly-restrictive
nature of the binding chemistry (i.e., many possible neighborhood combinations are legal) could
support a host of interesting examples of emergent, life-like behavior.

7.7 Future Attempts

Tantrix-GA now includes a wide variety of parameters and genetic operators which we have tuned
only to the degree that the system can (rather reliably) find solutions to all the above-mentioned
problems, except the notorious Genius puzzle. Further work in tuning the parameters to more
properly dovetail with the simplified genome and diversity-enhancement selection operators might
improve upon the performance in Figure 1, for example, but this in itself is relatively uninteresting.
The real profit in such improvements would be to pave the way for solutions to the 40-, 50-, even
90-piece Discovery puzzles.

Different advances will be necessary to attain:

1. Better performance on the Genius puzzle.

2. A more solid basis for attacking the Unsolved puzzles.

No obvious representational changes nor genetic operators immediately present themselves. They
will probably require a deeper mathematical analysis of these puzzles as the foundation for a
complex (possibly non-intuitive) genotypic representation and developmental process that have
little connection to human heuristics for puzzle solving.

8 Discussion

The main purpose of this paper is to introduce Tantrix as an interesting problem domain for
evolutionary computation. Tantrix-GA is, to the best of our knowledge, the first attempt to solve
such puzzles with a genetic algorithm, but future systems will surely achieve higher performance
levels. The challenges posed by both the Genius and Unsolved puzzles will hopefully inspire others
to delve into this fascinating area.
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Although lacking the easily-visualizable mathematical beauty of the De Jong test suite [11], Tantrix
clusters have a pleasing graph-theoretic essence that has attracted thousands of players to the
game. Also, the wide variety of Tantrix puzzles provides a test suite of its own, which, although
lacking the wide conceptual span of De Jong’s famous collection, does provide a graded, challenging
environment for designing and benchmarking indirect representations.

Similar to much of the work in evolutionary design and creativity [2, 3], evolutionary Tantrix solving
appears to profit most from indirect representations. However, it requires very little background
knowledge about a complex domain (such as electronics, music, civil engineering, etc.), employs a
straightforward fitness metric (that demands no expensive simulations nor ad-hoc quantifications
of subjective human criteria), and involves merely a bag of 56 colored tiles, available in most hobby
shops.

Thus, Tantrix provides an easily-accessible venue for evolutionary computation teaching and re-
search that has a bit more aesthetic appeal than traveling-salesman or job-shop-scheduling tasks.
The Tantrix test suite covers many levels of difficulty, from the simpler Discovery puzzles - solvable
by any student with a basic GA and a rudimentary understanding of Tantrix - to the larger Dis-
covery puzzles and multi-colored Super puzzles, which require detailed attention to chromosomal
encoding, genetic operators and fitness functions.

Our experience indicates that although several of the most difficult puzzles have needle-in-a-
haystack characteristics, and all of the puzzles have a high degree of deceptivity, there are still
possibilities for assigning proper partial credit to intermediate solutions. Basically, not all promis-
ing partial solutions are deceptive and even deceptive solutions have useful building blocks. Fur-
thermore, many of the puzzles have a multitude of viable solutions, albeit well dispersed and sitting
atop sharp plateaus.

The trick(s) seem to be in choosing the fitness function and in biasing the growth process. Of all
the modifications made during the design and testing of Tantrix-GA, none had a more dramatic
positive effect than the introduction of the matching-focal-color constraint on the placement of the
next tile in the growth algorithm. This, combined with the compactness constraint, quickly led to
the formation of long, hole-free loops that gradually expanded into complete solutions. In addition,
the move to a simpler fitness function that focused on the maximum-length segment and loop (as
opposed to the average length of all focal-colored segments and loops) proved very significant.

Beyond these design decisions, however, nothing yielded quantum performance improvements. How-
ever, to attack the Unsolved puzzles, a few major conceptual improvements are surely necessary,
along with a few orders of magnitude more computing power. We have focused on small popu-
lations and short runs in the belief that proper representation is the key to Tantrix solving, not
brute computational force. Furthermore, the argument for Tantrix as a useful EC teaching tool
loses some credibility if all examples require a 1000-node cluster.

Still, the Unsolved puzzles have complexity levels that dwarf everything solved in this paper, forcing
an inevitable divergence of teaching and research interests. To this end, we are currently working
on a parallel version of Tantrix GA.
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