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Abstract

Neural Baldwinism concerns the Baldwin Effect in the evolu-
tion of brains and intelligence. The first phase of the Baldwin
Effect (B.E.), wherein plasticity provides a selective advan-
tage, is intuitive and commonplace in simulations of adap-
tive systems. However, the second (assimilation) phase of-
ten poses problems for Baldwinism in general, and this is
particularly acute for biological neural networks, where a
complex developmental process greatly confounds the map-
ping from genotype to functional phenotype: a brain whose
synapses are tuned to perform particular tasks. Since a strong
genotype-phenotype correlation is often viewed as a prerequi-
site to this second phase, the body’s most plastic organ would
appear to defy Baldwinism. However, a detailed examina-
tion of 3 key processes of neural adaptation blurs the dis-
tinction between classic developmental and learning stages
of brain maturation, thus supporting a re-interpretation of
Neural Baldwinism’s phase II as a heterochronous shift of
the bulk of these three adaptive processes from postnatal to
prenatal stages. This article illustrates Heterochronous Neu-
ral Baldwinism (HNB) with artificial neural networks that
evolve, develop and learn, and in which some degree of
synaptic tuning shifts to the prenatal stage.

Introduction
The Baldwin Effect (B.E.) (Baldwin, 1896; Turney et al.,
1997) concerns the ability of learning to accelerate evolu-
tion via a two-stage process. In phase I, individuals with
phenotypic plasticity achieve higher fitness than those rely-
ing purely on innate skills. This moves the population distri-
bution toward plastic individuals. In phase II, some of these
learned skills become innate by chance mutations. This as-
similation of plastic features into the genome and develop-
mental process becomes more probable when the genotype-
phenotype mapping is not overly complex (with correla-
tions maintained between genotype and phenotype spaces);
and selection pressure favors assimilation when a) the envi-
ronment is reasonably static across the generations, and b)
learning has a fitness cost (Mayley, 1996).

Although B.E. seems plausible for some phenotypic traits,
such as the size of muscles and the efficacy of certain phys-
ical skills, its relationship to the evolution of intelligence
is more tenuous, given contemporary understanding of the

brain, neural development and synaptic change. If learn-
ing is generally equated with synaptic change, then how can
the modification of a few of the (human) brain’s 100 tril-
lion synapses be assimilated into DNA consisting of approx-
imately 25,000 genes? In general, the mapping from geno-
type to phenotype is highly indirect, and correlations be-
tween genotype space and neural network space seem highly
unlikely, once again precluding the assimilation of specific
synaptic change into the genome.

In search of a more plausible reconciliation of neural evo-
lution and Baldwinism, we examine the mechanisms tra-
ditionally associated with neural-network development and
learning; the border between the two seems fuzzy with re-
spect to the creation of new neurons (a.k.a. neurogenesis)
and synapses (a.k.a. synaptogenesis), along with the tuning
of those synapses. For instance, neurogenesis and synap-
togenesis are not restricted to early neuro-development, as
once believed. Recent evidence (Shors, 2009) shows that
neurons can be generated and inter-connected throughout
life, depending upon an animal’s mental (and physical) chal-
lenges. Also, a good deal of synaptic tuning has been shown
to occur prenatally (Sanes et al., 2006). Thus, neuro- and
synaptogenesis, along with synaptic tuning, can be shared
between development and learning, with the genome bro-
kering the actual division of labor. Furthermore, hete-
rochronous shifts in these distributions - that transfer some
of the burden from stages of life that are strongly influenced
by the environment (a.k.a. nurture) to those strongly gov-
erned by the genes (a.k.a nature) - seem to support the as-
similatory requirements of B.E. phase II.

Motivated by these biological findings and their implica-
tions for the B.E., we investigate models in which a) arti-
ficial neural networks (ANNs) evolve, develop and learn,
b) the core processes of neurogenesis, synaptogenesis and
synaptic tuning have varying levels of activity in early (de-
velopmental) and late (learning) stages of life, and c) these
levels are determined by the genome. Then, by monitoring
the evolving distribution of these 3 processes among devel-
opment and learning, we observe this more flexible interpre-
tation of Neural Baldwinism.



Related Work
Hinton and Nowlan’s simulations - classic in their simplic-
ity and elegance - first illustrated B.E (Hinton and Nowlan,
1987). They showed that early learning helped guide evolu-
tion toward a difficult goal (B.E. phase I), but as the popula-
tion approached the target, the flexible portions of the pheno-
type became hard-wired to the correct values, thus jettison-
ing the (costly) learning capabilities (B.E. phase II). Their
model involved simple bit-string genotypes, which doubled
as phenotypes, so no development nor neural networks were
involved, though they commented that the model could serve
as a coarse abstraction for the evolution of neural networks.

In another seminal Baldwinian simulation, (Ackley and
Littman, 1992) showed the B.E. in evolved pairs of in-
teracting neural networks, one of which learned by back-
propagation while the other evolved (but could not learn) to
provide proper world-state evaluations to guide learning in
the former network. Upon adding learning (in neural net-
works) to cellular encoding (CE) (Gruau and Whitley, 1993)
observed the confounding effects of development (in CE)
upon the B.E.. Later, (Downing, 2004) extended the Hin-
ton and Nowlan model to include an abstract developmental
process based on a Turing machine (TM) (whose specifi-
cations were encoded in the genome). Those experiments
showed the scaffolding effect that development can manifest
to reduce the learning burden and thus support B.E. phase II.
That scaffolding effect is also evident in this article, but now
with fully-functioning neural networks as the phenotype and
developmental synaptic tuning replacing the TM.

Recently, (Paenke et al., 2009) proposed a mathematical
framework to help quantify when, in fact, learning will ac-
celerate evolution, while many important B.E. studies em-
ploy models other than neural networks (Suzuki and Arita,
2007; Bull, 1999; Mayley, 1996) to reveal critical relation-
ships between fitness landscapes, epistasis, the genotype-
phenotype mapping, and B.E. Of critical relevance to this ar-
ticle are Mayley’s two key prerequisites for B.E. phase II: a)
a strong correlation between genotype and phenotype space,
and b) a significant learning cost.

Despite the obstacles to B.E. posed by neural develop-
ment, a plausible reconciliation of the two involves a hete-
rochronous shift of a significant degree of neurogenesis and
synaptogenesis from postnatal (experience-driven) learning
to the prenatal (gene-governed) phase of life, as shown in
(Downing, 2010). In this article, we turn to the third key
factor, synaptic tuning, and explore the degree to which it
too can be assimilated into neural development.

Heterochronous Neural Baldwinism (HNB)
Figure 1 summarizes a few of the key processes involved in
the mapping from genes (roughly 25,000 in humans) to the
brain (containing around 100 billion neurons and 100 trillion
synapses). The high degree of scrambling and elaboration of
genetic information that occurs during neural development

and tuning must clearly ruin any correlations between geno-
type and phenotype space, thus violating a key precondition
for B.E. phase II (Mayley, 1996). Thus, a plausible model
of Neural Baldwinism would seem to require a different per-
spective and/or abstraction level.
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Figure 1: The complex gene-to-brain mapping.

A common lock-step scenario for brain formation and
maturation consists of two clearly distinct phases: a)
prenatal development wherein neurons are produced and
linked together, and b) postnatal learning, wherein synap-
tic strengths are modified to enhance behavioral control.
Though convenient for computational models and gen-
eral explanations, this over-simplifies temporal relationships
whose details may prove useful for understanding Neural
Baldwinism. For example, many studies, summarized in
(Sanes et al., 2006), find high levels of long-term potenti-
ation (LTP) and long-term depression (LTD) - both forms
of synaptic tuning - during prenatal development. In fact,
the rates of LTP and LTD (i.e. learning rates) are actu-
ally very high during development and much lower dur-
ing adult life. In addition, recent work (Shors, 2009) re-
veals that a) neurogenesis occurs throughout life, particu-
larly in the dentate gyrus (DG) of the hippocampus, but b)
those neurons only hook up to other neurons (and ultimately
survive) if the organism subsequently performs cognitively-
challenging tasks. Thus, although we can retain terminol-
ogy that equates development with all prenatal brain for-
mation, and learning with postnatal activity, the constituent
processes of development and learning are clearly not mu-
tually exclusive in this (more biologically realistic) overlap-
ping model.

This new perspective motivates a reinterpretation of B.E.
in neural networks. In a lock-step model, B.E. phase II en-
tails converting synaptic-strength changes (i.e. classic learn-
ing) into genomic codes for controlling neurogenesis and
synaptogenesis (i.e. classic development). This represents
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Figure 2: Overview of Heterochronous Neural Baldwinism,
wherein the hallmark of phase II is the transfer of consider-
able neuro- and synaptogenesis, along with synaptic tuning,
from postnatal to prenatal stages.

the reverse encoding of the results of one process into two
dramatically different processes. However, in an overlap-
ping model, the assimilation phase involves only quantita-
tive, not qualitative, change.

Thus, B.E. Phase II may primarily constitute hete-
rochrony: a change in the onset, termination and rates of
neurogenesis, synaptogenesis and LTP/LTD across an or-
ganism’s life stages, as shown in Figure 2. Under the view
that adaptive changes in later life are predominantly gov-
erned by the environment, not the genome, a Baldwinian
modification could simply be to move more of that adaptive
change into earlier life stages, where genomic control may
dominate.

For example, when the biochemical bases for LTP and
LTD arose in evolution, both processes may have been very
active throughout life, requiring constant environmental sig-
naling to tune neural circuitry. However, over many (thou-
sands of) generations, genomic changes could have arisen
such that the early stages of development utilized neurogen-
esis, synaptogenesis and high LTP/LTD to form much of this
circuitry with a minimum of environmental influence. Sim-
ilarly, the rates of neurogenesis and synaptogenesis could
have originally been much less variable throughout life, but
evolution has gradually found genomes coding for an accel-
eration of these processes in early development; and thus,
more of these activities became governed by genomic rather
than environmental factors. The neural plasticity that re-
mains in today’s adult genomes (of any species), may repre-
sent that flexibility which evolution found optimal with re-
spect to factors such as a) the coding limits of the genome,

b) constraints of the animal’s brain and body, and c) earth’s
environment and the rates of change associated with it.

This research illustrates Heterochronous Neural Baldwin-
ism using ANNs which a) evolve using genetic algorithms,
b) learn via backpropagation, and c) employ a complex de-
velopmental procedure for tuning synaptic weights prior to
backpropagation. Importantly, evolution controls both the
extent of backpropagation and the detailed nature of devel-
opmental tuning.

In this model, phase II of the Baldwin Effect is evident
when the genome transfers a significant level of synaptic
tuning from postnatal to prenatal stages, i.e., from a life
stage when the environment governs a good deal of neu-
ral activity to a stage when the genome holds more control.
Hence, although this model employs a complex, correlation-
destroying mapping from genes to adaptive (developmental
and learning) parameters to synaptic weights, the genome
still possesses the ability to evolve the recipe for a devel-
opmental procedure that can reduce the burden of postnatal
adaptation and thereby increase phenotypic fitness.

Developmental Synaptic Tuning (DST)

The DST model introduces a biologically-inspired mecha-
nism for modifying connection weights prior to exposure to
the environment (i.e., training cases). This mechanism ab-
stracts from neurological studies showing that spontaneous
waves of neural activity, modulated by cyclic-AMP (cAMP)
concentrations, lead to early synaptic tuning during develop-
ment, prior to the exposure to normal sensory inputs. This
has been shown to play an important role in the binocu-
lar segregation of connections from the retina to the lateral
geniculate nucleus (LGN) (Stellwagen and Shatz, 2002),
while others (McNaughton et al., 2006) postulate similar
wave-induced synaptic tuning in the hippocampus, and a
variety of evidence, summarized in (Sanes et al., 2006), in-
dicates both a) the presence of these waves throughout the
brain during neural development, and b) their instructive role
in synaptic formation and tuning.

These waves promote neural firing such that neurons in
adjacent regions that happen to fire simultaneously (due to
stimulation from their respective activation waves) will have
their synaptic connections modified, typically by Hebbian
means. Thus, early chemical waves strongly influence the
patterning of neuronal connections, prior to the molding ef-
fects of normal sensory stimuli.

A comprehensive model of this phenomena would include
the chemical and physical bases of reaction-diffusion pro-
cesses, a reasonably straightforward but computationally-
intensive endeavor. Fortunately, compositional pattern-
producing networks (CPPNs) (Stanley, 2007) provide an ef-
ficient alternative for abstractly modelling any number of
natural pattern-generating processes.



Composite Pattern-Producing Networks (CPPNs)

As shown on top of Figure 3, a CPPN (Stanley, 2007) re-
sembles a neural network, but with each node housing one
of a number of alternative activation functions, as opposed
to the standard sigmoids, step functions and hyperbolic tan-
gents of ANN nodes. For example, the CPPN may include
Gaussians, absolute values, and sine waves (as well as the
common ANN activation functions). Each CPPN connec-
tion includes a weight, and all nodes compute the sum of
their weighted inputs, which serves as input to the activation
function, whose result becomes the node’s output.

The CPPNs in this research have no explicit layered or-
ganization (other than pre-defined input and output nodes),
so any node can send outputs to any other node; and all
nodes (except the inputs) can receive weighted outputs. At
each timestep, the nodes undergo asynchronous activation,
wherein each node simply sums the weighted outputs in its
input buffer and feeds that sum to its activation function to
produce an output value, which is immediately propagated
to the input buffers of all post-synaptic neighbors. After a
user-determined number of update rounds, the CPPN’s out-
puts are gathered from the output nodes.

By sending Cartesian coordinates through a CPPN and
using the output value to encode pixel color or intensity, the
CPPN can generate pictures (Stanley, 2007). Similarly, by
adding the time step as input, the CPPN can produce a time
series of patterns, depicting a dynamic structure such as an
activation wave, as shown at the bottom of Figure 3.

In the DST model, an ANN’s genome encodes various pa-
rameters for each of its layers, such as the number of initial
neurons. In addition, it can include a set of CPPN genes for
any layer such that the decoded CPPN can be used to gener-
ate activation waves during development.

Neural layers are modeled as 2d surfaces, where each neu-
ron (n) has a center coordinate, (xn,yn). During develop-
ment, to compute the wave-induced activity of n at time t,
simply input xn, yn and t to the layer’s CPPN and interpret
the output value as a local activation.

When adjacent layers in an ANN include CPPNs, each
can be run to produce activation patterns. As shown in Fig-
ure 4, when neurons j and k in adjacent layers (J and K) have
correlated wave-induced activation, Hebbian-based synap-
tic tuning on the j-k connection provides an early bias of
the network. When the activation waves fortuitously reflect
some aspect of the sensory world to which the organism
will eventually be exposed, this preliminary synaptic tuning
should provide a useful head start for the ANN and agent.

Hence, by including CPPN parameters with the other
layer-specific genes in an evolving ANN, any pair of inter-
connected layers with CPPN-based developmental stimula-
tion can achieve an evolving prenatal bias of its weights.

X Y Time

t1

t2

t3

Figure 3: A CPPN, when provided with Cartesian coordi-
nates and time as inputs, produces abstract temporal activa-
tion patterns.

Evolving CPPNs
CPPNs, as defined in (Stanley, 2007) are evolved via the
NEAT system (Stanley and Miikkulainen, 2002), which has
the advantage of supporting gradual complexification but
which is a rather direct encoding, with one gene required for
each node and weight. This work employs a more genera-
tive CPPN encoding to reduce the need for individual weight
genes and achieve a bit more biological plausibility.

These CPPNs evolve via a simple bit-vector chromosome
consisting of multiple segments, one for each input, internal
and output node in the network. Each segment consists of
5 genes that encode the: a) activation function, b) afferent
connection tag, c) efferent connection tag, d) afferent weight
tag, and e) efferent weight tag.

The first is simply an index into a list of possible activa-
tion functions (identity, sine, absolute value, gaussian and
sigmoid), while the afferent tags for node N help determine
a) which nodes can send input to N, and b) the weights on
those incoming arcs. Similarly, the efferent tags influence a)
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Figure 4: CPPN-generated activation patterns stimulate ad-
jacent neural layers, leading to correlation-based weight
changes (dW) to synapses between co-active neurons.

the nodes to which N can send its output, and b) the weights
on those outgoing arcs. The two afferent (efferent) tags con-
stitute the afferent (efferent) mask of each node.

More specifically, if the afferent connection tag of node
N matches the efferent connection tag of node M (above a
user-defined match threshold, e.g. 0.75), then M will send
an excitatory connection to N. Conversely, if the match is
very poor, and thus below a similar threshold, e.g. 0.25,
then M will send an inhibitory connection to N. For medium-
strength tag matches, no connection between M and N is
created. Then, the strength of an excitatory or inhibitory
arc is positively correlated with the matching degree of M’s
efferent-weight- and N’s afferent-weight tags.

Our CPPNs have a pre-defined number of input and out-
put nodes, but the efferent and afferent masks (along with
the activation functions) of output nodes can evolve, as can
the efferent masks of each input node. Since recurrent links
are permitted in CPPNs, both types of masks are relevant for
output nodes, while input nodes are strictly entry ports for
external data. During CPPN configuration, once all connec-
tions are determined, nodes that either form no connections
or, more generally, do not lie along at least one pathway
from some input to some output node, are pruned.

Combining DST with Backpropagation
To investigate Heterochronous Neural Baldwinism using
DST, we employ a 3-layered (input, hidden, output) ANN,
with 9 linear input, 9 sigmoidal output, and a variable num-
ber of sigmoidal hidden nodes (coded in the genome). Stan-
dard backpropagation (BP) accounts for all of the learning,
while CPPN-generated waves handle developmental tuning
of connections between the hidden and output neurons. The
complete DST-BP process is summarized in Figure 5.

Backprop

0100010101000... 11101001111001... Genome

DST

CPPN
1 CPPN

2

Environment: 
Training 
Cases

Input Hidden Output

Development (Prenatal) Learning (Postnatal)

Fitness

Figure 5: Key stages of the DST-BP process: (Upper left)
Translation of chromosomal segments to CPPNs for 2 lay-
ers; (Lower left) DST provides an initial bias to hidden-to-
output connections; (Right) BP learning further tunes all
synapses to capture the training set, with fitness based on
training error, test error, and BP learning effort.

The Genetic Algorithm
In the spirit of Hinton and Nowlan’s original work, we use
relatively small populations evolved over relatively few gen-
erations to solve simple problems, primarily as a proof of
concept. The key GA parameters include a population size
of 20, full-generational replacement with a rank-based selec-
tion mechanism and elitism of two individuals, a crossover
rate of 0.8 and a mutation rate of 0.05 per bit.

The GA chromosome for DST-BP involves 9 basic de-
velopmental and learning parameters, while two CPPNs (for
the hidden and output layers) require 14, 5-part genes apiece
(encoding activation functions and masks). The 3 develop-
mental parameters are: 1) initial hidden-layer size (Hinit ∈
[1, 10]), 2) developmental tuning rate (Dr ∈ [0, 1]), and 3)



activation wave steps (Ds ∈ [0, 5]). The 6 learning param-
eters are 3 each for the input-hidden layer connections, and
the hidden-output layer links. The former 3 are: a) learn-
ing rate, Lr1 ∈ [0, 1], b) learning epochs, Le1 ∈ [1, 10],
and c) momentum, Me1 ∈ [0, 0.2], while the latter 3 are: d)
Lr2 ∈ [0, 1], e) Le2 ∈ [1, 10], and f) Me2 ∈ [0, 0.2].

Fitness Testing
Data sets for backpropagation learning are generated by one-
dimensional cellular automata (CA), run for 10 timesteps,
with each consecutive pair of 9-cell states constituting a
training case, i.e., st → st+1 ,where st, the CA state at time
t, is loaded onto the input neurons, with the target output be-
ing st+1. The key point is that if a bit is on (or off) in st, this
influences the chances of it and other neighboring bits being
on or off in st+1, thus adding some structure to the data.

Fitness stems from both training and testing error, with
the former consisting of the average error per output neuron,
per training case, per epoch; while the latter is per neuron per
case for a single epoch, without learning. Thus, the abilities
to a) quickly reduce error during training, and b) eventually
reduce that error, are independently assessed.

In all of the runs reported below, each individual under-
goes 5 independent rounds of fitness testing, wherein a dif-
ferent set of random initial weights (in the range [-0.2 0.2])
are assigned. The error terms Etrain and Etest denote aver-
ages over these 5 rounds, and all runs employ a tuning tax,
Θ = 0.04. The fitness function of equation 1 accounts for
both error terms along with the learning effort:

f = e−(Etrain+Etest+ΘLeLr) (1)

where Le = min(Le1, Le2) (since only this minimum of
the two values of epochs is actually performed), and Lr =
Lr1+Lr2

2 .

The Developmental Contribution
In each of the runs below, the contribution of developmen-
tal synaptic tuning to error reduction is estimated by a sim-
ple test, performed only on the best-of-generation individu-
als. First, the weights of the ANN are randomly initialized,
before sending the entire training set through the network,
but without learning. The average error, per output node,
per training case, is then compared to the average error in
a second test, wherein the same ANN, with the same initial
weights, also undergoes the developmental tuning encoded
in the genome. Differences in these two error terms gives
a rough indication of the contribution of DST to error re-
duction, and thus to fitness. It is important to note that the
fitness function does not explicitly reward this contribution.
Its effect is only indirect, via the reduction in learning effort
afforded by DST.

In the runs below, a typical training error prior to any tun-
ing (developmental or learning) is 0.35 to 0.45, while the

improvement typically varies from 0 to 0.05 (e.g. 0.45 -
0.40 = 0.05).

Results
For each of the runs presented below, 5 properties of the
best-of-generation individual are plotted: fitness, learning
effort, training error, test error, and developmental contribu-
tion to error reduction. To easily display each value on the
same linear plot, the two error values and the developmental
contribution are multiplied by 10.

Figure 6 illustrates a sample 300-generation run using
DST-BP and a CA-generated data set. HNB phase I involves
a gradual increase in learning effort over approximately 80
generations, during which fitness rises and error falls. Phase
II begins thereafter, with learning effort dropping in several
discrete steps over the final 220 generations, although the
lowest learning-effort value appears evolutionarily unstable.
In this plot, the rise of fitness during phase II is clearly evi-
dent. The developmental wave functions for the best-fit in-
dividual of the 300th generation are shown in Figure 7.
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Figure 6: Time series of fitness, learning effort, two er-
ror terms, and developmental enhancement for each best-
of-generation individual in a 300-generation DST-BP run.
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Figure 7: The 5-step, CPPN-generated, developmental acti-
vation waves for hidden (top row) and output (bottom row)
layers for an evolved, 3-layered feed-forward network us-
ing backpropagation learning. Red (blue) indicates maximal
(minimal) stimulation.



To test the generality of HNB using DST-BP, a series
of 20 independent runs are performed, each using a differ-
ent CA-generated dataset. The best-of-generation averages,
shown in Figure 8, display the general Baldwin Effect in
that learning initially boosts fitness, but then plasticity de-
creases while the error terms remain lower (than the early-
generation values), and fitness gradually increases.

Heterochronous Neural Baldwinism is evidenced by the
bottom line in the figure, which shows a gradual rise in the
contribution of development to error reduction. This rise is
barely perceptible in the figure, but a comparison of the first
50 averages (over 20 runs) to the last 50 shows a statistically
significant difference (p = .0005) in a single-tailed Student-t
test: the averages are 0.020 and 0.027 for the first and last
quarter, respectively. This indicates that the developmental
contribution to output error reduction, though small, does
allow learning effort to decrease.
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Figure 8: Averages (over 20 independent runs using differ-
ent CA-generated datasets) of fitness, learning effort, two er-
ror terms, and developmental enhancement (devp) for best-
of-generation individuals in a population of 20 DST-BP net-
works.

In another set of 20 runs, the datasets consist of randomly-
generated sparse patterns, with exactly 3 ones and 6 zeros in
each. In contrast to the CA-generated datasets, these have
no spatial relationship between the on (1) bits of the input
and output/target patterns, thus making it harder for evolu-
tion to find helpful developmental schemes. However, HNB
occurs in these runs (not shown) as well, with gradually de-
clining learning effort and gradually increasing (and statisti-
cally significant, p = .0005) developmental contribution and
fitness.

Further evidence for the contribution of development ap-
pears in Figure 9, which displays 20-run averages for sce-
narios using CA-generated datasets, but no DST. Notice that
the learning effort rises and remains high throughout the

200 generations. Without developmental assistance, learn-
ing must remain elevated to keep the error levels in check.
This continuously-high learning cost keeps fitness levels in
Figure 9 well below those of Figure 8.
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Figure 9: Averages (over 20 independent runs using differ-
ent CA-generated datasets) of fitness, learning effort, and
two error terms, for best-of-generation individuals in a pop-
ulation of 20 DST-BP networks, where DST is silenced.

Discussion
The DST-BP model gives preliminary evidence of the Bald-
win effect in neural networks that undergo a developmental
process. The validity of these results hinges on a quantita-
tive (rather than qualitative) interpretation of the key differ-
ences between development and learning in neural systems.
Namely, cross-generational changes in the pre- and postnatal
rates of neurogenesis, synaptogenesis and synaptic tuning
can transfer adaptive effort from learning to development,
with the latter more closely governed by the genome and
less by environmental factors. Thus, B.E. phase 2 transfers
a portion of brain formation backwards, from learning to de-
velopment, and thus to a stage where it is more strongly af-
fected by the genome - and can thus lay claim to being more
innate than characteristics acquired later in life, when envi-
ronmental influences typically play a more decisive role.

As in (Downing, 2004), the effects of learning are not
reverse-encoded into the genome, but strong learning buys
evolutionary time until proper developmental scaffolding re-
duces the overall postnatal adaptive costs, thereby raising
fitness to peak levels. In this work, scaffolding involves
CPPN-generated activation waves, and the ensuing prena-
tal synaptic tuning, which provides the postnatal phase with
a synaptic matrix that is already partially biased toward the
environment (i.e. training set).

The DST-BP model embodies a complex mapping from
genes to synaptic weights (via CPPNs and DST), which



might seem to preclude B.E. phase II. However, the genome
possesses enough flexibility to evolve developmental scaf-
folding capable of reducing postnatal adaptive demands.
Thus, although the results of postnatal synaptic tuning do
not become innate, their attainment becomes easier due to
evolved innate processes.

The DST model says little about the potential applica-
bility of CPPNs as activity-wave generators for evolving
ANNs, and it seems impractical to go to such lengths to pro-
duce functioning ANNs for complex tasks. But in support of
HNB, the CPPN provides an appropriate abstraction (over
complex reaction-diffusion interactions) for generating ac-
tivity waves whose biological counterparts do appear to play
an important role in early neural circuit formation. The DST-
BP model indicates that these activity waves may also help
explain Neural Baldwinism, though a more convincing ar-
gument would involve a learning mechanism of greater bio-
logical realism than backpropagation. To this end, we have
combined DST with Hebbian learning in simple two-layered
ANNs. This produces a more dramatic Baldwin Effect than
the DST-BP runs, both in terms of a greater learning declines
and very sizeable developmental contributions to error re-
duction (often over 30%). However, the Hebbian model was
only able to learn very simple training sets involving very
sparse input and output vectors.

Despite these relatively weak results, ALife researchers
should profit from this article’s primary insight: the assimi-
latory phase of the Baldwin effect, when viewed as a quanti-
tative rather than qualitative shift in activity from later to ear-
lier stages of life, does reduce the general complexity (and
near impossibility) of the transfer of the fruits of neural plas-
ticity to the realm of genetic control.

As elaborated by several influential biologists (West-
Eberhard, 2003; Kirschner and Gerhart, 2005), the interac-
tions between evolution, development and learning are in-
tricate and multifaceted. Though often intimidating, these
complex relationships may in fact open the gate for inter-
pretations of B.E., such as HNB, that can enhance its general
plausibility with respect to the evolution of intelligence.
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