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Preface
The 5th International Workshop on

Knowledge Discovery in Healthcare Data (KDH)

Introduction
The Knowledge Discovery in Healthcare Data (KDH) workshop se-
ries was established in 2016 to bring together AI and clinical re-
searchers, fostering collaborative discussions and presenting AI re-
search efforts to solve pressing problems in health care. This fifth edi-
tion of the workshop was held in conjunction with the 24th European
Conference on Artificial Intelligence, Digital ECAI 2020, which was
hosted in Santiago de Compostela, Spain, but conducted virtually.
The focus of the workshop was on learning health care systems. For
the second time, this workshop featured a challenge: The Blood Glu-
cose Level Prediction (BGLP) Challenge.

The notion of the learning health care system has been put forward
to denote the translation of routinely collected data into knowledge
that drives the continual improvement of medical care. This notion
has been described in many forms, but each follows a similar cycle
of assembling, analyzing and interpreting data from multiple sources
(clinical records, guidelines, patient-provided data including wear-
ables, omic data, etc.), followed by feeding the acquired knowledge
back into clinical practice. This framework aims to provide personal-
ized recommendations and decision support tools to aid both patients
and care providers, to improve outcomes and personalize care.

This framework also extends the range of actions possible in re-
sponse to patient monitoring data, for example, alerting patients or
automatically adjusting insulin doses when blood glucose levels are
predicted to go out of range. Blood glucose level prediction is a chal-
lenging task for AI researchers with the potential to improve the
health and well-being of people with diabetes. In the Blood Glucose
Level Prediction (BGLP) Challenge, researchers came together to
compare the efficacy of different machine learning (ML) prediction
approaches on a standard set of real patient data.

The workshop received 35 submissions, each of which was peer-
reviewed by three reviewers. Based on the reviews, 10 technical pa-
pers and 16 BGLP Challenge papers were accepted for presentation
at the workshop. Among the accepted papers, the current trend of ap-
plying deep learning (DL) is strongly represented, while other meth-
ods used are case-based reasoning (CBR), natural language process-
ing, and time series analysis. Another evident trend was the need for
open data sets that can drive the field forward and promote building
on each other’s work. This topic was addressed by the invited talk as
well as by the included BGLP Challenge.

Keynote Speaker: Kerstin Bach, NTNU, Norway
Bio: Kerstin Bach is an Associate Professor of Computer Science and
Artificial Intelligence in the Department of Computer Science at the
Norwegian University of Science and Technology (NTNU). She has
been at NTNU since 2017, where she is currently deputy head of the
Data and Artificial Intelligence group and a core member of the Nor-
wegian Open AI Lab. Bach received her doctorate summa cum laude

from the Department of Mathematics, Natural Sciences, Economics
and Computer Science of the Hildesheim University, Germany, in
2012.

Kerstin Bach has broad experience building industrial strength AI
applications as well as leading and collaborating on interdisciplinary
teams. While working at Verdande Technology, she worked on a plat-
form delivering AI services for the Oil and Gas, Finance and Health-
care sector. Further, she has headed the myCBR open source project
since 2010 and has conducted research projects leveraging CBR and
other AI methods for over 13 years. She is currently focused on two
Horizon 2020 projects, selfBACK and AI4EU. She is the project
manager of the selfBACK project, responsible for the technical in-
tegration of selfBACK into Back-UP, where she leads the Machine
Learning tasks. In the AI4IoT pilot of AI4EU, she co-leads the ef-
forts to develop AI showcases for the platform featuring Air Quality
measurements. Bach is active in communicating AI research inter-
nationally. She is the chair of the German Special Interest Group on
Knowledge Management and a board member of the Norwegian AI
Society.

Title: The Potential for AI in Public Health: Lessons Learned from
Developing and Testing a Patient-Centered Mobile App

Abstract: This talk provides an overview of how Artificial In-
telligence and Machine Learning have been used to develop a mo-
bile app that facilitates self-management of low back pain patients.
It covers the development of the decision support system for patients
using case-based reasoning as well as system evaluation via a ran-
domized controlled trial testing the effectiveness of the app. This talk
focuses on the development of the selfBACK system [24], but the
approaches and methodologies employed can also be applied to the
development of systems for other chronic diseases benefiting from
self-management.

Accepted Papers
Main Track Papers

Main track technical papers present original research work across a
broad range of KDH topics and domains. Given the current Covid-
19 pandemic, this proceedings features three papers addressing the
use of AI for detecting anomalies in X-ray scans. Paper [16] presents
an approach for quantifying the uncertainty of deep neural networks
(DNN) for the task of chest X-ray image classification, with results
showing that utilizing uncertainty information may improve DNN
performance for some metrics and observations. Paper [10] presents
a study and a concrete tool based on machine learning to predict
the prognosis of hospitalized patients with Covid-19. Paper [12] pro-
poses a two-stage segmentation method which is capable of im-
proving the accuracy of detection and segmentation of lung nodules
from 2D CT images, achieving promising results that put the method
among the top lung nodule segmentation methods.



The second group of papers focuses on how AI-based explana-
tion and visualization can help patients and clinicians use the vast
amount of information available to improve diagnosis, knowledge
discovery and care. Paper [25] presents InterVENE, an approach that
visualizes neural embeddings and interactively explains this visual-
ization, aiming for knowledge extraction and network interpretation.
Paper [7] makes use of the graphical representation capabilities of
Formal Concept Analysis (FCA) and use graph databases as a visu-
alization method for knowledge patterns. The authors exemplify their
approach on a particular medical dataset, highlighting a 3D represen-
tation of conceptual hierarchies by using virtual reality. Paper [4] is a
position paper, in which the authors analyze the cause-effect relation-
ships for determining the causal status among a set of events. They
argue that causal knowledge graphs can improve the accuracy and
reliability of existing ML/DL-based diagnosis methods, by produc-
ing transparent justifications and explanations of the output. Paper
[23] presents initial findings towards assessing how computer vision,
natural language processing and other systems could be correctly em-
bedded in the clinicians’ pathway to better aid in fracture detection.

A third group of papers addresses the use of machine learning for
blood glucose level prediction (BGLP) and diabetes management.
Paper [22] compares the effectiveness of several BGLP models and
found that Lasso regression performed best out of the algorithms
used for both the 30-minute and 60-minute prediction horizons. Pa-
per [1] presents a generic neural architecture previously used for
BGLP in a what-if scenario that can be adapted and leveraged to
make either carbohydrate or bolus recommendations. Paper [17] ad-
dresses the problem of missing sensor readings in glucose monitor-
ing data of artificial pancreas (AP) systems. It uses data from virtual
patients and a state-of-the-art AP controller simulating various sce-
narios.

BGLP Challenge Papers

The BGLP Challenge papers describe blood glucose (BG) level pre-
diction approaches and experimental evaluations on the newly up-
dated OhioT1DM dataset [20]. Of the 16 systems with papers that
were accepted for publication, 8 systems had results that conformed
to The BGLP Challenge Rules1. These 8 systems were all evaluated
using the exact same test points for each of 6 data contributors in the
OhioT1DM dataset. Results were reported as the root mean squared
error (RMSE) and the mean absolute error (MAE) scores for the 30
minute and 60 minute prediction horizons. The 4 scores were added
together to compute an overall score, and the 8 systems were ranked
in increasing order of this total score. Table 1 shows the official rank-
ing of the 8 systems, based on this overall score. Additional rankings,
e.g. based on each of the 4 measures separately, as well as links to the
source code for all 16 systems, are available on The BGLP Results 2

page.
Gated versions (LSTMs [13], GRUs [6]) of recurrent neural net-

works (RNNs) were predominant, used either at the core of the fore-
casting model [2, 3, 5, 11, 21], or as a component in a larger model
[26, 29]. Other types of neural architectures that were frequently used
were convolutional RNNs (CRNNs) [3, 8, 9] and fully connected net-
works (FCNs) [2, 26, 28]. Generative Adversarial Networks (GANs)
were used in [32], wherein the GRU-based generator uses real data
as input and its BG predictions are pitted against the true BG val-
ues in a discriminator implemented using one-dimensional convolu-
tional neural networks (CNNs). The recently proposed Neural Ba-
1 http://smarthealth.cs.ohio.edu/bglp/bglp-rules.html
2 http://smarthealth.cs.ohio.edu/bglp/bglp-results.html

30 minutes 60 minutes
Paper RMSE MAE RMSE MAE Overall
[29] 18.22 12.83 31.66 23.60 86.31
[11] 19.21 13.08 31.77 23.09 87.15
[32] 18.34 13.37 32.21 24.20 88.12
[31] 19.05 13.50 32.03 23.83 88.41
[2] 18.23 14.37 31.10 25.75 89.45
[30] 19.37 13.76 32.59 24.64 90.36
[14] 19.60 14.25 34.12 25.99 93.96
[19] 20.03 14.52 34.89 26.41 95.85

Table 1: BGLP Challenge overall ranking.

sis Expansion for Interpretable Time-Series Forecasting (N-BEATS)
architecture [27] served as the basis for the winning entry [29]. In
this top-performing model, the fully connected block structure of N-
BEATS was replaced with LSTMs, additional losses were used to
provide more supervision, and secondary, sparse variables such as
meals and bolus insulin were used as input while still backcasting
only on the primary forecasting variable, blood glucose. A number of
non-neural approaches were proposed as well, such as Genetic Pro-
gramming (GP) for symbolic regression in [14], Random Forests in
[14, 28], multivariate Latent Variable (LV) based models in [30], and
Partial Least Squares Regression (PLSR) with stacking in [15, 26].

The LSTM-based approach from [5] was notable for its inter-
pretability analysis, wherein the SHAP (SHapley Additive exPlana-
tions) method [18] was used to assess the impact that each feature has
on the model predictions. Also of special interest were the “what-if”
evaluations from [14], where future values of basal and bolus in-
sulin were assumed to be controlled within the prediction horizon
and leveraged with good results in some of the proposed GP-based
models. Overall, the participating systems were trained or fine-tuned
for each patient (personalized), with the exception of [2] where a
single LSTM model was trained to make predictions for all patients
(non-personalized).

We very much appreciate the support of the Digital ECAI 2020
workshop chairs, Magdalena Ortiz and Amparo Alonso, as well as
this year’s general chair Jérôme Lang. Further, we would like to
thank Jernej Masnec, of Underline.io, the digital platform provider,
for technical support.

We sincerely hope that the participants enjoyed this year’s work-
shop program and that this collection of papers will inspire and en-
courage more AI-related research for and within healthcare in the
future.

Kerstin Bach, Razvan Bunescu,
Cindy Marling and Nirmalie Wiratunga

Santiago de Compostela, virtually, August 2020

http://smarthealth.cs.ohio.edu/bglp/bglp-rules.html
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covery and visualization in healthcare datasets using formal concept
analysis and graph databases’, in this volume, (August 2020).

[8] John Daniels, Pau Herrero, and Pantelis Georgiou, ‘Personalised glu-
cose prediction via deep multitask networks’, in this volume, (August
2020).

[9] Jonas Freiburghaus, Aı̈cha Rizzotti-Kaddouri, and Fabrizio Albertetti,
‘A deep learning approach for blood glucose prediction and monitoring
of type 1 diabetes patients’, in this volume, (August 2020).

[10] Alfonso Emilio Gerevini, Roberto Maroldi, Matteo Olivato, Luca
Putelli, and Ivan Serina, ‘Prognosis prediction in Covid-19 patients
from lab tests and X-ray data through randomized decision trees’, in
this volume, (August 2020).

[11] Hadia Hameed and Samantha Kleinberg, ‘Investigating potentials and
pitfalls of knowledge distillation across datasets for blood glucose fore-
casting’, in this volume, (August 2020).

[12] Mohammad Hesam Hesamian, Wenjing Jia, Sean He, and Paul
Kennedy, ‘Region proposal network for lung nodule detection and seg-
mentation’, in this volume, (August 2020).

[13] Sepp Hochreiter and Jürgen Schmidhuber, ‘Long Short-Term Mem-
ory’, Neural computation, 9(8), 1735–1780, (1997).

[14] David Joedicke, Oscar Garnica, Gabriel Kronberger, José Manuel Col-
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Interactive Explanations of Internal Representations of
Neural Network Layers: An Exploratory Study on

Outcome Prediction of Comatose Patients
Meike Nauta1 and Michel J.A.M. van Putten1,2 and Marleen C. Tjepkema-Cloostermans2

and Jeroen Peter Bos1 and Maurice van Keulen1 and Christin Seifert1

Abstract. Supervised machine learning models have impres-
sive predictive capabilities, making them useful to support human
decision-making. However, most advanced machine learning tech-
niques, such as Artificial Neural Networks (ANNs), are black boxes
and therefore not interpretable for humans. A way of explaining an
ANN is visualizing the internal feature representations of its hidden
layers (neural embeddings). However, interpreting these visualiza-
tions is still difficult. We therefore present InterVENE: an approach
that visualizes neural embeddings and interactively explains this vi-
sualization, aiming for knowledge extraction and network interpreta-
tion. We project neural embeddings in a 2-dimensional scatter plot,
where users can interactively select two subsets of data instances
in this visualization. Subsequently, a personalized decision tree is
trained to distinguish these two sets, thus explaining the difference
between the two sets. We apply InterVENE to a medical case study
where interpretability of decision support is critical: outcome predic-
tion of comatose patients. Our experiments confirm that InterVENE
can successfully extract knowledge from an ANN, and give both do-
main experts and machine learning experts insight into the behaviour
of an ANN. Furthermore, InterVENE’s explanations about outcome
prediction of comatose patients seem plausible when compared to
existing neurological domain knowledge.

1 Introduction
Most advanced artificial intelligence techniques, such as Artificial
Neural Networks (ANNs), are black boxes and therefore not inter-
pretable for humans. As argued by [22], it depends on the applica-
tion to what extent this is a concern. Interpretability is critical in the
case of this paper: outcome prediction of comatose patients, where
AI is meant to support the physician in (high-stakes) decision mak-
ing. “Explainable AI” (XAI) is essential for medical professionals to
understand the how and why of the AI’s decision, for example, to
be able to confirm that the system is right for the right reasons [23].
Moreover, interpretable algorithms (i.e. algorithms that explain or
present their decision to a human in understandable terms [5]) could
appropriately enhance users’ trust in future AI systems [22]. Since
a poor predicted diagnosis may cause care to be reduced, getting in-
sights in the algorithm may reveal predictions that cannot be trusted,

1 University of Twente, the Netherlands, email addresses:
{m.nauta, m.j.a.m.vanputten, m.vankeulen, c.seifert}@utwente.nl,
j.p.bos@student.utwente.nl

2 Department of Neurology and Clinical Neurophysiology, Medisch Spec-
trum Twente, the Netherlands, email addresses:
{m.vanputten, m.tjepkema-cloostermans}@mst.nl

thus allowing to save a patient’s life. On the other hand, AI might dis-
cover patterns that were not known to the medical profession before,
leading to knowledge discovery for healthcare improvement.

One way of explaining an ANN is visualizing the internal feature
representations of its hidden layers (called neural embeddings) [26].
Solely relying on such visualization techniques is, however, insuffi-
cient: the resulting projection does not explicitly show the relations
between projected points and the original input features, making it
challenging to understand why data points are placed far apart or
close together. Interviews revealed that data analysts try to map the
synthetic data dimensions to original input features, and that they try
to name and verify clusters [3]. In this paper, we therefore explain a
visualization.

Contributions Since visualizations of neural embeddings are too
complex to readily grasp, we explain a visualization with an easy-
to-understand and effective interactive approach, suitable for both
domain and machine learning experts. After visualizing neural em-
beddings in a scatter plot with dimensionality-reduction, a user can
interact with the visualization by selecting two sets of data points
in the visualization. We explain the difference between these sub-
sets by training a decision tree (or another interpretable model) that
distinguishes between the user-selected subsets in the visualization
in terms of the original input features. Allowing manual selection of
data points in the visualization results in a personalized explanation
that gives meaning to clusters seen in the visualization where the user
had specific interest in. An overview of the overall process is shown
in Figure 1.

Our approach serves two goals: (i) knowledge discovery and
knowledge validation: extracting knowledge from the neural network
allows the domain expert to observe and validate patterns learnt by
the neural network, and (ii) network interpretation: understanding the
neural network allows the machine learning expert to analyse errors,
behaviour over training time and contributions of single layers.

We implemented our approach in a tool called InterVENE (Inter-
actively Visualizing and Explaining Neural Embeddings)3. We apply
InterVENE to the medical domain where interpretability of a deci-
sion support system is critical: outcome prediction for postanoxic
coma patients, based on a structured dataset containing features of
EEG recordings of 518 comatose patients.

3 InterVENE is open-sourced at https://github.com/M-Nauta/
InterVENE
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Figure 1. Overview of the approach. A machine learning model (e.g. an artificial neural network) is trained, the feature vectors of its hidden layers (embed-
dings) are projected into 2D. Domain experts then can interactively explore the visualizations and select groups of interest, whose difference is explained by an
interpretable discriminative model (e.g. a decision tree).

2 Related Work

Explanation approaches of machine learning models address
different stakeholders and explain different aspects of the model.
Three general approaches have emerged towards providing explana-
tions [7]. First, explanations can be model-based by showing the op-
erational procedure of the complete model. Some machine learning
models are considered inherently interpretable, e.g. decision trees or
decision rules [6] or can be extended to be inherently interpretable,
such as Deep Neural Decision Trees [31]. More complex models,
such as deep neural networks can be locally or globally approximated
by interpretable models (e.g., [8]). Other explanations approaches
show similar cases (e.g., [20]), or the contributions of features for
a decision (e.g., [12]). In this paper, we use decision trees as inter-
pretable models to locally explain subgroups that emerge from the
implicit feature representations of end-to-end machine learning mod-
els.

Dimensionality reduction techniques are suitable for visualizing
high-dimensional data by projecting it on a low-dimensional space
while preserving as much of the original data structure. Although
many projection techniques have been proposed (we refer the reader
to [14] for a review), t-SNE [15] is arguably the best known and
most applied technique, due to its capability of capturing both the
local and global structure of the high-dimensional data. It provides
a 2- or 3-dimensional feature representation that can be visualized
in a plot. Recently, the Uniform Manifold Approximation and Pro-
jection (UMAP) algorithm was introduced [16], which preserves as
much of the local and more of the global data structure than t-SNE
with faster run times [2]. UMAP uses the nearest neighbour descent
algorithm [4] to construct a weighted k-neighbour graph that ap-
proximates the representation of the high dimensional data. It then
optimizes this low dimensional layout via probabilistic edge sam-
pling and negative sampling [17]. It has been shown that UMAP
provides meaningful visualizations for biological data [2], materials
science [13] and image classification [16].

Dimensionality reduction can also be applied to derived fea-
tures, such as embeddings. An embedding is a vector containing
the post-activation values in a hidden layer of an Artificial Neural
Network (ANN). The learned, continuous embedding is therefore a
representation of the input data. Visualizing the embeddings of each
hidden layer provides a general overview of the inner behavior of
the ANN [25]. Most existing work on visualizing embeddings was
created for image data, using e.g. heat maps or pixel displays [25].
Dimension-reduction techniques such as t-SNE and UMAP however,
can be used for visualizing the embeddings of any type of data. Data
instances with similar representations in a network layer will be close
in the projection space. It has already been shown that t-SNE projec-
tions of neural embeddings (both after training and during training)
can aid the understanding and improving of ANNs [21], since it al-
lows users to view global geometry and to discover clusters [26]. The

embedding projector of [26], using t-SNE or Principal Component
Analysis, is therefore integrated into the Tensorflow platform [1].

Although dimension-reduction is considered an explainable
method because data is represented in a lower-dimensional space,
users often have difficulty interpreting the dimensions of the visu-
alization in a meaningful way [14]. It is therefore needed to explain
the visualization. For example, [27] introduced probing, a tool to un-
derstand projections by exploring the dimensionality-reduced data
and to interact with the visualization to examine errors. [11] explains
a visualization by creating just-in-time descriptions to automatically
identify and annotate visual features, such as clusters and outliers.
In contrast, our approach provides personalized explanations by ex-
plaining the difference between user-chosen clusters with an inter-
pretable model. Our approach can be applied to any dimensionality
reduction method that visualizes embeddings, such as t-SNE [15],
UMAP [16], DarkSight [30] or the existing embedding projector
of [27].

Reliable prediction of neurological outcome in comatose pa-
tients after cardiac arrest is challenging. It may prevent futile care
in patients with a poor prognosis, and allow timely communication
with family members about the neurological condition. Early EEG
recordings have been shown to allow reliable prognostication within
24 hours after arrest in a significant fraction of patients [9]. However,
visual analysis by the neurologist is time-consuming and allows re-
liable prediction of neurological outcome of approximately 50% of
patients, only. This motivates the need for techniques that assist or
even replace the human expert, as resources are limited, and hold
promise to increase the diagnostic yield. Deep neural networks have
recently been used to predict neurological outcome [29], showing a
significant improvement in classification accuracy. A limitation of
these approaches, however, is the lack of interpretability, which is
what we address in this paper.

3 Approach
Our approach consists of three general steps, integrating two stake-
holders: the machine learning expert and the domain expert. As
shown in Figure 1, the machine learning expert first trains a pre-
dictive model for the task at hand on the labeled data {x, y}, with
x being the feature vector and y the respective label. This task is
iterative and usually includes model selection and hyper-parameter
optimisation steps. The output is the machine learning model, and its
predictions ŷ on the data, which ideally should match the ground-
truth labels y. For the remainder of this paper, we assume that these
models generate an implicit feature representation to solve their pre-
diction task. In end-to-end (deep) learning scenarios these feature
representations are the activations in the hidden layers of the neural
networks. We refer to these representations as embeddings e. There
can be more than one embedding for one training sample, e.g. the
embeddings of the first hidden layer, of the second and so on. Em-



beddings can also be collected for different training epochs, e.g. after
training the network for 10 epochs versus training for 50 epochs.

The embeddings of a layer of a certain epoch are then projected
into a 2-dimensional feature space, resulting in one visualization
for each layer. More specifically, the projection function p takes em-
beddings e from feature vector x and generates a low-dimensional
representation x0. In principle, any projection of dimensionality re-
duction method can be used in this step. We choose a 2-dimensional
scatter plot as visualization since this is easy to interpret. In our
implementation called InterVENE, we use UMAP as dimension-
reduction technique, because of its good run time performance and
data structure preservation (cf. Section 2). An example of the visual-
izations is shown in Figure 4.

The user can select one of the visualizations (i.e. one of the lay-
ers at a certain training epoch), to inspect this projection in more
detail. The selected projection x0 is then used in an interactive visu-
alization to show the patterns the machine learning model implicitly
learned to best solve the prediction task. We visualize the following
information about the machine learning model: i) an approximation
of the learned feature space by the model x0 (using 2d-position as
visual channel), ii) the prediction of the model ŷ (using color hue as
visual channel), iii) whether the decision is a true positive, a false
positive, a true negative or a false negative (using shape as visual
channel). As shown in Figure 2, the visualization allows for interac-
tive selection of subgroups of interest by either lasso selection with
a mouse and/or choosing pre-selected categories, such as true and
false positives or positives. The advantage of manual selection com-
pared to automated clustering is that users can generate explanations
about subgroups of data points where they have specific interest in.
Data instances in these subgroups implicitly get assigned labels z in-
dicating to which selection they belong. The difference between the
selected subgroups is then explained by training an interpretable ma-
chine learning model to approximate the subgroup labels z based on
the input features x. InterVENE uses a decision tree that classifies the
selected data points to one of the selected subgroups. An example of
this visualization and the explanation is shown in Figure 3.

4 Case Study and Data Set
InterVENE can be applied to any machine learning model that gen-
erates embeddings trained on any labeled dataset, since UMAP has
no computational restrictions on embedding dimension [16] and the
underlying techniques of InterVENE are generally applicable. To
show the importance and benefits of InterVENE, we perform an ex-
ploratory study on a medical case where interpretability is critical.
We use InterVENE to better understand a neural network predict-
ing the neurological outcome of comatose patients after cardiac ar-
rest. These predictions may prevent futile care in patients with a
poor prognosis, as discussed in Section 2. Our structured dataset
contains features from continuous EEG recordings of 518 prospec-
tively collected adult patients who were comatose after cardiac ar-
rest (Glasgow Coma Scale score <8) and admitted to the ICU of the
Medisch Spectrum Twente (June 2010-May 2017) or Rijnstate hos-
pital (June 2012-April 2017). Details have been described previously
by Hofmeijer et al. [9].

The primary outcome measure was the Glasgow-Pittsburgh Cere-
bral Performance Category (CPC) score at 6 months, dichotomized
as good (CPC 1 or 2, no or moderate neurological deficits with in-
dependence in activities of daily living) and poor (CPC score � 3,
major disability, coma, or death). The CPC scores were obtained
prospectively by telephone follow-up with the patient or patient’s le-

gal representative. Part of the data is used in work of [28] and [19].
EEG features We extracted 42 qEEG features from each 10 sec-

ond EEG segment at 24 hours after arrest to quantify 5 minute EEG
epochs, broadly grouped into three domains: (i) time domain features
capturing time varying amplitude information of the EEG signal; (ii)
frequency domain features that capture key EEG patterns in differ-
ent sub-bands in the spectrogram; and (iii) entropy domain features
providing measures of complexity and randomness of the EEG sig-
nal. The median values of features across all channels were averaged
for each 5 minute EEG epoch resulting in 42 features per patient. We
used the same features as described by [19], except for 2 entropy fea-
tures due to long calculation times. The data is scaled to have zero
mean and unit variance, such that it can be used as input for a neural
network. The dataset was complemented by a smaller set of features
as described in [28] which are easier to interpret by the neurologist.
These features are only used in an extra explanation, as discussed in
Section 6.1.

5 Experimental Setup
Neural Network Architecture Since InterVENE can be used on
any neural network architecture, the aim of this paper is not to train
the best neural network for postanoxic coma classification, but to
find a reasonable well-performing model which we want to explain.
To find such a model, we optimized hyperparameters using grid
search and stratified 5-fold cross validation on a training set (80%
of the dataset) for a simple feedforward ANN. The following sets
of hyperparameters were investigated by grid-search: #hidden lay-
ers {1, 2, 3}, #nodes in a hidden layer4: {5, 10, 20}, dropout: {yes
with p = 0.5, no}, learning rate: {0.1, 0.01}, weight initialization:
{N (0, 1), N (0, 0.1)}. To limit the number of networks to train, we
fixed the activation function to ReLu (and Sigmoid in the output
layer) and used the Adam optimizer. The most accurate network was
a network with 2 hidden layers, with 20 hidden nodes in each hid-
den layer, dropout with p = 0.5, learning rate of 0.01 and weight
initialization of N (0, 0.1). Using a hold out set, we decided to stop
training after 100 epochs. Our network had an accuracy of 0.79 when
using a threshold of 0.5 and AUC = 0.88. Because of a very high cost
of error, prediction performance for poor outcome is in medical lit-
erature usually measured in recall (sensitivity) at 100% specificity.
Our network has a recall of 0.34 for poor outcome at 100% speci-
ficity, outperforming the 0.32 of [28] and lower than state-of-the-art
0.44 [19], showing that our network is reasonably good.

Hyperparameters InterVENE For UMAP, we mainly use the de-
fault settings of the UMAP python package (v0.3). However, we set
the number of neighbours n to 10 (default is 15) to more accurately
catch the detailed manifold structure [16], and tuned the visualization
by setting the distance metric to ‘correlation’. For the decision tree,
we use the default parameters of the scikit-learn decision tree pack-
age (v0.20.03). To improve interpretability and prevent overfitting,
we set the maximum depth to 3 (but this parameter can be changed
by the user), require a minimum number of 5 samples in each leaf
and prune the tree such that a node is not split when all leaves have
the same class label.

4 with the restriction that the number of hidden nodes in a layer cannot exceed
the number of hidden nodes in the previous layer
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6 Experiments
We performed two experiments: (i) we elicited which domain knowl-
edge can be obtained using InterVENE (see Section 6.1) and (ii) in-
vestigated which understanding about the neural networks in terms of
error type and training process can be gained (see Section 6.2). We
used the constructive interaction evaluation protocol in which two
participants naturally communicate and collaborate in trying to solve
predetermined tasks [18]. One participant in our study is a machine
learning expert knowledgable about the projection method and neural
networks. The other participant is a neurologist from Medisch Spec-
trum Twente with a full understanding of the medical dataset. Fur-
thermore, we compare whether the discovered knowledge is in cor-
respondence with existing medical literature (extracted knowledge
validation).

6.1 Experiment 1: Neural Visualization and
Explanation for Knowledge Discovery

We let the neurologist compare its domain knowledge with the re-
sults from our visualization and explanations. For this, the neurol-
ogist selected the visualization of the embedding of the last hidden
layer of the final ANN shown in Figure 3(a). Tasks for the construc-
tive interaction study consist of two components: 1) Interpreting the
visualization, based on shape and colors; 2) Interpreting the expla-
nation: selecting clusters and comparing the learnt decision tree with
domain knowledge.

When looking at the visualization in Figure 3(a), both participants
clearly see that the ANN is able to identify between comatose pa-
tients with a predicted good neurological outcome (yellow-green,
‘cluster 2’) and a predicted poor outcome (purple, ‘cluster 1’). To
get more insight, the neurologist uses InterVENE to manually select
these two clusters, after which a decision tree is trained to explain the
difference between these clusters. The learnt decision tree (not shown
here), with a depth of 3, classifies each instance in the dataset as one
of the two clusters with an accuracy of 0.913. The top feature in the
tree is ‘Hilbert burst’. The neurologist finds this decision tree plausi-
ble, since burst suppression (an EEG pattern in which neural activ-
ity with high amplitudes alternates with quiescence) is characteristic
for an inactivated brain [10]. To evaluate the results, the neurologist
visually inspects a few EEG recordings from each cluster. The neu-
rologist clearly sees differences between poor and good outcome and
would have made the same prediction as our neural network did.

Based on the visualization in Figure 3(a), the neurologist is in-
terested in studying the two sub-clusters within ‘cluster 1’, indicat-
ing that the ANN has learnt two different types of comatose patients
that are expected to have a poor outcome. To explain this difference,
the participants use the lasso selector of InterVENE to manually se-
lect these clusters. The resulting decision tree (not shown here) has

a depth of 2 and an accuracy of 0.912 to classify an instance to one
of the two purple clusters, with ‘skewness’ as top node. For evalua-
tion of the result, a few EEGs from each subcluster are selected and
analysed to evaluate whether the neurologist could see this same dif-
ference. Differentiation within ‘cluster 1’ was beyond visual assess-
ment since skewness is a feature that cannot directly be read from an
EEG; it can only be calculated.

Since manual classification is done by visual inspection of the
EEG, features that cannot be directly read from an EEG are not used
by neurologists in practice (although experiments like these might
change this). This makes interpreting the features used in the decision
tree more difficult. To solve this issue, we trained a second decision
tree that only uses features that are easily interpretable by domain
experts. Thus, while the visualizations are still based on the embed-
dings of an ANN trained on the 42 original features, the decision tree
is only learnt from a dataset with 11 easy-to-interpret features (from
the same patients). The decision tree shown in Figure 3 shows that
Shannon entropy is the most important feature to distinguish between
poor outcome (‘cluster 1’) and good outcome (‘cluster 2’). This cor-
responds with existing literature which showed that Shannon entropy
has the highest individual feature contribution for comatose patients
24 hours after cardiac arrest [28].

6.2 Experiment 2: Neural Visualization for
Network Interpretation

In this experiment, we evaluate to what extent our approach aids
neural network interpretation. We consider the visualizations of both
hidden layers, and compare the visualizations of embeddings trained
over time (after 10, 50 and 100 epochs). An overview with all the
visualizations is shown in Figure 4. We defined the following tasks:
(i) See how the the neural network trains over time by comparing the
visualizations of various epochs.
(ii) Interpret the relevance of hidden layers by comparing the visual-
ization of deeper layers with visualizations of earlier layers.
(iii) Understand where the neural networks makes mistakes by
analysing and comparing True Positives/Negatives with False Pos-
itives/Negatives.

Visualizations over time InterVENE shows how the artificial neu-
ral network (ANN) learns over time to give users a better understand-
ing of the training process. From the top images in Figure 4, the two
clusters indicate that the ANN is already able to distinguish between
two groups of patients after training for 10 epochs. However, the
ANN still makes many classification mistakes when trained for only
10 epochs. The lack of yellow and the presence of purple seem to
indicate that the network quickly learns to recognize poor outcome,
but is not confident yet about good outcomes. This is improved af-
ter 50 epochs, when the visualization clearly shows a yellow cluster



Cluster 1

Cluster 2

(a) Interactive Visualization

������������	
 �
 -�����
���	��� 
 ���

����� 
 ����, ����
 ���� 
 !������ �

!"# �
 �����
���	��� 
 ���

����� 
 ����, $��
 ���� 
 !������ �

%���

!��&��'(���� �
 ����$
���	��� 
 $�$

����� 
 ��$, �$��
 ���� 
 !������ �

)����

���	��� 
 ���
����� 
 ���*, ��
 ���� 
 !������ �

����'+����' �������,��� �
 �����
���	��� 
 *-

����� 
 ��*, $��
 ���� 
 !������ �

���	��� 
 ��
����� 
 ���, �*�
 ���� 
 !������ �

���	��� 
 -$
����� 
 �$�, ��

 ���� 
 !������ �

���	��� 
 ���
����� 
 �-�, ����
 ���� 
 !������ �

���	��� 
 ��
����� 
 ���, $�

 ���� 
 !������ �

(b) Explanation

Figure 3. UMAP visualization of the embedding of the 2nd hidden layer of the ANN, trained for 100 epochs. Each data point is a comatose patient. Color indi-
cates the prediction. A circle indicates a correct classification; a cross indicates an incorrect classification (with prediction threshold 0.5). Users can interactively
select 2 clusters of interest in the visualization using a lasso selector (blue lines). The difference between the selected clusters is explained by a decision tree,
using only interpretable features (accuracy of 0.844). Each splitting node shows the binary expression, total number of samples, division of samples and class
label.

Figure 4. Visualized embeddings of two hidden layers over time. The left column shows the embedding of the first hidden layer, after the ANN is trained for
10, 50 resp. 100 epochs. The right column shows the embedding of the second hidden layer after 10, 50 resp. 100 epochs. The number of misclassifications
indicates the number of incorrect classifications when a threshold of 0.5 is used to label the output of the ANN.

and a purple cluster. After 100 epochs, the second layer can clearly
distinguish between good and poor outcome. Furthermore, it can bet-
ter distinguish between yellow (confident about good outcome) and
green (not confident about good outcome). Both the machine learn-
ing expert and domain expert found InterVENE useful to better un-
derstand the learning process of the ANN.

Relevance of hidden layers The participants noticed during the
constructive interaction study that the visualizations of the first and
second hidden layer do not differ substantially. Having comparable
visualizations from different layers could indicate redundancy. Our
grid-search found that a 2-layered model performed best but didn’t

tell how worse a 1-layer model would have been. To test whether the
second layer is (almost) redundant, we trained an ANN with only one
hidden layer, and compared its accuracy with the original 2-layered
ANN. Whereas our ANN with 2 hidden layers misclassified 111 pa-
tients, the ANN with 1 hidden layer misclassified 120 patients. Since
the increase is rather small, it confirms the hypothesis that the added
value of the second layer is positive, but limited. This shows that
InterVENE could be used for neural network pruning.

Analysing problematic instances InterVENE can also act as a
starting point to further explore the training data and more quickly
identify problematic training instances. As shown in Figure 5, users



can select a data subset such as true positives or false negatives using
buttons. This gives more insights in the mistakes the ANN makes.
When looking at the false negatives (Fig. 5), it is surprising to see
that the ANN is very confident that some patients will have a poor
outcome (purple) although in reality they had a good outcome. The
neurologist is interested in this incorrect purple cluster, since a neu-
ral network incorrectly predicting a poor outcome (e.g. meaning that
treatment can stop) can have severe consequences. InterVENE can
explain the difference between e.g. true negatives and false negatives
by learning a decision tree to distinguish between these two clus-
ters. However, in our experiments the decision tree algorithm did not
produce a decision tree that could distinguish between false nega-
tives and true negatives. This means that patients with similar feature
values in the dataset have different outcomes, which would explain
why the ANN had difficulty to predict the correct outcome. This rel-
evant information shows that some patients are not distinguishable,
indicating that we might need to group them in a new class ‘no safe
prediction can be made’. We leave this 3-class prediction problem
for future work.

Figure 5. Screenshot of InterVENE. Button is used to only visualize false
negatives, after which subgroup(s) can be selected by the user.

7 Discussion

InterVENE allows its users to interactively select groups of data
points. However, literature raises concerns for clustering with t-SNE,
which are salient for clustering the results of UMAP. In both meth-
ods, nearest neighbours are mostly preserved but distances between
clusters and densities are not preserved well [24]. We therefore do
not train an explainable method to predict the projected coordinates
of an instance, but rather require it to only predict to which cluster a
data instance belongs. However, users should still take these concerns
into account when interpreting a UMAP visualization. Furthermore,
although we applied InterVENE to only one dataset, we expect that
InterVENE will perform well on other datasets. Since InterVENE let
users select clusters instead of single datapoints, the quality of the
visualization should not be impacted by the number of instances in
the dataset. However, the number of features in a dataset might influ-
ence the quality of the explanation. Parameter tuning (either manual
or automated) could ensure that an explanation is both accurate and
interpretable (e.g. setting a max depth of the decision tree). Besides,
InterVENE currently only allows 2-dimensional visualizations. This
implementation can however easily be adapted, since UMAP sup-
ports higher dimensional visualizations.

8 Conclusion
Various projection techniques exist to visualize neural network em-
beddings. Since these visualizations are difficult to interpret, we pre-
sented an approach to explain these visualizations to aid knowledge
discovery and network interpretation. We showed with a case study
that users can get more insight in such a visualization by interactively
selecting two subsets and comparing them with an interpretable, pre-
dictive model. Our implementation, called InterVENE, was applied
to a structured dataset containing features about EEGs of comatose
patients and is evaluated by a machine learning expert and domain
expert (neurologist). An artificial neural network was trained to pre-
dict whether a patient would have a good outcome (e.g. wake up)
or a poor outcome (e.g. further treatment is futile). After visualizing
the neural embeddings, user can interact with InterVENE to generate
a personalized decision tree which explains the difference between
two user-selected subsets from the visualization. Our case study on
comatose patients confirmed that InterVENE can successfully ex-
tract knowledge from a neural network. This knowledge was valu-
able for the neurologist and the explanations seemed plausible when
compared with existing neurological domain knowledge. InterVENE
also visualizes neural embeddings while the network is trained over
time. Our experiments showed that this gives both domain experts
and machine learning experts an idea of how the neural network is
learning. Moreover, we showed that InterVENE can be used to judge
the relevance of a hidden layer, by comparing the visualized embed-
dings of different hidden layers. For future work, we would like to
apply InterVENE to other case studies, and train a network on raw
EEG data and extract the learnt patterns from the network by learning
a decision tree with hand-made features.

ACKNOWLEDGEMENTS
The authors would like to thank Duc Lê Trân Anh Dúc for improving
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Comparison of Forecasting Algorithms for Type 1
Diabetic Glucose Prediction on 30 and 60-Minute

Prediction Horizons
Richard McShinsky1 and Brandon Marshall2

Abstract. Control of blood glucose (BG) levels is essential for di-
abetes management, especially for long term health improvement.
Predicting both hypoglycemic events (BG < 70 mg/dl) and hyper-
glycemic events (BG > 180 mg/dl) is essential in helping diabetics
control their long term health. In this paper we attempt to forecast
future blood glucose levels, as well as analyze the efficiency of de-
tecting both hypoglycemic events and hyperglycemic events. We do
so by comparing Auto-Regressive Integrated Moving-Average, Vector
Auto-Regression, Kalman Filter, Unscented Kalman Filter, Ordinary
Least Squares, Support Vector Machines, Random Forests, Gradient
Boosted Trees, XGBoosted Trees, Adaptive Neuro-Fuzzy Inference
System (ANFIS), and Multi-Layer Perceptron in terms of Root Mean
Squared Error, Mean Absolute Error, Coefficient of Determination,
Matthews Correlation Coefficient, and Clarke Error Grid to com-
pare their effectiveness in predicting future blood glucose levels, as
well as predicting both hypoglycemic and hyperglycemic events.

1 Introduction
Blood glucose prediction has been an ongoing challenge within the
medical field due to the near unpredictable variability of the many
underlying factors influencing an individual’s glucose levels. There
has been a strong drive recently to create an artificial pancreas using
artificial intelligence, which has necessitated the need to predict fu-
ture blood glucose levels as well as the ability to accurately predict
the onset of both hypoglycemic (BG < 70 mg/dl) and hyperglycemic
(BG > 180 mg/dl) events [11].

Most predictive models for blood glucose encompass a physio-
logical profile that includes a person’s insulin, meal absorption, and
past blood glucose levels [13]. Various machine learning methods
that have been attempted to predict future blood glucose levels with
regards to this profile include Auto-Regressive Integrated Moving-
Average (ARIMA, see [3], [4], [13], and [15]), Support Vector Ma-
chines and Kernel Regression (SVM, see [3], [12], [13], and [15]),
Random Forests (RF, see [8], [12], [13], and [15]), Gradient Boosted
Trees (see [8] and [15]), and Artificial Neural Networks (see REF-
ERENCES).

Comparing papers on the results, accuracy, and effectiveness of
the models is near impossible due to different data sets being used
between them. This paper seeks to offer a comparison of as many
models as possible on a single data set.

In this paper, we compare the effectiveness of several mod-
els, namely ARIMA, Vector Auto-Regression Moving-Average with
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Exogenous Regressor (VAR), Ordinary Least Squares (OLS), K-
Nearest Neighbors (KNN), SVM, RF, Gradient Boosting, XGBoost-
ing, Adaptive Neuro-Fuzzy Inference System (ANFIS), and Multi-
Layer Perceptron. Additionally we attempt to use both the Kalman
Filter and the Unscented Kalman Filter (UKF) to predict future blood
glucose values. The Unscented Kalman Filter was chosen over the
Extended Kalman Filter due to its ability to use state-space models
to predict nonlinear functions. In comparing each of these model’s
effectiveness we use RMSE, MAE, the Matthew Correlation Coef-
ficient (A commonly used metric for checking hypoglycemic and
hyperglycemic events that roughly measures the quality of binary
classifications) [4], and the Clarke Error Grid.

2 Data
2.1 OHIO T1DM
The data used for this comparison was the OhioT1DM data set,
which was obtained as part of the second Blood Glucose Level
Prediction Challenge [5]. This data set contains eight weeks worth
of data for 12 people with type 1 diabetes. All contributors were
on insulin pump therapy with continuous blood glucose monitoring
(CGM). All pumps were of one of two brands, all life event data was
reported via a custom smartphone app, and all psychological data
was provided from a fitness band. The features themselves provided
in the data set are: Date, Glucose Level, Finger Stick, Basal (Insulin),
Basal Temperature, Bolus (Insulin), Meal (Carbohydrate Estimate),
Sleep, Work, Stressors, Hypoglycemic Event, Illness, Exercise, Basis
Heart Rate, Basis GSR, Basis Skin Temperature, Basis Air Temper-
ature, Basis Steps, Basis Sleep, and Acceleration [5].

The train and test splits were given as part of the second Blood
Glucose Level Prediction Challenge (see [5] for more details).

2.2 Preprocessing
The glucose readings are in about 5-minute increments while other
reading are every minute. Other readings reported by the patient are
at arbitrary times not aligned with the glucose readings. To combine
them into one data frame to use for predicting glucose, the most im-
portant predictor, glucose levels, was made the main index. All other
values were merged to the closest glucose values within the previ-
ous 4 minutes. For values that were not in this tolerance they were
dropped from the data frame.

Most of these values that were dropped were due to missing data.
There are many gaps where the meter was not recording glucose val-
ues. This could be times between taking it off and putting it on, the



hour or more it takes for the meter to get set up, or a day where the
user just did not put it on. Leaving these gaps often resulted in large
jumps in the training and testing data. These discontinuities would
be a problem in training the models. To fill them we couldn’t use
interpolation methods as we are unable to know the future while pre-
dicting these values. Therefore, our method to extrapolate values for
these times was to use a moving average. For example, for the first
extrapolated missing value, we would use the mean of the previous 2
values. For the second we would use the mean of the previous 4 val-
ues. For the tenth we would use the mean of the previous 20 values,
including the ten we had just extrapolated before that. This would
happen in five minute increments until we reach the next actual value
in the data frame. The last predicted value would be dropped and the
data frame would continue as normal until a difference of more than 6
minutes between values was detected and this rolling average would
extrapolate the missing values. The rolling average would eventu-
ally converge to the average value of all the data, but maintains the
nature of the recent data. For example, if the person has had high
blood glucose levels for the day, the filled data would stay high, but
eventually move towards the mean of the person when using several
days for large gaps. This was done since after a few hours, guessing
where the person’s data was going to start is nearly random guessing.
Since the actual glucose values are essentially normally distributed,
it is better to guess more towards the mean of the glucose levels.
Meanwhile, the discontinuities were reduced by maintaining the lo-
cal rolling mean. This resulted in many of the extrapolations ending
very close to where the data continues from the discontinuity for this
data.

3 Methods
We intend to compare many methods used for classical and regres-
sive time series analysis. Thus, even though some methods are known
to not perform well with blood glucose levels for this type of prob-
lem, they give a baseline to compare each successive method. In ad-
dition to the classical models, we used some models described in
other papers about predicting glucose levels for comparison and po-
tentially better parameter choices. Further, we chose some methods
like VAR and ANFIS in order to compare methods not seen in the
research found. The following subsections explain choices in why
specific methods, parameters, and architecture were chosen.

3.1 Classical Methods
3.1.1 ARIMA

Even though ARIMA itself is a linear combination of a trend com-
ponent, a seasonal component, and a residual component, we chose
to use this model due to its classical use within time series anal-
ysis. Additionally, ARIMA was chosen due to its ability to allow
us to choose the order of p and q for both the AR and MA parts
of the model. These hyperparameters p and q were chosen using
stats.models.orderselect, from which we found that p=2 and q=2 gave
the lowest error. It should be noted that the data is nearly stationary to
start, so a lag of 0 was used (as larger lags resulted in a worse error).
The only data features used were the previous p blood glucose levels
and the q corresponding error terms.

3.1.2 VAR

VAR is a vectored version of an AR model. This allows for more
types of inputs to influence the prediction, rather than just simply

using the previous p blood glucose values. VAR used the same pa-
rameters used in the ARIMA model described above.

3.1.3 Unscented Kalman Filter (UKF)

Whilst the Extended Kalman Filter (EKF) works well for linear pro-
jections, blood glucose levels are nonlinear in nature. Generally EKF
can be thought of as the extension of a Gaussian Random Variable
(GRV) through a linear system [14]. In the nonlinear case however,
the EKF produces approximations to the values xk, yk, and Kk

(the state, observation, and covariance for the system) [14]. In other
words, the Extended Kalman Filter propagates a GRV through a first-
order linearization of the nonlinear system [14].

The Unscented Kalman Filter also uses a Gaussian Random Vari-
able, but instead uses a minimal set of carefully chosen sample points
for which to propagate this GRV [14]. This is done by applying
the unscented transformation to the selected sample points and then
propagating these carefully chosen points through the system. Doing
so allows for approximations that are accurate to the third order of a
Taylor series expansion [14].

To summarize, the Unscented Kalman Filter selects carefully cho-
sen points, applies the unscented transformation to these points, then
performs the time update and measurement update as is standard in
the Kalman Filter [14].

3.2 Regression and Ensemble Methods

Since the OhioT1DM data set is time series based, regular regression
methods are not immediately available for us to use when forecasting
data. However, we can transform the data into a regression problem
by first redefining how the data is presented. Instead of each row in
the data representing a single time step of the nineteen features, we
instead redefine the data on the last six rows of data (we used the last
30 minutes of known information of data). Thus each row in the new
reformatted data set now contains the last six known time steps with
the labels being the future blood glucose values we wish to predict
at each time step. Each label is the next six or twelve blood glucose
values following the current time step in the OhioT1DM data set
for the 30-minute and 60-minute prediction horizons respectively. In
summary, each time step is reformatted to have a 6x19 feature space
with each label having 6 or 12 values. With the data reformatted the
following algorithms can be run.

3.2.1 Ordinary Least Squares

While the data is nonlinear in nature, it is possible that within a suf-
ficiently small subset of the data (that is, for a sufficiently small time
interval), the data may be quasi-linear. As with ODEs (where one
can essentially linearize a nonlinear system) we seek to do some-
thing similar by attempting to fit affine functions to a sufficiently
small time domain. Ordinary Least Squares (OLS) seeks to do this,
fit an affine function (with a constant and error term), to the data
set. In addition to regular OLS, we also run OLS with regularization
terms, namely Lasso (L1 regularization), Ridge (L2 regularization),
and Elastic Net (L1 and L2 regularization) all with ↵ values of 1 for
the regularization terms. We note that Lasso regularization gives us
the advantage of feature reduction, allowing us to analyze which lags
are most important in determining future blood glucose levels.



3.2.2 Support Vector Machines

We believe Support Vector Machine regression may be a useful
method due to its ability to alter the kernel being used, thus allowing
us to alter our definition of distance with regards to the data. Sup-
port Vector Machine (SVM) regression seeks to fit a hyperplane to
the data with an ✏-margin. Points that fall within this ✏-margin are
known as support vectors and are used to help define the hyperplane
used in the regression. Notions of distance to this hyperplane are de-
fined using a kernel. We attempt to use an RBF-kernel (with a scaling
� value) and a Polynomial Kernel (with a scaling � value, a constant
term of 0 and a power of 3) in our regressions. Each SVM had an
✏-margin of 0.1. The results for each of the SVMs are reported under
RBF, Poly, and Sig respectively.

3.2.3 K-Nearest Neighbors

It is likely that previous patterns in the lags of blood glucose (and
other features) may be similar to the current pattern in the lags of
features, we believe KNN regression may also be a useful regression
method. KNN uses a voting method to form the regression. Using a
defined metric of distance, KNN regression finds the K closest neigh-
bors to the given data point and then returns the average of the labels.
We use five neighbors, along with Euclidean distance for this algo-
rithm. The results for this algorithm are reported under KNN.

3.2.4 Random Forest Regression

Random Forest Regression is an ensemble method that combines
weak decision-tree regressors to form a strong group regressor, Ran-
dom Forests allow us to create a regressor that branches based on the
features. This is included here due to its use in other papers attempt-
ing blood glucose prediction (see [8], [12], [13], and [15]). To limit
run-time to a reasonable length, a max-depth of four was imposed on
each forest.

3.2.5 Gradient Boosting

Another ensemble method that combines weak decision-tree regres-
sors to form a strong group regressor, Gradient Boosting instead
seeks to optimize the gradient of the loss function for each regres-
sor. As this can perform well with the correct hyperparameters, we
include this to see if the algorithm can outperform any of the afore-
mentioned algorithms. In addition to using regular Gradient Boosted
Trees, we also use an optimized version of this algorithm known as
Extreme Gradient Boosted Trees (XGB). For Gradient Boosting a
least-squares loss function, along with a learning rate of 0.1, and 100
estimators were used. For XBG a grid search was performed to find
the optimal hyperparameters. Respectively, the results for these algo-
rithms are reported under Grad and XGB.

3.3 Neural Networks

Much work has already been done implementing neural networks
in many different forms, including CNN, CRNN, DCNN, LSTM,
Jump neural Networks, and Echo State (see [1], [2], [3], [4], [6], [8],
and [15]). Much of this work came from the Blood Glucose Level
Prediction Challenge (BGLP) in 2018 using the OHIO T1DM data
set.

3.3.1 ANFIS

ANFIS is a neural network that includes fuzzy logic principles.
Fuzzy logic is about partial truths. Most neural networks have
a true/false form in selections. Fuzzy logic models uncertain-
ties. Some examples of this are what one considers warm/cold,
fast/medium/slow, or high/low. Rather than just picking one or the
other, a draw from a distribution can give a weighted random nature
to the choices. ANFIS is designed to approximate nonlinear func-
tions like glucose values. This was chosen due to the extremely ac-
curate predictions in the referenced paper on chaotic systems. [9]

3.3.2 Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron (MLP) is a fully-connected, feed-
forward neural network. This neural network can often find higher-
order terms without having to create these higher-order terms. This
reduces feature engineering of the data. Our MLP consists of three
hidden layers, each with 100 nodes, and ReLu activation functions.
The output layer for the regression is merely the output of the last
affine function. Results are reported under MLP.

4 Metrics
The following metrics were used when evaluating the efficiency and
accuracy of the algorithms:

4.1 Root Mean Square Error

The root mean square error (RMSE) is defined as
r

1
n

nP
i=1

(ŷi � yi)2

where ŷi is the predicted value and yi is the actual value. RMSE has
the advantage of an easily defined gradient, easy interpretability, and
taking the square root of the squares transforms the error back to the
original function space (that is, the RMSE value is in the same units
as our label). This is the first metric used in evaluating the accuracy
of the regression models.

4.2 Mean Absolute Error

The mean absolute error (MAE) is defined as 1
n

nP
i=1

| ŷi � yi |. This

error function is easy to define, is fairly robust against outliers, and
will be in the same units as our label. However, the gradient is not
always easy to define (and may not exist). This is the second metric
used in evaluating the accuracy of the regression models.

4.3 Coefficient of Determination
The coefficient of determination (R2) is defined as

1�

nP
i=1

✏2i

nP
i=1

(yi � ȳ)2

where yi is the actual value, ŷi is the predicted value, ✏i = yi � ŷi
and is defined as the ith residual, and ȳ is the sample mean. The co-
efficient of determination gives a measure of how much variance is
explained by the model. Values near 1 indicate nearly all variance
is explained by the model, while values near 0 indicate the variance
may be caused by other factors. We note that negative values are pos-
sible, and for this paper indicate poor performance from the model.



4.4 Matthews Correlation Coefficient
The Matthews Correlation Coefficient (MCC) is defined as

(TP⇤TN)�(FP⇤FN)p
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

where TP, FP, FN, TN

stand for the true positive, false positive, false negative, and true neg-
ative rates respectively [4]. This metric gives a general idea of how
well an algorithm does in predicting glycemic events. Values near 1
show the predictions correlate with the actual glycemic events. Val-
ues near 0 indicate the algorithm does no better than random guess-
ing. Values near -1 indicate negative correlation (that is the predic-
tions correlate with the opposite of the glycemic event). This metric
is commonly used by many articles that attempt to predict blood glu-
cose levels (see [4] for one such example), and as such is used here.

4.5 Clarke Error Grid
The Clarke Error Grid plots the actual blood glucose values against
the predicted blood glucose values and is used as an indication of
the potential results that may occur for a given prediction. The grid
is split into 5 zones A-E. Predictions in Zone A and B are gener-
ally considered safe predictions and would not result in any negative
effects on the patient. Predictions in Zone C would result in unneces-
sary treatment. Predictions in Zone D indicate a potentially danger-
ous failure to detect a glycemic event. Predictions in zone E would
confuse treatment of hypoglycemia for hyperglycemia and vice versa
(see [1]). Points in Zone E are considered extremely dangerous, as
treatment due to these results could result in the patient’s death. For
this paper, in addition to MCC we use the percentage of points within
each zone to evaluate the accuracy of a model’s predictions.

5 Results
The following tables describe the average of the metric scores from
the 6 patients. Each of these metrics are described above, namely
RMSE, MAE, MCCs, and R2. The abbreviation definitions and ex-
planations can be found in the Methods section above.

Table 1. Metric Averages for 30-minute Prediction Horizon

Method RMSE MAE MCCl MCCh R2

OLS 20.53 14.14 0.34 0.79 0.86
Lasso 20.58 14.22 0.32 0.79 0.85
Ridge 20.52 14.13 0.35 0.79 0.86
Elastic 20.56 14.20 0.31 0.79 0.86
RBF 24.89 16.96 0.14 0.74 0.79
Poly 31.73 22.51 -0.00 0.70 0.66
KNN 24.57 17.07 0.30 0.73 0.79
RF 23.00 16.27 0.16 0.76 0.82
Grad 21.37 14.87 0.17 0.78 0.84
XGB 24.62 17.29 0.34 0.74 0.79
Kalman 24.08 24.08 0.40 0.74 0.78
UKF 29.88 20.65 0.30 0.67 0.69
ARIMA 23.73 16.68 0.12 0.75 0.81
VAR 25.25 17.05 0.36 0.74 0.79
ANFIS 24.56 16.52 0.26 0.76 0.80
MLP 20.85 14.30 0.30 0.78 0.85

Table 2. Metric Averages for 60-minute Prediction Horizon

Method RMSE MAE MCCl MCCh R2

OLS 33.42 24.65 0.02 0.61 0.62
Lasso 33.41 24.67 0.02 0.61 0.62
Ridge 33.41 24.65 0.02 0.61 0.62
Elastic 33.40 24.67 0.02 0.61 0.62
RBF 36.76 26.53 -0.00 0.55 0.54
Poly 39.16 29.31 -0.00 0.53 0.48
KNN 38.11 28.01 0.15 0.53 0.50
RF 35.20 26.08 0.09 0.58 0.58
Grad 33.98 24.96 0.08 0.58 0.61
XGB 39.78 26.97 0.15 0.53 0.46
Kalman 22.77 15.28 0.41 0.75 0.81
UKF 29.78 20.65 0.30 0.66 0.69
ARIMA 36.39 26.93 0.01 0.56 0.54
VAR 35.06 19.56 0.16 0.70 0.54
ANFIS 36.87 26.53 0.12 0.59 0.56
MLP 35.59 25.81 0.06 0.59 0.57

6 Analysis
In an attempt to first analyze the accuracy of these predictions we first
analyze the RMSE and MAE for both the 30-minute and 60-minute
prediction horizons (Tables 1 and 2). As a general guideline we will
first analyze which model we believe is performing best among the
patients. Once this is done we will then analyze general trends we
have noticed while analyzing this data.

6.1 30-Minute Prediction
We note that in terms of the above defined metrics OLS, Lasso,
Ridge, and Elastic Net Regression perform nearly identical. Thus,
since the differences between OLS, Ridge, Lasso, and Elastic Net re-
gression yield minimally different results, we consider Lasso to be
the best model for the 30-minute blood glucose predictions. Lasso
regression offers a natural form of feature selection which allows
us to analyze which lags are most important for predicting future
blood glucose levels. A further analysis of the feature relevancy can
be found under section 6.4.

Even though we have identified Lasso regression as the best per-
forming algorithm among those tested for the 30-minute prediction
horizon, this means little if this ”best” algorithm still yields subpar
results. As such, we analyze Lasso regression both in terms of MCC
and the Clarke Error Grid to determine if these results are ”suffi-
ciently adequate” for blood glucose prediction. To see general trends
for the prediction we analyze the results for actual and predicted val-
ues across time for patients 540 and 584.

Note the Clarke Error Grid for patients 540 and 584 for the 30-
minute prediction horizon (figure 2). The closer the points fall onto
the bottom left to top right diagonal the better the predictions are
considered. Analyzing these plots visually does not raise any imme-
diate concerns for the predictions. Most values appear to fall within
zones A, B, and C. Analyzing the zones percentages (table 3) shows
that Lasso has 96% accuracy for patient 540 and about 99% accu-
racy for patient 584. The major concern however is that the rest of
these predictions fall within zones D-E, indicating these predictions
may result in potentially dangerous care if acted on for the patient.
Considering the high accuracy for each patient though, these results
are considered ”sufficiently accurate” for the 30-minute prediction
horizon.

Analyzing the MCC for Lasso regression for the 30 minute hori-
zon shows that the MCC tends to be about twice as high for hyper-



glycemic events than for hypoglycemic events. Given that the data
tends to have many more values in the hyperglycemic range than the
hypoglycemic this reflects more on the class imbalance more than the
algorithm. This is seen due to all the algorithms having this trend.
Further, this bias is reflected in the algorithm’s predictions, as val-
leys in the predictions do not reach as low as the valleys in the actual
data (see figure 1). Because of this, we note that the algorithms are
less likely to predict hypoglycemic events as they are hyperglycemic
events, a result that occurs due to the higher number of blood glucose
values in the data.

6.2 60-Minute Prediction
Looking at the results for the 60-minute prediction horizon for the
RMSE and MAE we find the surprising result that the Kalman Filter
(not the Unscented Kalman Filter), performs best out of all the algo-
rithms. Several explanations are possible as to why this occurs. One
of these is that the Kalman filter seemed to dampen the predictions.
Most of the other algorithms would keep predicting upwards for the
hour predictions if the trend was going up beforehand. The Kalman
filter seems to mainly shift the prediction horizon over (so the differ-
ence between the last known glucose value and the prediction for an
hour later is minimal). Since it keeps the results in the typical ranges
of glucose values it may avoid the poor scores from unusually strong
spikes of predicted values. The scores may be the best, but they may
still be very poor predictors for an hour out.

Considering the aforementioned problems with the Kalman filter,
we analyze the ”second” best algorithm. Since the general trends dis-
cussed in the 30-minute prediction horizon section still hold for the
60-minute prediction horizon (when we disregard the Kalman Fil-
ter), we conclude Lasso regression to be the next best algorithm to
use. However, analyzing the difference between the 30-minute pre-
diction horizon and the 60-minute prediction horizon raises several
concerns with using Lasso regression for the 60-minute prediction
horizon.

We noted earlier that Lasso regression tends to underfit with re-
gards to hypoglycemic events. This problem is only exacerbated
when the prediction horizon is extended to 60 minutes (see table 2).
Here we notice the hypoglycemic MCC has reduced to near 0, indi-
cating that Lasso prediction does no better than random guessing as
to whether a hypoglycemic event is occurring. This is far from ideal
for any diabetic patient. As well, we note that for the 60-minute pre-
diction horizon, the accuracy of safe predictions degrades by about
2-3% (see table 3). While 94-97% accuracy is still fairly good, given
that this reduction in accuracy results in 2-3% more dangerous pre-
dictions, and considering the fact that Lasso regression is unable to
predict hypoglycemic events better than random guessing, we do not
consider these predictions to be ”sufficiently accurate” for the 60-
minute prediction horizon. As such, our recommendation is to use
the 30-minute prediction horizon.

6.3 Overall Trends
The biggest trend that we notice is that the models tend to underfit
in regards to hypoglycemic events. That is, the predicted values do
not reach as low as the actual blood glucose values do. This is noted
in the hypoglycemic MCC for the 30-minute prediction horizon (see
table 1) which gives on average a score at about 0.3. This indicates
a general correlation in predicting hypoglycemic events, but not a
strong one. Given that the average blood glucose levels on the test
data were 159.42 mg/dl, 158.51 mg/dl, 134.92 mg/dl, 143.41 mg/dl,

172.71 mg/dl, and 148.23 mg/dl for patients 540, 544, 552, 567, 584,
and 596 respectively the most likely reason that the MCC for hypo-
glycemic events is so low is due to class imbalance within the glucose
levels. Since most glucose levels are generally high for the patients,
the model overfits for higher glucose levels, and as such struggles to
predict hypoglycemic events. A potential solution could be to upsam-
ple by ”jittering” the smaller imbalanced class (adding small random
perturbations to the existing smaller imbalanced class in order to cre-
ate for data). See [7] and [10] for such an example.

6.4 Feature Relevancy

As stated earlier, one important benefit of Lasso regression is the
ability to identify features important to glucose prediction. As seen
in Table 4: glucose level, bolus, meal, and exercise are significant in
predicting glucose levels (finger sticks are potentially significant, but
they may be linearly dependent on glucose level). The Weights col-
umn is the sum of all 6 people’s weight scores. The problem with the
weights is the huge variability in the number of recorded data points.
In an attempt to normalize the data, we created an Adjusted Weight.
This is made by dividing the weights of each person by the number
of recorded values for each person and summing all 6 of them to-
gether. This was multiplied by 1000 so the values would be about
the same magnitude as the original weights. The lack of enough data
for exercise is demonstrated here. Only 3 of the 6 people had values
for exercise and one of them had only 4 values. This person in the
Adjusted Weights had a score of 32 while the other two were about
1.5 and 2. More data points for these other categories would reduce
the variance and more clearly identify what features are important.

7 Conclusion

We found that Lasso regression performed best out of the algo-
rithms used for both the 30-minute prediction horizon and the 60-
minute prediction horizon. While the results were adequate for the
30-minute prediction horizon, these quickly degraded for the 60-
minute horizon. We found in general that the regression algorithms
perform fairly well for predicting hyperglycemic events, but strug-
gle for predicting hypoglycemic events. It is our opinion that further
research should be done with regards to improving the prediction
horizon for blood glucose prediction. Specifically, further research
should be investigated into the effects of the volume of data on the
prediction horizon. If an artificial pancreas is to become a reality,
stable prediction horizons beyond 30-minutes are needed.

Furthermore, analyzing the coefficients of the Lasso model shows
that glucose level, bolus, meal, and exercise are the most relevant
features in producing forecasts for blood glucose levels. However,
problems with sparsity among certain features reduce the relevancy
of these features. As such, future research should include handling
sparse features in a more robust way.

8 Additional Material

For those wishing to compare or reproduce work found in this
paper, the related code can be found at https://github.
com/marshallb95/BloodGlucosePrediction/blob/
master/Master.ipynb.
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Table 3. Clarke Error Grid percentages

30 min 60 min
z }| { z }| {

Zone 540 584 540 584

Zones A-B 0.96 0.99 0.935 0.97
Zone C 0.0 0.00 0.001 0.01
Zones D-E 0.04 0.01 0.064 0.02

Table 4. Lasso Significant Values Totals

Feature Number Recorded Weights Adjusted Weights

glucose level 77563 15.4654 1.2062
basis gsr 39542 0.2272 0.03560
skin temperature 39540 0.2418 0.0295
acceleration 39542 0 0
finger stick 1669 0.54 2.4504
basal 428 0 0
temp basal 208 0 0
bolus 1994 9.4944 23.4776
meal 957 3.5682 31.6974
stressors 2 0 0
exercise 65 0.2312 36.2337

Figure 1. Patient 540 prediction results for 30 min PH with Lasso regres-
sion



Figure 2. Patient 540 Clarke Error Grid for 30 min PH with Lasso regres-
sion

Figure 3. Patient 584 Clarke Error Grid for 30 min PH with Lasso regres-
sion



Uncertainty Quantification in Chest X-Ray Image
Classification using Bayesian Deep Neural Networks

Yumin Liu1 and Claire Zhao2 and Jonathan Rubin3

Abstract. Deep neural networks (DNNs) have proven their effec-
tiveness on numerous tasks. However, research into the reliability of
DNNs falls behind their successful applications and remains to be
further investigated. In addition to prediction, it is also important to
evaluate how confident a DNN is about its predictions, especially
when those predictions are being used within medical applications.
In this paper, we quantify the uncertainty of DNNs for the task of
Chest X-Ray (CXR) image classification. We investigate uncertain-
ties of several commonly used DNN architectures including ResNet,
ResNeXt, DenseNet and SENet. We then propose an uncertainty-
based evaluation strategy that retains subsets of held-out test data
ordered via uncertainty quantification. We analyze the impact of this
strategy on the classifier performance. In addition, we also examine
the impact of setting uncertainty thresholds on the performance. Re-
sults show that utilizing uncertainty information may improve DNN
performance for some metrics and observations.

1 INTRODUCTION
Neural networks have been very successful in many fields such as
natural language processing [41, 23], computer vision [18, 8], speech
recognition [15, 5], machine translation [6], control system [36], auto
driving [4] and so on. However, there is much less research avail-
able on how reliable neural network predictions are. A common crit-
icism of neural networks is that they are a black box that can per-
form very well for many tasks, yet lacking interpretability. On the
other hand, it is very important to ensure the reliability of a system
involved in high risk fields, including stock-market analysis, self-
driving cars and medical imaging [28]. As the rapid development of
machine learning and artificial intelligence especially deep learning,
they are getting more and more applications in health areas includ-
ing disease diagnosis [9, 10], drug discovery [25, 30] and medical
imaging [7, 16, 33]. Rather than just being told a final result by an
machine learning algorithm, shareholders (doctors, physicians, radi-
ologists, etc) would like to know how “confident” a neural network
model is, so that they can take different actions according to differ-
ent confidence levels. For example, in a medical image classification
scenario, a neural network model is applied to detect whether a pa-
tient has a certain type of lung pathology by classifying his/her chest
X-ray images. An ideal situation would be that physicians can trust
the result of the neural network, if it is highly confident (low uncer-
tainty) about its prediction. On the contrary, if the neural network
gives a prediction with low confidence (or high uncertainty), then
the prediction could not be trusted and the patient’s scan should be

1 Northeastern University, USA, email: yuminliu@ece.neu.edu
2 Philips Research North America, USA, email: claire.zhao@philips.com
3 Philips Research North America, USA, email: jonathan.rubin@philips.com

further examined by a radiologist. Applying this mechanism is ben-
eficial since there are lots of X-ray images everyday but there are
limited radiologist resources. It can help prioritize X-ray images for
radiologists to examine, require more attention to low confidence in-
stances and support treatment recommendations for highly confident
instances.

Neural network-based deep learning algorithms are also getting
popular for medical X-ray image processing [27, 1, 35]. It is neces-
sary to examine the uncertainty of neural network models in medical
X-ray image processing. The confidence of a prediction by a machine
learning method can be measured by the uncertainty of the method
outputs. A typical way to estimate uncertainty is through Bayesian
learning [2], which regards the parameters of methods as random
variables and attempts to get the posterior distribution of the parame-
ters during training while marginalizing out the parameters to get the
distribution of the prediction during inference. Bayesian learning is
well developed in traditional non-neural network machine learning
framework [2]

2 RELATED WORKS

In recent years Bayesian learning and estimation of prediction un-
certainty have gained more and more attention in neural networks
context due to the wide application of deep neural networks in many
areas [11, 3, 12, 13, 22, 14, 32, 24, 40, 26, 12, 31, 32].

The authors in [3] introduced a method called “Bayes By Back-
prop” to learn the posterior distribution on the weights of neural net-
works and get weight uncertainty. Essentially this method assumes
the weights come from a multivariate Gaussian distribution and up-
dates the mean and covariance of the Gaussian instead of the weight
samples during training. During inference the network weights are
drawn from the learned distribution. This method is mathematically
grounded, backpropagation-compatible and can learn the distribution
of network weights directly, but it cannot utilize pre-trained model
and has to build the corresponding model for every neural network
architecture. [13] reformulated dropout in neural networks as approx-
imate Bayesian inference in deep Gaussian processes and thus can
estimate uncertainty in neural networks with dropout layers. This
method requires dropout layers applied before every weight layer.
During inference, the dropout layers with random 0-1s drawn from
Bernoulli distribution mask out some weights and only use a subset
of the weights learned during training phase to make a prediction. In
[22], the authors further proposed that there are two types of uncer-
tainties and they showed the benefits of explicitly formulating these
two uncertainties separately. The first type is called aleatoric uncer-
tainty (or data uncertainty), which is due to the noise in the data and
cannot be eliminated, while the other type is called epistemic uncer-



tainty (or model uncertainty), which accounts for uncertainty in the
model and can be eliminated given enough data. The network archi-
tectures have to be modified to add extra outputs in order to model
these uncertainties. [24] adopted this typing of uncertainty, but mod-
ified the formulation of aleatoric and epistemic uncertainty to avoid
the requirement of extra outputs.

[26] proposed a method called “Stochastic Weight Averaging
Gaussian (SWAG)” to approximate the posterior distribution over the
weights of neural networks as a Gaussian distribution by utilizing in-
formation in Stochastic Gradient Descent (SGD). This method has
an advantage in that it can be applied to almost all existing neural
networks without modifying their original architectures and can di-
rectly leverage pre-trained models. [34] also decomposed predictive
uncertainty in deep learning into two components and modeled them
separately. They shown that quantifying the uncertainty can help to
improve the predictive performance in medical image super resolu-
tion. [39] investigated the relationship between uncertain labels in
CheXpert [21] and Chest X-ray14 [37] data sets and the estimated
uncertainty for corresponding instances using Bayesian neural net-
work and suggested that utilizing uncertain labels helped prevent
over-confident for ambiguous instances.

Despite the above works in Bayesian deep neural network learn-
ing and uncertainty quantification, there are few works on evaluat-
ing the effects of uncertainty-based evaluation strategies for medical
image classification. To the best of our knowledge, we are the first
to apply uncertainty quantification strategies for chest X-ray image
classification using deep neural networks and evaluate their impacts
on performances. The main contributions of this paper are:

• We apply uncertainty quantification to five deep neural network
models for chest X-ray image classification and analyze their per-
formances.

• We investigate the impact that uncertainty information has on clas-
sification task performance by evaluating subsets of held-out test
data ordered via uncertainty quantification.

3 METHOD
In this section, we will introduce the basic ideas of Bayesian Neural
Networks and one of its approximations – SWAG [26], which is used
in this paper. We also describe the uncertainty quantification method
used in this paper.

3.1 Bayesian Neural Network
In the ordinary deterministic neural networks, we get point estima-
tion of the network weights w which are regarded as fixed values
and will not be changed after training. During inference, for each in-
put xi we get one deterministic prediction p(yi|xi) = p(yi|xi,w)
without getting the uncertainty information.

In the Bayesian neural network settings, in addition to the tar-
get prediction, we also want to get the uncertainty for the predic-
tion. To do so we regard the neural network weights as random vari-
ables that subject to some form of distribution and try to estimate
the posterior distribution of the network weights given the training
data during training. We then integrated out the weights and get the
distribution over the prediction during inference. From the predic-
tion distribution we can further calculate the prediction output and
corresponding uncertainty. More specifically, let D = {(X,Y )}
and w be the training data and weights of a neural network, respec-
tively. The ordinary deterministic neural network methods try to get a

point estimate of w by either maximum likelihood estimator (MLE)
w⇤ = argmaxw p(D|w) or maximum a posterior (MAP): w⇤ =

argmaxw p(w|D) where p(w|D) = p(w)p(D|w)
p(D) / p(w)p(D|w).

The w⇤ are fixed after training and used for inference for the new
data. In Bayesian learning, we estimate the posterior distribution
p(w|D) during training and marginalize out w during the inference
to get a probability distribution of the prediction.

p(y|x, D) = Ew⇠p(w|D)[p(y|x,w)] =
R
p(y|x,w)p(w|D)dw (1)

After getting the p(y|x), we can calculate the statistical moments of
the predicted variable and regard the first and second moment (i.e.,
mean and variance) as the prediction and uncertainty, respectively.

However, in practice there are two major difficulties. The first one
is that p(D) =

R
p(w)p(D|w)dw is usually intractable and thus

we cannot get exact p(w|D). The second lies in that Eq. (1) is also
usually intractable for neural networks. One common approach to
deal with the first difficulty is to use a simpler form of distribution
q(w|✓) with hyperparameters ✓ to approximate p(w|D) by mini-
mizing the Kullback-Leibler (KL) divergence between q(w|✓) and
p(w|D). This turns the problem into an easier optimization prob-
lem:

✓⇤ = argmin
✓

KL[q(w|✓)||p(w|D)]

= argmin
✓

Z
q(w|✓)log q(w|✓)

p(w|D)
dw

(2)

For the second difficulty, the usual approach is to use sampling to
estimate Eq. (1), and it becomes

p(y|x) ⇡ Ew⇠q(w|✓⇤)[p(y|x,w)] ⇡ 1
T

P
T

i=1 p(y|x,w(i)) (3)

where w(i) ⇠ q(w|✓⇤).
People had proposed different methods to approximate the poste-

rior p(w|✓) or to get the samples of w [26, 3, 12, 13].

3.2 Stochastic Weight Averaging Gaussian (SWAG)
The basic idea of SWAG [26] is to regard the weights of the neu-
ral networks as random variables and get their statistical moments
through training with SGD. Then use these moments to fit a multi-
variate Gaussian to get the posterior distribution of the weights. Af-
ter the original training process in which we get the optimal weights,
we continue to train the model using the same training data with
SGD and get T samples of the weights w1, w2,· · · ,wt,· · · ,wT . The
mean of those samples is w = 1

T

P
T

t=1 wt. The mean of the square
is w2 = 1

T

P
T

t=1 w
2
t and we define a diagonal matrix ⌃diag =

diag(w2�w2) and a deviation matrix R = [R1, · · · ,Rt, · · · ,RT ]
whose columns Rt = wt � wt, where wt is the running av-
erage of the first t weights samples wt = 1

t

P
t

j=1 wj . In the
original paper, the authors used the last K columns of R to get
the low rank approximation of R. The K-rank approximation is
bR = [RT�K+1, · · · ,RT ]. Then the mean and covariance matrix

for the fitted Gaussian are given by:

wSWA = w (4)

⌃SWA =
1
2
⌃diag +

1
2(K � 1)

bR bRT (5)

During inference, for each input (image) xi, sample the weights
from the Gaussian ws ⇠ N(wSWA,⌃SWA) then update the batch
norm statistics by performing one epoch of forward pass, and then



the sample prediction is given by p(ŷis|xi) = p(yi|xi,ws). Repeat
the precedure for S times and we get S predictions ŷi1, ŷi2, · · · , ŷis,
· · · , ŷiS for the same input xi. By using these S predictions we can
get the final prediction and uncertainty. For regression problem, the
final prediction will be ŷi = 1

S

P
S

s=1 ŷis.

3.3 Uncertainty Quantification
Some methods had been proposed to quantify the uncertainty in clas-
sification [24, 22]. Here we adopt the method proposed by [24] since
it does not require extra output and does not need to modify the net-
work architectures.

For a classification problem, suppose there are C classes, denote
ps , [ps1, ps2, · · · , psc] = p(y|x, ✓s), s 2 {1, 2, · · · , S} as the
softmax (or sigmoid in binary case if C = 2) output of the neu-
ral network for a same repeated input x for S times, then the pre-
dicted “probability” is the average of those S sample outputs p =
1
S

P
S

s=1 ps The predicted class label index is ŷ = argmax
c
p. The

aleatoric uncertainty Ua and the epistemic uncertainty Ue are Ua =
1
S

P
S

s=1[diag(ps)�psp
T

s ], Ue = 1
S

P
S

s=1(ps�p)(ps�p)T The
total uncertainty is Utotal = Ua + Ue. For binary classification, the
sigmoid output is a scalar and the uncertainty equations are reduced
to

Ua =
1
S

SX

s=1

ps(1� ps) (6)

Ue =
1
S

SX

s=1

(ps � p)2 (7)

where p = 1
S

P
S

s=1 ps and ps = p(y = 1|x, ✓s) = 1 � p(y =
0|x, ✓s). The predicted label is:

ŷ =

(
1 p � 0.5

0 p < 0.5
(8)

In this way, we can get uncertainties for all the instances.

3.4 Transfer Learning
Transfer learning is a widely used technique to help improve perfor-
mance for deep neural networks in image classification. Here we can
also benefit from transfer learning by loading pre-trained neural net-
work models trained by ImageNet (http://image-net.org)
dataset. The SWAG method has one advantageous characteristic that
it does not require to modify any architecture of the original neu-
ral networks and therefore we can fully utilize pre-trained models
trained by ImageNet dataset to speed up training process and get
better predictions. In the initialization stage, we download the pre-
trained model parameters and use them to initialize our models to be
trained.

3.5 Procedure
Basically we follow the method in [26] to approximate the Bayesian
neural network and the formulas in [24] to quantify uncertainty of
the models. The overall algorithm for SWAG and uncertainty quan-
tification is shown in Algorithm 1. We initialize the model with cor-
responding pre-trained model, and then fine-tune it by training using
chest X-ray images and observation labels. After that we perform
SWAG algorithm by continuing training using Stochastic Gradient
Descent for T epochs and calculate statistics w, w2, ⌃diag and bR,

Algorithm 1 Uncertainty Quantification
1: Input:

D = {(X,Y )} / Xi: training / evaluating chest X-ray images
and corresponding observation labels

2: Initialization:
load pre-trained neural network (NN) models by ImageNet

3: Training:
Fine-tune NN models using cheXpert dataset

4: Perform SWAG:
Continue training with SGD

i) train NN models using SGD for some epochs with D
ii) save statistics of the weights for those epochs
iii) calculate wSWA and ⌃SWA using Eq. 4 and 5
vi) fit a Gaussian using wSWA as mean and ⌃SWA as

covariance
Prediction

for s from 1 to S
draw weights ws ⇠ N(wSWA|⌃SWA)
update batch norm statistics using D
p(yis|Xi) = p(yis|Xi,ws)

end for
5: Calculate Outputs:

p(yi|Xi) = 1
S

P
S

s=1 p(yis|Xi)
Calculate ŷi, Ua and Ue using Eq. (8), (6) and (7).
Utotal = Ua + Ue

6: Return:
ŷi, Ua, Ue, Utotal

from which we can get wSWA and ⌃SWA using Eq. 4 and 5. Then
we fit a multivariate Gaussian using wSWA as mean and ⌃SWA as
covariance and get an approximated distribution for the neural net-
work weights. When doing a prediction, an input chest X-ray image
is repeatedly fed into the network for S times, each time with a new
set of weights sampled from the Gaussian distribution. The S out-
put probabilities are used to calculate the final predicted label ŷi and
uncertainty Utotal = Ua + Ue. It is worthwhile to note that, after
drawing sample weights the network batch norm statistics need to
be updated for the models that use batch normalization. It can be
achieved by running one epoch with partial or full training set D.
More detailed justification for the necessity was given in the original
paper [26].

4 DATASET

We perform experiments using the CheXpert data set [21]. CheXpert
is a large chest X-ray dataset released by researchers at Stanford Uni-
versity. This dataset consists of 224,316 chest radiographs of 65,240
patients. Each data instance contains a chest X-ray image and a vec-
tor label describing the presence of 14 observations (pathologies) as
positive, negative, or uncertain. The labels were extracted from ra-
diology reports using natural language processing approaches. For
our experiments we focus on 5 observations, namely Cardiomegaly,
Edema, Atelectasis, Consolidation and Pleural Effusion. As [21] had
pointed out, these 5 observations were selected based on their clinical
importance and prevalence in this dataset. In their experiment they
also used these 5 observations to evaluate the labeling approaches. A
sample image for each observation is shown in Figure 1.

The original dataset consists of training set and validation set and
we do not have access to test set. The labels for the training set were
generated by automated rule-based labeler which extract informa-



Figure 1: Sample image for each observation. From left to right: no finding (all negative), cardiomegaly, edema, consolidation, atelectasis and
pleural effusion

tion from radiology reports. This was done by the Stanford research
group who released the dataset. There are three possible values for
the label of an instance for a given observation, i.e., 1, 0 and �1. 1
means the observation is positive (or exists), 0 means negative (or
not exists), and �1 means not certain about whether the observation
exists. The labels for the validation set were determined by the ma-
jority vote from three board-certified radiologists and only contains
positive (1) or negative (0) values. The original paper [21] investi-
gated several different ways to deal with the uncertain labels (�1),
such as regarding them as positive (1), negative (0), the same with
the majority class, or a separate class. They found out that for differ-
ent observations, the optimal ways to deal with the uncertain labels
are different, and they gave the replacement for 5 observations men-
tioned above. Based on the results from [21] and for simplicity, we
replace the uncertain labels with 0 or 1 for different observations.

Specifically, the uncertain labels of cardiomegaly, consolidation
and pleural effusion are replaced with 0, while edema and atelecta-
sis with 1. Therefore the problem becomes a multi-label binary im-
age classification problem. The predicted result is a five dimensional
vector with element value being 1 or 0, where 1 means that the net-
work predicts existence for the corresponding observation while 0
means the network predicts not existence of the corresponding obser-
vation. We follow the official training set / validation set split given
by the data set provider. After removing invalid instances, we get a
total number of 223,414 instances for training and 234 instances for
validation. We first initialize the neural network’s parameters with
corresponding downloaded pre-trained model parameters, and then
train the neural network using the training set and test their perfor-
mance on the validation set. We will use the original training set as
the training set and original validation set as the evaluation set in our
experiments.

In Figure 2 we show the patient statistics of the 5 observations af-
ter replacing the uncertain labels in the training set. The prevalence
is the ratio of the number of positive instances over the total num-
ber of instances. From the figure we can see that all five observations
are imbalance as the prevalence being under 50%. Besides, there is
a gap in the prevalence for the training and evaluation sets in all ob-
servations, which will probably affect the performance of the neural
network models.

5 EXPERIMENT
In this section, we perform experiments and present the investiga-
tion results of uncertainty quantification and strategy on five dif-
ferent neural network models using PyTorch implementation. These
neural networks are DenseNet [20] with 121 layers (denote as
DenseNet121), DenseNet with 201 layers (denote as DenseNet201),
ResNet [17] with 152 layers (denote as ResNet152), ResNeXt [38]
with 101 layers (denote as ResNeXt101) and Squeeze-and-Excitation
network [19] with 154 layers (denote as SENet154). ResNet uses

(a) Prevalence of observations (b) Gender proportion

(c) Training set age histogram (d) Validation set age histogram

Figure 2: Patient statistics

skip connections to mitigrate the gradient vanishment problem and
was the winner of ILSVRC 2015 [29] and COCO 2015 (http://
cocodataset.org) competition. ResNeXt is a variant of ResNet
and won the 2nd place in ILSVRC 2016 classification task. DenseNet
further utilizes the concept of skip connections by connecting previ-
ous layer output to all its subsequent layers and forming “dense” skip
connections. DenseNet further alleviates vanishing gradient prob-
lem, reduce number of parameters and reuses intermediate features,
and is widely used since it was proposed. SENet uses squeeze-and-
excitation block to model image channel interdependencies and won
the ILSVRC 2017 competition for classification task.

All networks are trained as binary classifiers for multi-label clas-
sification instead of training separate models for each class.

The pipeline of the experiment is shown in Figure 4. We use
PyTorch implementation. The neural network models and pre-
trained parameters are from torchvision (except SENet154 which
is from pretrainedmodels, https://github.com/Cadene/
pretrained-models.pytorch).

In our experiment we set the number of sample weights T = 5,
the number of columns of the deviation matrix K = 10 and the
number of repeated prediction samples S = 10. During training,
we use Adam optimizer with weight decay regularizer and ReduceL-
ROnPlateau learning rate scheduler. The the initial learning rate is
1⇥10�5 and weight decay coefficient is 0.005. The maximum num-
ber of fine-tuning epoch is 50 epochs. The original chest X-ray im-
ages are resized and randomly cropped to 256 ⇥ 256 (except for
SENet154 which has a fixed input size 224 ⇥ 224). We stop fine-



Figure 3: Comparison of performance between original deterministic network and Bayesian neural network with uncertainty strategy. The
neural network is DenseNet with 201 layers.

Figure 4: Pipeline of the experiment

tuning the model when the AUC (explained below) does not increase
for consecutive 10 epochs and save the model with the best AUC as
the optimal trained model.

We use four metrics to evaluate the network classification perfor-
mance: Area under curve (AUC), Sensitivity, Specifity and Precision.
Those metrics are widely used for machine learning and medicine
community. The AUC is often used to measure the quality of a clas-
sifier and is defined as the area under the Receiver Operating Charac-
teristic (ROC) curve which plots the sensitivity against the false pos-
itive rate. The sensitivity (or true positive rate or recall) is defined as
the ratio of the number of correctly predicted positive instances over
the number of total positive instances. The specificity is defined as
the ratio of the number of correctly predicted negative instances over
the total number of negative instances. And the precision is defined
as the ratio of the number of correctly predicted positive instances
over the number of instances that are predicted as positive.

5.1 Without Strategy

First we compare the AUC of the original ordinary deterministic neu-
ral networks with the AUC corresponding neural networks after per-
forming SWAG but before applying any uncertainty strategies. The
results are shown in Table 1. The “Average” column is the average
over all 5 observations. The bold font indicates better performance.
For edema and pleural effusion, the original neural network performs

better than SWAG for most of the networks. For cardimegaly, con-
solidation and atelectasis, the performances are mixed. This maybe
because edema and pleural effusion are harder to detect and more
sensitive to network weights perturbation. On the whole the SWAG
algorithm does not outperform the original neural network. These
might be accountable because SWAG uses a Gaussian to approxi-
mate the distribution over the optimal weights and then draws sam-
ple weights from the approximated Gaussian distribution, and may
deviate from the optimal weights if the approximation is inaccurate.
Therefore we need to adopt some strategy to prevent the performance
from deterioration. The benefit lies in that we can get the uncertainty
estimation for each prediction while keeping similar or even better
prediction results.

Table 1: Original AUC vs SWAG AUC

Networks
AUC Average Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion

Original SWAG Original SWAG Original SWAG Original SWAG Original SWAG Original SWAG

Resnet152 0.8831 0.8786 0.8376 0.8149 0.9123 0.8713 0.8927 0.9234 0.8543 0.8537 0.9184 0.9298
ResNext101 0.8807 0.8726 0.8013 0.8339 0.9212 0.8748 0.9250 0.9311 0.8246 0.8162 0.9314 0.9071

SEnet154 0.8794 0.8695 0.8203 0.8040 0.9195 0.8702 0.9216 0.9187 0.8056 0.8553 0.9301 0.8992
Densenet121 0.8842 0.8942 0.8436 0.8752 0.9264 0.8940 0.9139 0.9512 0.8153 0.8489 0.9220 0.9016
Densenet201 0.8793 0.8356 0.8259 0.8397 0.9165 0.8796 0.9313 0.7739 0.7936 0.7714 0.9294 0.9132

5.2 With Coverage Strategy
Next we utilize the uncertainty quantification information to deter-
mine if the performances can be improved. One strategy is to sort
instances according to uncertainty in an ascending order, and then
take those instances with less uncertainty into consideration and dis-
card the rest. In clinical practice, the discarded instances could be
flagged for further evaluation by a physician.

Ideally we would expect a decreasing trend for the metrics when
data coverage increase as shown in Figure 6. The horizontal axis
“Data coverage” is the percentage of instances being considered. For
example, a data coverage of 20% means that only the top twenty per-
cent of the least uncertain (or the most confident) instances are taken
into consideration and the rest are discarded.

Figure 3 shows the comparison of performances with regard to the
foure metrics (AUC, sensitivity, specificity and precision) between



(a) Cardiomegaly (b) Edema (c) Consolidation (d) Atelectasis (e) Pleural effusion

Figure 5: Estimated total uncertainty (aleatoric + epistemic) histogram for each observation

Figure 6: Expected ideal performance. The metric decreases as data
coverage increases.

the original deterministic networks and Bayesian neural networks
with uncertainty strategy. The solid lines are the Bayesian neural net-
work with uncertainty strategy, while the dashed lines are the origi-
nal ordinary deterministic networks without any uncertainty strategy.
Different colors represent different observations.

From Figure 3 we can see that for edema and pleural effusion, the
AUC decreases as the coverage increases, and are above the corre-
sponding original AUC until around 45% and 90% coverage, respec-
tively. This means that applying the uncertainty strategy can improve
AUC for these two observations. The highest AUC gain can be 8%
and 6% for edema and pleural effusion, respectively. We also observe
similar trend in sensitivity, specificity and precision for both edema
and pleural effusion. Three observations (cardiomegaly, atelectasis
and consolidation) have low sensitivity as most of the predictions are
negative. On the contrary the specificity is high.

The highest gains for applying the uncertainty strategy are shown
in the Table 2. The effect of the uncertainty strategy over the five ob-

Table 2: Perfomance gain for edema and pleural effusion. The values
are the absolute and relative gains

Gain (% Gain) AUC Sensitivity Specificity Precision

Edema 0.0835(9.11%) 0.3778(60.71%) 0.0476(5.00%) 0.2432(32.14%)
Pleural effusion 0.0706(7.60%) 0.2687(36.73%) 0.0778(8.44%) 0.2097(26.53%)

servations with the model DenseNet201 can be summarized as in the
Table 3. The symbols

p
, ⇥, � and � represents helpful, not helpful,

mixed behavior and missing value, respectively. For edema and pleu-
ral effusion, applying uncertainty strategy is beneficial for improving
all four metrics. However, for other observations, it does not show
benefits or only limited benefits for some metrics. The reason why
it show varied behavior may be interesting and needs further inves-
tigation. Similarly, we summarize the effect of applying uncertainty
strategy for different neural network architectures and the results are
shown in Table 4 to Table 7. From the tables we can see that applying

Table 3: Effect of uncertainty strategy for DenseNet201.

Densenet201 AUC Sens. Spec. Prec.

Cardiomegaly ⇥ ⇥
p

�
Edema

p p p p

Consolidation ⇥ ⇥ � -
Atelectasis � ⇥ � ⇥

Pleural effusion
p p p p

p
: helpful; ⇥: not helpful; �: mixed behavior; -: missing value

uncertainty strategy will help to improve some performance metrics
for all four neural network models.

Table 4: Effect of uncertainty strategy for different networks

ResNet152 AUC Sens. Spec. Prec.

Cardiomegaly
p

⇥ - -
Edema ⇥ ⇥

p p

Consolidation ⇥ ⇥ - -
Atelectasis ⇥ ⇥

p p

Pleural effusion
p p p p

p
: helpful; ⇥: not helpful; �: mixed behavior; -: missing value

Table 5: Effect of uncertainty strategy for different networks

SENet154 AUC Sens. Spec. Prec.

Cardiomegaly
p

- - -
Edema ⇥ ⇥

p
⇥

Consolidation
p

- - -
Atelectasis � - ⇥ -

Pleural effusion
p

⇥
p p

p
: helpful; ⇥: not helpful; �: mixed behavior; -: missing value

Despite that for some observations (e.g., pleural effusion), several
metrics performance benefit a lot from applying the uncertainty strat-
egy, we should also notice that the strategy does not help to improve
performance for some other observations with regard to these met-
rics, and in some cases even degrade the performance. The reasons
behind might be varied and needs more investigation. For example,
this may be that the neural network weight distribution approximated
by the SWAG algorithm does not capture the true distribution, or
even the uncertainty quantification formulas are inappropriate.

5.3 With Absolute Threshold Strategy
We also plot the total uncertainty distribution for each observation, as
shown in Figure 5. From the figure we can see that for cardiomegaly,
the estimated uncertainty tends to be smaller, while for edema, at-
electasis and plueral effusion, the proportion of larger estimated un-
certainty is higher. Consolidation has a relatively even distribution
for estimated uncertainty. This suggest that edema, atelectasis and



Figure 7: Comparison of performance between original deterministic network and Bayesian neural network with uncertainty threshold.

Table 6: Effect of uncertainty strategy for different networks

ResNext101 AUC Sens. Spec. Prec.

Cardiomegaly
p

⇥ ⇥ ⇥
Edema ⇥ ⇥

p p

Consolidation
p

⇥
p

-
Atelectasis �

p
⇥ ⇥

Pleural effusion
p p p p

p
: helpful; ⇥: not helpful; �: mixed behavior; -: missing value

Table 7: Effect of uncertainty strategy for different networks

DenseNet121 AUC Sens. Spec. Prec.

Cardiomegaly ⇥ ⇥ - �
Edema ⇥ ⇥

p p

Consolidation
p

- - -
Atelectasis

p
�

p p

Pleural effusion
p p p p

p
: helpful; ⇥: not helpful; �: mixed behavior; -: missing value

pleural effusion are more prone to be affected by setting an uncer-
tainty threshold. Combining this finding with the results in Table
2, we set thresholds for both edema and pleural effusion to check
the influence on metric performance. We only consider the instances
whose estimated uncertainty is smaller than the threshold to compute
the performance metrics. We vary the threshold from 0.2 to 0.24 by a
step of 0.01 and the results are shown in Figure 7. The black dashed
line is the average metric values of the original deterministic neural
network, while the solid color thin lines are metric values for each
observation, and the thick brown line is the average metric values
of all five observation after applying threshold only to edema and
pleural effusion. Comparing the thick brown line with the dash black
line, we can see that the average specificity and precision have been
improved while the average AUC and sensitivity roughly keep the
same. This means that applying uncertainty threshold to edema and
pleural effusion is beneficial.

6 CONCLUSION

In this paper we investigate uncertainty quantification in medical im-
age classification using Bayesian deep neural networks. We train five
different deep neural network models on the CheXpert X-ray image
data for five clinical observations and quantify the model uncertainty.
Then we analyze the performance of the network for situations with
and without applying uncertainty strategy. The results show that the
uncertainty quantification and strategy improve several performance
metrics for some observations. This suggests that uncertainty quan-
tification is helpful in medical image classification using neural net-
works. However, the results also show that in some cases the strategy
is not helpful, or can even deteriorate the performance. Further anal-
ysis may be needed to examine this phenomenon.
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⇤Università degli Studi di Brescia, †ASST Spedali Civili di Brescia

{alfonso.gerevini, roberto.maroldi, ivan.serina, m.olivato, l.putelli002}@unibs.it

Abstract. AI and Machine Learning can offer powerful tools to
help in the fight against Covid-19. In this paper we present a study
and a concrete tool based on machine learning to predict the progno-
sis of hospitalised patients with Covid-19. In particular we address
the task of predicting the risk of death of a patient at different times
of the hospitalisation, on the base of some demographic informa-
tion, chest X-ray scores and several laboratory findings. Our machine
learning models use ensembles of decision trees trained and tested
using data from more than 2000 patients. An experimental evalua-
tion of the models shows good performance in solving the addressed
task.

1 Introduction
The fight against Covid-19 is a new important challenge for the world
that AI and machine learning can help facing at various levels [15,
28, 29]. In March 2020, at the time of the coronavirus emergency
in Italy, we started working in strict collaboration with one of the
hospitals that had more Covid-19 patients in Italy, Spedali Civili di
Brescia, to help predicting the prognosis of hospitalised patients. Our
work was focused on the task of predicting the risk of death of a
patient at different times of the hospitalisation. As discussed in [28],
predicting if a patient is at risk of decease or adverse events can help
the hospital, for instance, to organize the allocation of limited health
resources in a more efficient way.

Our predictive models are built on the base of demographic in-
formation (sex and age), the values of ten laboratory tests and the
chest X-ray score(s), which is an innovative measure developed and
used at Spedali Civili di Brescia to assess the severity of the pul-
monary conditions [3]. Other important information, such us the pa-
tient comorbidities or the time and duration of the symptoms related
to Covid-19, were not used because not available to us.

Using raw data from more than 2000 patients, we built some data
sets describing the “clinical history” of each patient during the hos-
pitalisation. In particular, each dataset contains a “snapshot” of the
infection conditions of every considered patient at a certain day after
the start of the hospitalisation. For each dataset, we built a different
predictor, allowing to make progressive predictions over time that
take into account the evolution of the disease severity in a patient,
which helps the formulation of a personalized prediction of the prog-
nosis. A change of the predicted risk over time for a patient could also
hint a link between specific events or treatments and the increase or
decrease of the risk for the patient. As snapshot times for a patient, in
our experiments we considered the 2nd, 4th, 6th, 8th and 10th hospi-
talization day, and the day before the end of the hospitalisation.

Our datasets were engineered to cope with a number of practical
issues, including missing values and feature values categorization,
and to add some helpful artificial features. We also addressed the
“concept drift” issue [6, 23], since we observed that the risk of death
was clearly sensitive to the time period when the patient was hos-
pitalised; the risk was significantly higher during the earlier period
of the emergency (March 2020), when in northern Italy the spread of
the virus infection was very high and many people were hospitalised.
Moreover, given the very sensitive nature of our task, we introduced
a threshold to discharge the model predictions that have a low esti-
mated probability. Such a threshold is a parameter that is automati-
cally calculated and optimised during the training phase.

We considered several machine learning algorithms. A first experi-
mental comparison of their performance on our data sets showed that
methods based on forests of trees have more promising performance,
and so we decided to focus on this approach. The obtained predic-
tion models have good performance over a randomly chosen test set
of 200 patients for each considered period, in terms of both F2 and
ROC-AUC scores. In particular, overall the system makes very few
errors in predicting patient survival, i.e., the specificity of the predic-
tion is very high.

In the following, after discussing related work, we describe our
data sets, we present our prediction models and their experimental
evaluation, and finally we give conclusions and mention future work.

2 Related work
Artificial Intelligence and Machine Learning techniques can be used
for tackling the Covid-19 pandemic in different aspects. However,
given that the pandemic has started only few months ago, most works
are still preliminary, and there isn’t a clear description of the devel-
oped techniques and of their results (often only pre-printed and not
properly peer-reviewed).

A preliminary study is presented in [15]. Given a set of only 53
patients with mild symptoms and their lab tests, comorbidities and
treatment, the authors train several machine learning models (Lo-
gistic Regression, Decision Trees, Random Forests, Support Vector
Machines, KNN) to predict if a patient will be subject to more sever
symptoms, obtaining a prediction accuracy score of up to 0.8 using
10-fold cross validation. The generalizability and strength of these
results are questionable, given the very small set of considered pa-
tients.

Another example is the pre-printed work by Li Yan et al. [29] that
uses lab tests for predicting the mortality risk; the proposed model
is a very simple decision tree based on the three most important fea-



tures. While the performance seems promising, the test set used for
evaluation was very small (29 patients).

Various AI and machine learning techniques have been developed
for prognosis and disease progression prediction [7] in the context of
diseases different from Covid-19 [20, 21, 22]. In particular, in the last
few years, several works about predicting mortality risk or adverse
events and on the use of AI in critical care [19] have been published.
The survey in [1] presents a review of statistical and ML systems for
predicting the mortality risk, the need of beds in intense care units
[30] or the length of the patient hospitalization. In particular, it is
worth to mention the work by Harutyunyan et al. [11] which uses
LSTM Neural Networks for predicting both the mortality risk and
the length of the hospitalisation.

An overview of the issues and challenges for applying ML in a
critical-care context is available in [16]. This work stresses the need
to deal with corrupted data, like missing values, imprecision, and
errors that can increase the complexity of prediction tasks.

Lab test findings and their variation over time are the main focus
of the work by Hyland et al. [14], which describes a system that
processes these data to generate an alarm predicting that a patient
will have a circulatory failure 2 hours in advance.

3 Available Data Sources
During the Covid-19 outbreak, from February to April 2020 in
hospital Spedali Civili di Brescia more than two thousand patients
were hospitalised. During their hospitalisation, the medical staff per-
formed several exams to them in order to monitor their conditions,
checking the response to some treatments, verifying the need to
transfer a patient to the ICU, etc. We had data from a total of 2015
hospitalised patients; for each of these patients, the specific data that
were made available to us are:

• the age and sex;
• the values and dates of several lab tests (see Table 1);
• the scores (each one from 0 to 18), assigned by the physicians,

assessing the severity of the pulmonary conditions resulting from
the X-ray exams [3];

• the values and dates of the throat-swab exams for Covid-19;
• the final outcome of the hospitalisation at the end of the stay,

which is the classification value of our application (either in-
hospital death, released survivor, or transferred to another hospital
or rehabilitation center).

Table 1 specifies the considered lab tests, their normal range of val-
ues, and their median values in our set of patients. We had no further
information about symptoms, their timing, comorbidities, generic
health conditions or clinical treatment. Moreover, we have no CT im-
ages or text reports associated with the X-ray exams. The available
information about whether a patient was or had been in ICU was not
clear enough to be used. Finally, of course, also the names of the
patient and of the involved medical staff names were not provided.

3.1 Data Quality Issues
When applying machine learning to raw real-world data, there are
some non-trivial practical issues to deal with, such as the quality of
the available data and related aspects, that in biomedical applications
are especially important given the very sensitive domain [12].

In our case, one of such issues is that the length of the hospital-
isation period can sensibly differ from one patient to another (from

Lab test Normal Range Median Value
C-Reactive Protein (PCR)  10 34.3
Lactate dehydrogenase (LDH) [80, 300] 280
Ferritin (Male) [30, 400] 1030
Ferritin (Female) [13, 150] 497
Troponin-T  14 19
White blood cell (WBC) [4, 11] 7.1
D-dimer  250 553
Fibrinogen [180, 430] 442
Lymphocite (over 18 years old patients) [20, 45] 1.0
Neutrophils/Lymphocites [0.8, 3.5] 4.9
Chest XRay-Score (RX) < 7 8

Table 1: Lab tests performed during the hospitalisation. In the second
column, we show the range which is considered clinically normal
for a specific exam. In the third column, we show the median value
extracted considering the lab test findings for our set of 2015 patients.

few days to two months), due to different reasons including the nov-
elty and the characteristics of the disease, its high contagiousness or
the absence of an effective treatment. Therefore, the number of per-
formed lab tests and relative findings significantly varies among the
considered set of patients (from only three to hundreds).

Moreover, the lab tests and X-ray exams are not performed at a
regular frequency due, e.g., to the different kinds and timing of the
relative procedures, the need of different resources (X-Ray machines,
lab equipments, technical staff, etc.), or to the different severity of
the health conditions of the patients. For example, in our data we see
that a patient can be tested for PCR everyday and not be subject to
a Ferritin exam for two weeks. This leads to the need of handling
the issues missing values and outdated values. When we consider a
snapshot of a patient at a certain day, we have a missing value for a
lab test (or X-ray) feature if that test (X-ray) has not been performed.
We have an outdated value for a feature if the corresponding lab test
(X-ray) was performed several days earlier: since in the meanwhile
the disease has progressed, the findings of the lab test could be incon-
sistent with the current conditions of the patient, and so they could
mislead the prediction.

Data quality issues arise especially patients hospitalised in the pe-
riod of the highest emergency, when several hundreds of patients
were in the hospital at the same time.

3.2 Concept Drift
An examination of the data available for our cohort of patients re-
vealed that their prognostic risk is influenced by multiple factors,
such as the number of the patients currently hospitalised and the con-
sequent availability of ICU beds or other resources, the experimen-
tation of new therapies, and the increase of the clinical knowledge.

In machine learning, this change of data distribution is known as
concept drift [6, 23]. A classical method to deal with this problem is
training the algorithm using only a subset of samples, depending on
the data distribution that we are considering [6, 24].

For this reason, we divided the considered set of patients into two
groups: the High Contagion Phase (HCP) group of patients, which
is composed by the patients admitted during the last weeks of Febru-
ary and the first weeks of March (the most critical period of the pan-
demic outbreak in Italy) and the Moderate Contagion Phase (MCP)
group of patients, which is composed by the patients admitted from
the last decade of March to the end of April.

The main differences between these groups of patients are:

1. the mortality rate of the HCP patients is about twice the mortality
rate of the MCP patients;



Figure 1: Length of stay in hospital (left) and weekly death rate histograms for the High Contagion Phase (in blue) and for the Moderate
Contagion Phase (in orange). On the x-axis, for the length of stay we indicate the range of days, for the death rate we indicate the week when
the patient was released. On the y-axis we indicate the percentage of patients.

2. in HCP patients the median value of the hospitalisation period is 8
days, while in MCP patients is 14 days. Further details are given
in Figure 1;

3. for many of the considered lab test, the mortality rate associated
with having values in a particular range significantly changes in
the two groups. For example, in HCP patients the mortality rate
for the patients which had a PCR value 10 times above the normal
range is 40.1%, while in MCP patients it is 21.1%.

These differences clearly indicate that the data in the HCP and
MCP groups represent different target (concept) functions; therefore
predicting mortality during the high infection phase and during the
moderate phase can be considered as two different tasks. If we had
only the patients hospitalised during the high infection phase, using
these data for training an algorithm that predicts the mortality during
the moderate phase would lead to many errors.

In our case, we generated two different systems, one for each of
the two groups of patients. We are currently investigating ways to
automatically select the set of patients for training starting from the
latest ones, and keeping the less recent ones until we find significant
changes in the mortality rate or in the data distribution.

4 Datasets for Training and Testing

The main task of our work is to provide survival/death predictions at
different days of the patient hospitalisation, according to the current
patient conditions reflected by the available lab findings and X-ray
scores. In this section we describe the specific extracted features and
the (training and testing) datasets that we built for this purpose.

4.1 Pre-processing and Feature Extraction

The issues presented in Section 3.1 compel us to a robust pre-
processing phase with the goal of extracting features in order to sum-
marize the patients conditions and process them by a machine learn-
ing algorithm. The pre-processing is applied to both HCP and MCP
data.

Given that we have no information about the survival or the de-
cease of a patient after a transfer (which can be due to limited avail-
ability of beds or ICU places), we exclude from our training and test
set the 142 patients which were admitted in Spedali Civili di Bres-
cia and then transferred to another hospital. However, the 74 patients
who were transferred to a rehabilitation center can be considered not
at risk of death; therefore we include them in our datasets and con-
sider the transferred patients as released alive.

4.1.1 Patient Snapshot and Feature Engineering

In order to provide a prediction for a patient at different hospitalisa-
tion times, we introduced the concept of patient snapshot to repre-
sent the patient health conditions at a given day.

In this snapshot, for each lab test of Table 1, we consider its most
recent value. In the ideal case, we should know the lab test findings
at every day. However, as explained in Section 3.1, in a real-world
context the situation is very different. For example, in our data if we
consider to take a snapshot of a patient 14 days after the admission
into the hospital, we have cases with very recent values of PCR, LDH
or WBC (obtained one or a few days before), very old values for Fib-
rinogen or Troponin-T (obtained the first day of the hospitalisation)
and even no value for Ferritin.

Given the difficulty to set a predefined threshold that separates re-
cent and old values of the lab tests (e.g., for Fibrinogen and Troponin-
T), we choose to always use the most recent value, even if it could
be outdated. In order to allow the learning algorithm to capture that
a value may not be significant to represent the current status of the
patient (because too old), we introduce a feature called ageing for
each test finding. If a lab test has been performed at a day d0, and the
snapshot of a patient is taken at day d1, the ageing is defined as the
number of days between d1 and d0. If there is no available value for
a lab test, its ageing is considered a missing value.

A patient snapshot can contain the values of the lab test findings in
two forms: either numerical, in which we report the value itself, or
categorical, in which the value is transformed into an integer number
expressing the gravity of the test finding within a partition of the
possible real values. This partition is based on the range of values for
normal conditions and on how the test values are distributed over the
data of all patients. For example, we divide the D-Dimer vales into
6 categories: the normal range, up to 2 times the maximum value
of the normal range, up to 4 times, 6 times, 10 times and over 10
times. The categorical form could help the algorithm to have a clearer
understanding of the data and improve performance.

Monitoring the conditions of a patient means knowing not only the
patient status at a specific time, but also how the conditions evolve
during the hospitalisation. For this purpose, we introduce a feature
called trend that is defined as follows:

For each lab test, if there is no available value for a lab test or if
the patient has not performed the lab test at least two times, the
trend is a missing value. Otherwise, given the values v1 and v2
of the findings for the lab test performed at days d1 and d2 and a
threshold T that we set to 15% of v1, if v2 > (1 + T ) ⇤ v1, then
the trend is increasing, while if v2 < (1 � T ) ⇤ v1 the trend is



decreasing; otherwise the trend is stable.

We distinguish two types of trends: the start trend, that uses the
distance between the most recent value and the first available value,
and the last trend, that uses the distance between the last one and
the penultimate one. We are currently investigating techniques for
including more than two values in the trend calculation.

To summarize, for each lab test in a patient snapshot, we have the
most recent finding and the relative ageing and trend, as well as the
static features age and sex.

4.2 Training and Test Sets Generation
In this section we describe how we generated the training and test
sets for the purpose of predicting, at different days from the start of
the patient hospitalization, the final outcome of her/his stay.

First, for both the HCP and MCP sets, we used stratified sampling
for selecting 80% of the patients for training the models and 20% for
testing them. Then, we created specific training and test sets for each
element in a sequence of times when the model is used to make the
prediction1:

• 2 days of hospitalisation. We include all the patients’ snapshots
containing the first values for each lab test conducted in the first
two days after the hospital admission. Note that if a patient has
performed a lab test more than once in the first two days, the
snapshot will consider the oldest value. In fact, the purpose of
the model we want to build is to provide the prediction as soon
as possible, with the first information available. Furthermore, in
these snapshots the ageing and trend values are not included.

• 4 days and 6 days of hospitalisation. In these cases, the corre-
sponding snapshots also contain the ageing and trend features, and
the lab values will be the most recent ones in the available data.
Given that only a few days passed after admission, we consider
the start trend.

• 8 days and 10 days of hospitalisation. The procedure of creating
the corresponding snapshots is the same as for the snapshots of
4 days and 6 days cases, except that we consider the last trend
instead of the start trend.

• End day (the last day before the patient is released or the patience
decease). In this case, for each lab test the snapshot includes both
the start trend and the last trend features.

It is important to observe, that while the datasets of the latter days
will contain more information about the single patients (more lab
tests findings, less missing values), the overall number of patients in
the datasets decreases with the prediction day increase. This is due to
the fact that more patients are released or die within longer periods
of hospitalisation, and therefore such patients are not included in the
corresponding datasets.

Finally, note that the splitting between training and testing of the
data is done only once considering all patients. Thus if, for instance,
a patient belongs to the training set of 2 days, then it does not belong
to the test set of the following days.

5 Machine Learning Algorithms
In this section we briefly describe the machine learning algorithms
used in our prognosis prediction system.

1 While we chose 2, 4, 6, 8, 10 days after the hospitalisation, plus the day
before the patient release, of course other sequences could be considered.

5.1 Classification Algorithms
Decision trees

Decision Trees [25] are one of the most popular learning methods
for solving classification tasks. In a decision tree, the root and each
internal node provides a condition for splitting the training samples
into two subsets depending on whether the condition holds for a sam-
ple or not. In our context, for each numerical feature f , a candidate
splitting condition is f  C, where C is called cut point. The final
splitting condition is chosen by finding the f and C providing the
best split according to one of some possible measures like Informa-
tion Gain, Entropy index or Gini index.

A subset of samples at a tree node can either be split again by
further feature conditions forming a new internal node, or form a
leaf node labelled with a specific classification (prediction) value; in
our application domain the label is either the alive class or the dead
class. Let us consider a decision tree with a leaf node l and a subset S
of associated training samples. A test instance X that reaches l from
the root tree, is classified (predicted) y with probability

P (y|X) =
TP

TP + FP

where TP (True Positives) is the number of training samples in S
that have class value y, and FP (False Positives) is the number of
samples in S that don’t have class value y [5]. Given that in our task
we have only two classes (y and y), P (y|X) = 1 � P (y|X). The
classification outcome of a decision tree forX is the class value with
the highest probability.

Random Forests

Random Forests (RF) [4] is an ensemble learning method [32] that
builds a number of decision trees at training time. For building each
individual tree of the random forest, a randomly chosen subset of the
data features is used. While, in the standard implementation of ran-
dom forests the final classification label is provided using the statisti-
cal mode of the class values predicted by each individual tree, in the
well-known tool Scikit-Learn [18] that we used for our system im-
plementation, the probability of the classification output is obtained
by averaging the probabilities provided by all trees. Hence, given a
random forest with n decision trees, a class (prediction) value y is
assigned to an instance X with the following probability:

P (y|X) =

P
n

i=1 Pi(y|X)

n
.

Extra Trees

Extremely Randomized Trees (Extra Trees or ET) [8] are another
ensemble learning method based on decision trees. The main differ-
ences between Extra Trees and Random Forests are:

• In the original description of Extra Trees [8] each tree is built us-
ing the entire training dataset. However in most implementations
of Extra Trees, including Scikit-Learn [18], the decision trees are
built exactly as in Random Forests.

• In standard decision trees and Random Forests, the cut point is
chosen by first computing the optimal cut point for each feature,
and then choosing the best feature for branching the tree; while
in Extra Trees, first we randomly choose k features and then, for
each chosen feature f , the algorithm randomly selects a cut point
Cf in the range of the possible f values. This generates a set of k



couples {(fi, Ci) | i = 1, . . . , k}. Then, the algorithm compares
the splits generated by each couple (e.g., under split test fi  ci)
to select the best one using a split quality measure such as the Gini
Index or others.

The probability P (y|X) of assigning a class value y to an instance
X is computed as in Random Forests (see equation above).

5.2 Hyperparameter Search
Most machine learning algorithms have several hyperparameters to
tune such as, for instance, in a Random Forest the number of decision
trees to create and their maximum depth. Since in our application
handling the missing values is an important issue, we also used a hy-
perparameter for this with three possible settings: a missing value is
set to either the average value, the median value or a special constant
(-1).

In order to find the best performing configuration of the hyper-
parameters, we used the Random Search optimization approach [2],
which consists of the following main steps:

1. We divide our training sets into k folds, with either k = 10 or
k = 5, depending on the dimension of the considered dataset.

2. For each randomly selected combination of hyperparameters, we
run the learning algorithm in k-fold cross validation.

3. For each fold, we evaluate the performance of the algorithm with
that configuration using the Macro F-� score metric and � = 2.
The F -� score is the weighted harmonic mean of precision and
recall measures. The � parameter indicates how many times the
recall is more important with respect to the precision:

F -� = (1 + �2) ⇤ precision+ recall
�2 ⇤ precision+ recall

We choose � = 2 in order to give particular importance to false
negatives, i.e. those patients which our system could not identify
as at death risk. Given that we can compute the F2-score both for
both the alive class and the dead class, we considered the Macro
F2-Score, which is the arithmetic mean of the scores for the two
classes.

4. The overall evaluation score of the k-fold cross validation for
a configuration of the parameters is obtained by averaging the
scores obtained for each fold.

5. The hyperparameter configuration with the best overall score is
selected.

5.3 Handling Prediction Uncertainty
The output for an instance X of every generate classification model
is an array of two probabilities, P (alive|X) and P (dead|X), de-
fined as described in Section 5.1. We can see them as “degrees of
certainty” of the prediction: the higher the probability is, the more
reliable the prediction is. Given the very sensitive nature of our task,
the system discards potential predictions supported by a low proba-
bility. This is achieved using a prediction threshold under which the
system considers the prediction uncertain (and the patient risk un-
predictable). Note that if we used a threshold value that is too high,
many patients could be classified uncertain, and our model would be
much less useful for clinical practice. To avoid this, at training time
we impose a maximum percentage of samples that can can be con-
sidered uncertain (unpredictable), and we implemented this with a
parameter, called max u, that is given in input; for our experimental
analysis we used max u = 25%.

FINDUNCERTAINTHRESHOLD: Algorithm for computing,
during the training phase, an optimised prediction threshold
under which the model labels an instance as uncertain.

Input:
– L array of labels (alive or dead) li with l[i] label of the sample i

of the validation data (fold);
– P = [pi = (palive, pdead)i | i is the sample index in val. set];
– max u the maximum percentage of the samples in the validation

set that can be labeled as uncertain (not predictable);
– n the maximum number of thresholds to try;
– EvaluateScore the score function to maximize by dropping the

uncertain samples;

Output: A pair (v, th) where v is the score function value
after dropping the uncertain samples and th the
optimized threshold value.

1 Lpred  array of labels such that Lpred[i] is the predicted
label (the label with highest probability) of the val. sample i;

2 Pmax  [max(palive, pdead)i | (palive, pdead)i 2 P ];
3 v  EvaluateScore(L,Lpred);
4 th min value in Pmax;
5 �  [(max value in Pmax) � (min value in Pmax)]/n;
6 for i 0 to n� 1 do
7 th0  min value in Pmax + i · �;
8 S  {i |i is id sample such that Pmax[i] > th0}
9 u 1� (|S|/|Pmax|);

10 if u � max u then return (v, th);
11 L0  array of labels such that L[i] is the label of the val.

sample i and i 2 S;
12 L0

pred  array of labels such that Lpred[i] is the
predicted label of the val. sample i and i 2 S;

13 v0  EvaluateScore(L0, L0
pred);

14 if v0 > v then
15 th th0;
16 v  v0;
17 end
18 end

Figure 2: Pseudocode of algorithm FINDUNCERTAINTHRESHOLD.

We designed an algorithm called FINDUNCERTAINTHRESHOLD
that is used in the training phase to decide the threshold and opti-
mize the prediction performance on the training samples that pass it,
under the max u constraint. The pseudocode of the algorithm is in
Figure 2.

Given the original labels L of the validation samples and their
prediction probabilities P derived by the learning algorithm, FIND-
UNCERTAINTHRESHOLD first computes: the predicted labels Lpred

(i.e., the class values with highest probabilities) and the relative
Pmax probabilities; the original score v obtained using the input
score function evaluating all samples; an initial value of the threshold
(th) defined as to the minimum probability in Pmax.

The next loop finds an optimal value of threshold th and computes
the score function for the validation set reduced to the validation
samples with predicted labels that have probabilities above th. The
considered threshold values are obtained by using the �-increments
defined at lines 5 and 7. First we compute the new threshold th0 in-
creasing the current threshold by �, and then we derive the set S
of sample ids with prediction probabilities higher than th0. Next we
compute the percentage u of samples that are labeled as uncertain
using threshold th0. If u � max u, we can terminate returning the



Figure 3: Average performance (F2 score) of seven machine learning
algorithms for the HCP datasets. The line over the bar represents the
standard deviation.

current best new score v and the corresponding threshold value th (a
greater threshold value cannot lead to label as uncertain less samples
than the returned th value). Otherwise (u < max u), we compute
the correct sample labels L0 and the predicted sample labels L0

pred

for the samples identified by S, and we compute the new score value
v0 using L0 and L0

preds. If v0 is a better score than v, we update both
the threshold and the score values.

FINDUNCERTAINTHRESHOLD is executed during the training
phase. In particular during the hyperparameter search, for each at-
tempted hyperparamenter configuration, we compute through FIND-
UNCERTAINTHRESHOLD an optimized threshold and the relative
score function value. These two values are obtained by averaging
the optimal thresholds and corresponding scores over all folds of the
cross validation for the attempted configuration. The hyperparameter
search returns the best configuration together with the relative (aver-
aged) threshold.

6 Experimental Evaluation and Discussion
In this section, we evaluate the performance the of the machine learn-
ing models that we built. Our system was implemented using the
Scikit-Learn [18] library for Python, and the experimental tests were
conducted using a Intel(R) Xeon(R) Gold 6140M CPU @ 2.30GHz.

The performance of the learning algorithms with the relative op-
timized hyperparameters was evaluated using the test set in terms
of F2 score and ROC-AUC score. The second metric is defined as
the area under the Receiver Operating Characteristic curve, which
plots the true positive rate against the false positive rate, and it takes
also into account the probability that the predictive system produces
false positives (i.e. false alarms). This metric is a standard method
for evaluating medical tests and risk models [9, 10].

In a preliminary study we examined various machine learning ap-
proaches and we compared their average performances over the HCP
datasets. Figure 3 shows a summary of the relative performance in
terms of F2 score. We considered Decision Trees [25], ExtraTrees
(ET) [8], Gaussian Naive Bayes [31], Multilayer Perceptron with two
layers (MLP) [13], Quadratic Discriminant Analysis [26], Random
Forests (RF) [4] and Support Vector Machines [27]. The best perfor-
mance was obtained with RF and ET. NN and SVM performed much
worse and with a much higher variability over the datasets, probably
related to the missing values and the scarcity of data. For the MCP
datasets the relative performance was similar. Given the observed
better performance of RF and ET, we focused the evaluation of our
system on these learning algorithms

Regarding the training time, including the hyperparamenter search
over 4096 random configurations and the optimization of the uncer-
tainty threshold, for any specific dataset (e.g., the MCP numerical
dataset for 2 days), the overall training time is between 20 and 30

minutes. Therefore, we can build all the four most promising models
generated by RF and ET using the numerical version (RF-N, TC-N)
or the categorical version (RF-C, ET-C) of the data set in less than
two hours, and then select the best performing model among them.

It is also worth to note that in our system the models for predicting
the prognostic risk at different days are completely independent from
each other, and so we can consider prediction tasks at different days
as different tasks.

In Figure 4 and in Table 2 we show the performances of our sys-
tem at each considered day for both the High Contagion Phase and
the Moderate Contagion Phase. As we can see, we obtain promising
results in terms of F2 score for an early evaluation of the risk dur-
ing the HCP (with score 77.1% at day 2), while we encounter some
problems at the 6th and 10th days. For the MCP datasets, the system
performs better at the latter days, in particular for the 10th day F2
is 80.4% and ROC-AUC is 90.2%. For HCP, both RF and ET ob-
tain good results in both the numerical and categorical versions of
the datasets. Instead, for MCP using the categorical datasets does not
give good performance, and we do not observe an improvement for
the latter prediction days (the F2 score is always below the 70%).

In all but one case, the models using the uncertain threshold in-
crease the performance in terms of both F2 and ROC-AUC scores.
In particular, in the most problematic cases of HCP, such as for the
6-days and 10-days datasets, the prediction performance improves in
terms of F2 by over than 7 points. The improvement is less significant
for MCP.

Note that, while the threshold value under which the system labels
an instance (patient risk) as uncertain is derived at training time im-
posing a maximum percentage of uncertain samples (we used 25%),
there is no formal guarantee that this percentage limit is satisfied for
test set. However, in most cases the percentage of uncertain test sam-
ples (indicated with % Unc in Table 2) is much below the limit im-
posed during training, expect for the test set of the 6th day in HCP,
where the unpredicted (labelled as uncertain) patients are 26.1%. The
performance for the “end” dataset is good for both HCP and MCP
even without omitting the uncertain patients (F2 score 86.6% for
HCP, and F2 score 86.9% for MCP).

Figure 4 gives graphical pictures comparing the performance of
our system for HCP and MCP in terms of F2 and ROC-AUC. The
performance behaviour over time significantly differs in the two con-
tagion periods, reflecting the concept drift we discussed in Section
3.2. For HCP, considering the results without omitting the uncertain
test instances (blue curves), the performance prediction is very good
at the 2nd day and it decreases at the 6th and 10th days. Instead, for
MCP the performance improves over time, reaching 90.2% in terms
of ROC-AUC at the 10th day, as also reported in Table 2. This is due
to several factors:

• MCP includes patients that have hospitalisation periods much
longer than the patients in HCP, which can make more difficult to
predict the mortality risk for some patients with only a few days
of hospitalisation;

• on the contrary, in HCP half of the patients stayed in hospital for
less than 8 days. This decreases significantly the size of the 8-
days and 10-days training sets, which contain respectively only
431 and 339 patients. The lack of training data in these datasets
is only partially compensated by the increase of the lab tests for a
single patient in the datasets;

• as described in Section 3.2, the MCP patients are much more un-
balanced (with only 11% deceased patients) than the HCP pa-
tients, and this increases the difficulty of learning an high per-
forming model [17].



Figure 4: Graphical representation of the prediction performance (F2 and ROC-AUC scores) over hospitalisation time for HCP and MCP.

HCP data F2 ROC F2-U ROC-U % Unc Model MCP data F2 ROC F2-U ROC-U % Unc Model
2days 77.1 77.8 80.1 83.3 18.3 ET-C 2days 60.0 75.4 61.0 78.1 13.9 ET-N
4days 74.1 79.4 76.7 81.9 13.8 RF-N 4days 63.5 78.5 65.4 82.4 21.1 RF-N
6days 68.7 75.6 75.9 83.6 26.1 RF-N 6days 74.1 86.0 77.2 88.1 9.8 ET-N
8days 74.8 76.5 78.2 82.5 22.1 ET-C 8days 73.2 85.0 76.1 86.5 12.3 ET-N
10days 68.9 75.5 80.6 83.9 24.8 RF-C 10days 80.4 90.2 75.3 89.0 12.7 ET-N
end 86.6 89.4 94.3 95.5 19.3 RF-C end 86.9 93.9 95.8 98.4 19.4 RF-N

Table 2: Predictive performance for the High Contagion Phase (HCP, left) and the Moderate Contagion Phase (MCP, right) in terms of F2 and
ROC-AUC scores considering all instances in the test set (columns F2 and ROC) and omitting the instances classified uncertain (columns F2-U
and ROC-U). The percentages of instances that the system classifies uncertain are in the column % Unc. Column Model indicates the method
selected for generating the model; ET stands for Extra Trees, RF for Random Forest, C for categorical and N for numerical.

Figure 5 shows the confusion matrices for the test sets gener-
ated using our predictive models. Above the line we have the HCP
datasets and below the MCP datasets. Despite the training phase was
optimised (through the use of the F2 metric) to avoid false negatives,
for the HCP datasets there are several false negatives (bottom-left of
the matrices). This can be explained by the scarcity of lab test and
X-ray data in the HCP data that affects prediction.

However, false negatives are significantly reduced with the mod-
els that can classify a patient as uncertain. For example, at day 6,
the system classifies as uncertain 4 patients who otherwise would be
false negatives. Moreover, when there are less false negatives, such
as at days 8 and 10, classifying some patients as uncertain helps to
also avoid false positives and so to generate less false alarms.

Remarkably, especially for the MCP datsets, we have very few
false negatives even at the early days, which is quite important in our
application context. On the other hand, especially for days 2 and 4,
our system produces many false positives. This type of error is re-
duced in the models with uncertain patients up to only 5 false alarms
for the end dataset (e.g., at day 2 we avoid 16 false positives.)

7 Conclusions and Future Work
We have presented a system for predicting the prognosis of Covid-
19 patients focusing on the death risk. We built and engineered some
datasets from lab test and X-ray data of more than 2000 patients in
an hospital in northern Italy that was severely hit by Covid-19. Our
predictive system uses a collection of machine learning algorithms
and a new method for setting, at training time, an uncertain threshold
for prediction that helps to significantly reduce the prediction errors.

Overall, the experimental results are quite promising, and show
that our system often obtains high ROC-AUC scores. The observed
predictive performance is especially good in terms of false nega-
tives (patients erroneously predicted survivor), that are very few. This
gives a predictive test for patient survival with very good specificity
in particular when the system can classify a patient as uncertain.

On the other hand, in terms of false positives, there is room for sig-
nificant improvements. We are confident that the availability of more
information, such as patient comorbidities or clinical treatments, will
help to improve performance, reducing the number of both false pos-

Figure 5: Confusion matrices for datasets HCP (above the line) and
MCP (below the line) at different days with dead-alive predictions
for all patients (Complete) and omitting patients classified uncertain
(No Unc). For each matrix of 4 numbers, on the main diagonal we
have the correct predictions (alive class on the top-left corner and
dead class on the bottom-right corner); on the anti-diagonal, we have
the incorrect predictions (false positives and on the top-right corner
and the false negatives on the bottom-left corner).

itives and (few) false negatives.
For future work we plan to extend our datasets with more informa-

tion (both additional features and patients), to consider further meth-
ods for dealing with the observed concept drift and to address other
prediction tasks such as the duration of the hospitalisation or the need
of ICU beds and critical hospital resources. Moreover, we are analyz-
ing the importance of the features used in our models, and we intend
to investigate additional learning techniques.

Acnowledgements. The work of the first author has been sup-
ported by Fondazione Garda Valley.
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[6] João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola
Pechenizkiy, and Abdelhamid Bouchachia, ‘A survey on concept drift
adaptation’, ACM Comput. Surv., 46(4), (March 2014).

[7] Alfonso Emilio Gerevini, Alberto Lavelli, Alessandro Maffi, Roberto
Maroldi, Anne-Lyse Minard, Ivan Serina, and Guido Squassina, ‘Au-
tomatic classification of radiological reports for clinical care’, in Pro-
ceedings of the 16th Conference on Artificial Intelligence in Medicine,
AIME 2017, Vienna, Austria, June 21-24, 2017, volume 10259 of Lec-
ture Notes in Computer Science, pp. 149–159. Springer, (2017).

[8] Pierre Geurts, Damien Ernst, and Louis Wehenkel, ‘Extremely random-
ized trees’, Machine learning, 63(1), 3–42, (2006).

[9] Gary L Grunkemeier and Ruyun Jin. Receiver operating characteristic
curve analysis of clinical risk models, 2001.

[10] Karimollah Hajian-Tilaki, ‘Receiver operating characteristic (roc)
curve analysis for medical diagnostic test evaluation’, Caspian journal
of internal medicine, 4(2), 627, (2013).

[11] Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg,
and Aram Galstyan, ‘Multitask learning and benchmarking with clini-
cal time series data’, Scientific data, 6(1), 1–18, (2019).

[12] Sharique Hasan and Rema Padman, ‘Analyzing the effect of data qual-
ity on the accuracy of clinical decision support systems: a computer
simulation approach’, in AMIA annual symposium proceedings, volume
2006, p. 324. American Medical Informatics Association, (2006).

[13] Simon Haykin, Neural networks: a comprehensive foundation, Prentice
Hall PTR, 1994.

[14] Stephanie Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas
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Borgwardt, Gunnar Rätsch, and Tobias Merz, ‘Early prediction of cir-
culatory failure in the intensive care unit using machine learning’, Na-
ture Medicine, 26, 1–10, (03 2020).

[15] Xiangao Jiang, Megan Coffee, Anasse Bari, Junzhang Wang, Xinyue
Jiang, Jianping Huang, Jichan Shi, Jianyi Dai, Jing Cai, Tianxiao
Zhang, et al., ‘Towards an artificial intelligence framework for data-
driven prediction of coronavirus clinical severity’, CMC: Computers,
Materials & Continua, 63, 537–51, (2020).

[16] Alistair EW Johnson, Mohammad M Ghassemi, Shamim Nemati,
Katherine E Niehaus, David A Clifton, and Gari D Clifford, ‘Machine
learning and decision support in critical care’, Proceedings of the IEEE,
104(2), 444–466, (2016).

[17] Bartosz Krawczyk, ‘Learning from imbalanced data: open challenges
and future directions’, Progress in Artificial Intelligence, 5(4), 221–
232, (2016).

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, ‘Scikit-learn: Machine learning in Python’, Journal of Machine
Learning Research, 12, 2825–2830, (2011).

[19] Tom J Pollard and Leo Anthony Celi, ‘Enabling machine learning in
critical care’, ICU management & practice, 17(3), 198, (2017).

[20] Luca Putelli, Alfonso Gerevini, Alberto Lavelli, Matteo Olivato, and
Ivan Serina, ‘Deep learning for classification of
radiology reports with a hierarchical schema’, in Proceedings of 24th
International Conference on Knowledge-Based and Intelligent Infor-
mation & Engineering Systems, (2020).

[21] Luca Putelli, Alfonso Gerevini, Alberto Lavelli, and Ivan Serina, ‘The
impact of self-interaction attention on the extraction of drug-drug inter-

actions’, in Proceedings of the Sixth Italian Conference on Computa-
tional Linguistics, (2019).

[22] Luca Putelli, Alfonso Emilio Gerevini, Alberto Lavelli, and Ivan Se-
rina, ‘Applying self-interaction attention for extracting drug-drug inter-
actions’, in XVIIIth International Conference of the Italian Association
for Artificial Intelligence, Rende, Italy, November 19–22, 2019, Pro-
ceedings, (11 2019).

[23] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer,
and Neil D Lawrence, Dataset shift in machine learning, The MIT
Press, 2009.

[24] Anna S Rakitianskaia and Andries Petrus Engelbrecht, ‘Training feed-
forward neural networks with dynamic particle swarm optimisation’,
Swarm Intelligence, 6(3), 233–270, (2012).

[25] Lior Rokach and Oded Maimon, Data Mining with Decision Trees:
Theory and Applications, World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 2008.

[26] Santosh Srivastava, Maya R Gupta, and Béla A Frigyik, ‘Bayesian
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Knowledge Discovery and Visualization in Healthcare
Datasets using Formal Concept Analysis and Graph

Databases
Diana Cristea and Christian Săcărea and Diana-Florina Şotropa 1

Abstract. Among the major advances in Artificial Intelligence we
can mention Knowledge Discovery, Processing and Representation.
Since in our modern society the healthcare system plays an impor-
tant role and has a major impact in our daily lives, it lies at hand
to apply the aforementioned methods in order to discover relevant
patterns in healthcare databases and then to represent them in a way
which supports reasoning, decision making, and communication. We
approach this task by using two complementary directions, which
are then interlinked. On the one hand we make use of the graph-
ical representation capabilities of Formal Concept Analysis (FCA)
and its powerful algorithms for conceptual knowledge discovery and
processing. On the other, we use graph databases as a complemen-
tary visualization method of the extracted knowledge patterns. We
exemplify this approach on a particular medical dataset, highlighting
a 3D representation of conceptual hierarchies by using virtual reality
(VR).

1 Introduction
Formal Concept Analysis (FCA) is a prominent field of applied math-
ematics which formalizes the classical philosophical understanding
of a concept as a unit of thought and provides powerful algorithms
for knowledge discovery, processing and representation. FCA is well
known for its expressive and intuitive graphical representation of
knowledge. The basic data structure is a formal context, i.e., a uni-
verse of discourse, and knowledge extraction is restricted to con-
cepts, particular patterns which constitute building blocks of the
knowledge encapsulated in the dataset. Concepts are ordered and
displayed in an order diagram, called concept lattice or conceptual
hierarchy. Due to its elementary yet powerful formal theory, FCA
can express other methods, and therefore has the potential to unify
the methodology of data analysis. Summarizing, FCA is a human-
centered method to structure and analyze data, as well as a method
to visualize data and its inherent structures, implications and depen-
dencies.

How well can healthcare systems be used in order to support
physicians? As researchers, we cannot stop asking what we should
do in order to improve them. When trying to assemble and analyze
medical data, we all have the same purpose: to aid both patients and
care providers, while improving the outcomes and offering person-
alised care. A common approach followed in order to extract knowl-
edge from the large amount of collected data usually starts with data
preprocessing and analysis, which is then usually continued with ex-
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traction of knowledge or patterns. Once extracted, this knowledge
can be used in various ways, from improvement of medical systems,
to understanding and prediction issues or for learning.

This paper is presenting some current research about using FCA
and graph databases to discover knowledge in healthcare databases.
The data is organized and represented in conceptual landscapes of
knowledge, using a methodology developed by R. Wille [22]. These
conceptual landscapes of knowledge can be used, for instance to
understand the way how patterns are arising from medical data, to
investigate analogies between symptoms and treatments, to support
communication and they can be be integrated into a decision support
system that assists doctors in the process of diagnosis. One major
step forward is switching from 2D to 3D using VR and establishing
virtual discussion rooms where multiplayers can navigate and ex-
plore conceptual knowledge. On the other hand, graph databases are
offering a different perspective. They enable us to analyze different
connections between data, using a graph based approach.

The contributions of our paper include detecting and extracting
knowledge patterns from healthcare data as well as presenting some
visualization techniques for these, both in 2D and 3D format.

The paper is structured as follows. Section 2 describes some re-
lated work, while Section 3 contains some preliminaries, introducing
the method use to extract the knowledge from the dataset, namely
Formal Concept Analysis, and graph databases. Section 4 presents
some experiments while trying to show how new information about
medical investigations can be discovered using knowledge graphs.
Section 5 concludes the work presented and highlights some future
research directions.

2 Related Work

Artificial Intelligence is a wide field comprising a large set of meth-
ods and algorithms that can be applied in multiple fields. Given the
nature and the importance of medicine in our lives, a large number
of researchers work on applications in the medical field. A lot of the
work in this field is focused on prediction models for diseases using
different data mining methods. For instance, Delen et al. present a
comparison of three data mining methods (logistic regression, artifi-
cial neural networks and decision trees) for predicting breast cancer
survivability [2]. However, an important part of the medical system
is the diagnosis of the patients. In this sub-field there is a lot of work
to be done in order to build systems that can aid practitioners in their
decisions. For example, one of the previous authors identifies this
in a subsequent paper, where different machine learning techniques
are applied to build predictive models [23]. Their conclusions are



that having more information about the patients’ conditions can im-
prove models’ predictive power which then can help practitioners
make better diagnostic and treatment decisions.

When dealing with electronic health record (EHR) it is well known
that the volume of data can easily become too large for humans to
process. Therefore, the need of implementing support systems that
assist clinicians in examining the data has been previously identified
and acknowledged by medical experts and researchers. For instance,
Fujita et al. propose in their paper to improve the user experience by
limiting the visual format. They define several screen designs based
on some identified principles, such as: limiting a view to a single
patient data, summarizing an overview of the data and give details
on demand [3]. In this approach, the advantage of having a large
collection of data is lost and becomes rather a disadvantage. Such
approaches lose sight of important information correlating different
cases, symptoms and diagnostics, which can give an important and
useful insight into the data. For that reason we believe that a better
approach is to find ways of taking advantage of all the patterns con-
tained in the data and, instead of cutting down on the data visualized,
find new methods of knowledge discovery and representation tech-
niques that allow clinicians to have an overview of the data and at the
same time to be able to infer knowledge from the data, such as useful
correlations and patterns.

Through FCA, medical data will be scaled so that it can be mod-
eled as objects possessing attributes, in order to allow the discovery
and to visualize of implications between them. The formal concept
is the unit of measure and the central point from which the pattern
mining begins. The graphical representation is given by the concept
lattice containing all formal concepts.

Formal Concept Analysis can be applied in multiple fields prov-
ing that it is a suitable information retrieval technique [13]. There are
also some application of FCA in the medical field. Gupta et al. use
context reduction techniques along with classification rules in order
to find redundancies among various medical examination tests [5].
Jay et al. use FCA for mining and interpreting patient flows within a
healthcare network [7]. Pan et al. propose to use FCA in order to pro-
vide a method for modeling and designing a multidisciplinary clini-
cal process, in which medical specialists can coordinate the treatment
of specific groups of patients [12].

In our previous work, we have applied FCA techniques on dif-
ferent medical datasets, such as Otorhinolaryngology data, cancer
registry and drug adverse reaction. For all these cases the medical
datasets are considered as many-valued contexts, and they are sub-
ject to conceptual scaling in order to build knowledge landscapes.
For instance, we have used several methods of conceptual knowl-
edge processing to build a logical information system for oncologi-
cal databases [1]. In some other work the scaling effort of FCA was
focused on attributes describing treatment options and their results,
the type and location of cancerous cells and the adverse drug reac-
tions [16]. The databases were analyzed from different perspectives,
using dyadic formal contexts as well as triadic formal contexts [6] .
The triadic setting offers conditions as a third dimensions which can
lead to a better understanding for instance in the case of adverse drug
reactions [15].

Furthermore, we have used analogical reasoning combined with
FCA in order to offer valuable support for decision making in a med-
ical setting. The purpose of this is to improve the interaction between
clinicians and electronic health record systems [19]. In some of our
previous papers we started analyzing how combining different min-
ing techniques and visualization methods, such as analogical reason-
ing, FCA and graph databases, can bring a fresh perspective over

the medical process and improve the task of knowledge discovery in
EHR systems [17, 18]. The results obtained so far highlight the fact
that FCA is suitable for improving electronic health record systems.

3 Preliminaries

3.1 Formal Concept Analysis

Formal Concept Analysis (FCA) was introduced by Bernhard Ganter
and Rudolf Wille in the early 1980s [4]. The theory has its mathemat-
ical basis in general lattice theory created by Garrett Birkhoff in the
1930s. One advantage of the FCA analysis techniques is that the FCA
tools do not require extensive knowledge on lattice theory in order to
be used and interpreted, which makes FCA a suitable and accessible
method for information retrieval.

There are three kinds of relations that exist among concepts: in-
dependence, intersection and inheritance. Based on these relations,
knowledge about the data can be extracted, and often causal relations
can be identified [12].

We will briefly recall some definitions introduced by Rudolf Wille
in [22] regarding formal concept, formal context, many-valued con-
texts and conceptual scaling. A formal context is a triple (G,M, I)
where G and M are sets and I ✓ G ⇥ M is a binary relation,
called incidence relation. A Galois connection on the powersets of
G and M respectively is defined and is used as a concept form-
ing operator. More precisely, for A ✓ G, we define A0 := {m 2
M | 8a 2 A, (a,m) 2 I}, and dually for B ✓ M , we define
B0 := {g 2 G | 8b 2 B, (g, b) 2 I}. A formal concept is a pair
(A,B) with A ✓ G, B ✓ M , and A0 = B, B0 = A. Concepts
are ordered by the subconcept-superconcept relation and the result-
ing structure is a complete lattice, called concept lattice or concep-
tual hierarchy, and it can be graphically represented as an order dia-
gram. Every node of this order diagram represents a concept, while
the path connecting the nodes upwards or downwards are exactly
the subconcept-superconcept relation. Using a reduced labeling, only
some particular concepts are labeled with the elements from G and
M , respectively, more exactly those which are supremum or infimum
irreducible in the lattice.

A many-valued context (G,M,W, I) consists of sets G, M , and
W and a ternary relation I between G, M and W (i.e., I ✓ G⇥M⇥
W ) for which it holds that (g,m,w) 2 I and (g,m, v) 2 I always
implies w = v. The triple (g,m,w) 2 I is read as “the attribute
m has the value w for the object g”. The many-valued attributes can
be regarded as partial maps from G in W . Therefore, it seems rea-
sonable to write m(g) = w instead of (g,m,w) 2 I . In order to
derive the conceptual structure of a many-valued context, we need
to scale every many-valued attribute. This process is called concep-
tual scaling and it is always driven by the semantics of the attribute
values.

A scale for the attribute m of a many-valued context is a formal
context Sm := (Gm,Mm, Im) with m(G) ✓ Gm. The objects of a
scale are called scale values, the attributes are called scale attribute.
Every context can be used as a scale. Formally there is no difference
between a scale and a context. However, we will use the term “scale”
only for contexts which have a clear conceptual structure and which
bear meaning. The set of scales can then be used to navigate within
the conceptual structure of the many-valued context (and the subse-
quent scaled context). Some scales are predefined (like nominally,
ordinally, etc.), while for more complex views, we need to define
particular scales.



3.2 Graph Databases

Graphs are data structures containing nodes with pairwise relation-
ships between them, represented as edges. When the edge corre-
sponds to an ordered pair of nodes, then the graph is called a di-
rected graph, otherwise it is an undirected graph. A strongly con-
nected component in an undirected graph is a maximal region within
which each node is reachable from any other node. When defining
this notion for directed graphs the direction of the edges plays an im-
portant role. Hence, we can define a strongly connected component
for a directed graph as a maximal subset of nodes such that there is
a directed path from any node to any other node. Strongly connected
components can be very useful in an early phase of the data analysis
in order to see how the graph is structured and to identify clusters of
data that have similar behavior. Graph algorithms provide one of the
most powerful approaches to analyzing connected data since they are
relationship-oriented [11, 21].

Graphdatabases use a graph datamodel as opposed to the relational
data model used in most database management systems. The main
advantage of graph databases is that representing the data as a graph
structure gives a more intuitive representation of the data rather than
the relational structured databases or other table structures. Another
reason for considering graph databases rather than the well estab-
lished and widely spread relational or NoSQL data models is per-
formance. There are use cases when a graph database is much more
efficient and flexible for the implementation, mostly because a graph
database can use graph-specific algorithms which in a different set-
ting have a higher complexity [14]. The flexibility is given by the
fact that the graph model is easily extensible. In contrast, when deal-
ing with changes in a relational database one must make structural
changes that can affect the existing data.

Graph databases basically consist of a labeled property graph
model. In a graph database entities are represented as nodes of the
graph and labels are used to express that a certain node belongs to a
particular category. Nodes contain properties in form of key-value
pairs. The structure of the graph is given by relationships among
nodes. Relationships have a direction and a role property, i.e. a name,
which together give the meaning of that relationship and show how
two nodes are associated. For the implementation we used Neo4j [8]
which enables us to build a knowledge graph for the analyzed dataset.
Neo4j is a highly scalable and easy to manage graph database that of-
fers an efficient query language implementation called Cypher.

4 Knowledge discovery in medical data

Medical diagnosis is regarded as an important yet difficult task that
needs to be executed accurately and efficiently. Regarding accuracy,
in practice, one can still find a high number of wrong diagnostics.
Regarding efficiency, sometimes even if reaching the correct diag-
nostic, a lot of tests are performed on the patient, some of which
may be irrelevant for the condition of the patient. This can be a time-
consuming and costly process which can be optimized with the help
of technologies that assist the doctors in their decisions. For this rea-
son, we use FCA as a mining technique that has the potential to gen-
erate conceptual structures that can improve the quality of clinical
decisions.

We are considering a collection of data from the Otorhinolaryn-
gology department from a teaching hospital in Romania. This de-
partment is specialized in the diagnosis and treatment of ear, nose
and throat disorders. The data collected for multiple patients con-
tains information about symptoms presented by the patients and the

diagnostics given by the doctors following a set of test and investiga-
tions. According to the importance of the symptoms and diagnostics,
they are each divided into two categories: principal and secondary
symptoms, respectively diagnostics.

Our analysis focuses on finding and visualizing patterns among
different pairs of these elements, for instance analyzing correlations
among principal and secondary symptoms, or among principal symp-
toms and principal diagnostics.

Using these data, we show how new knowledge about medical in-
vestigations can be discovered, by following 3 steps: finding con-
cepts, finding relations between concepts and building knowledge
concept lattices. Datasets are interpreted as many-valued contexts.
We use FCA Tools Bundle2 system ([9, 10]) to build concep-
tual scales and to visualize knowledge clusters.

Figure 1 reveals the correlations that exists in the dataset consid-
ering the dyadic case of diagnostics and symptoms. Due to the huge
amount of data and for the purpose of the article, we have filtered
our data by selecting only patients who had Deviated Septum
and Chronic Sinusitis among the secondary diagnostics list.
We chose to do that in order to exemplify our theory on a relatively
small dataset. Afterward, we have selected diagnostics as objects and
symptoms as attributes in order to build the formal context.

Deviated Septum occurs when the thin wall (nasal septum) be-
tween your nasal passages is displaced to one
side

Chronic Sinusitis occurs when the spaces inside your nose and
head (sinuses) are swollen and inflamed for
three months or longer, despite treatment.

Chronic Otitis Media describes some long-term problems with the
middle ear, such as a hole (perforation) in the
eardrum that does not heal or a middle ear
infection (otitis media) that doesn’t improve
or keeps returning.

Otosclerosis is a condition where one or more foci of ir-
regularly laid spongy bone replace part of
normally dense enchondral layer of bony
otic capsule in the bony labyrinth.

Chronic Pharyngitis is the chronic inflammation of the pharynx.

Table 1. Diagnostics from the extent of the highlighted node and their
medical definitions

Autophony the unusually loud hearing of a person’s own
voice

Ear Fullness a sensation of pressure within the middle
ears. This sensation is similar to the full-
ness we experience going up and down in
airplanes or sensation of being deep under
water. This pressure is horribly uncomfort-
able and severely distracting from everyday
responsibilities and enjoyments.

Hearing Loss deafness, or hard of hearing
Headache the symptom of pain anywhere in the region

of the head or neck

Table 2. Symptoms from the intent of the highlighted node and their
medical definitions

On the generated context that can be seen in Figure 1, we have
highlighted a concept having the extent {Chronic Otitis
Media, Otosclerosis, Chronic Pharyngitis,

2 https://fca-tools-bundle.com/



Chronic Sinusitis and Deviated Septum} and the
intent {Autophony, Ear Fullness, Hearing Loss,
Headache}. When looking at a node, the extent of the correspond-
ing concept contains all the objects from the lattice reachable when
going (only) downward. Similarly, the intent of the corresponding
concept contains all the attributes from the lattice reachable when
going (only) upward. Tables 1 and 2 show a detailed description of
the extent and intent of the highlighted formal concept.

Figure 1. Deviated Septum and Chronic Sinusitis as secondary diagnostics
in relation to corresponding symptoms: revealed diagnostics after

investigations - LATTICE

The highlighted concept shows that all five diagnostics
{Chronic Otitis Media, Otosclerosis, Chronic
Pharyngitis, Chronic Sinusitis and Deviated
Septum} have a set of common symptoms that need to be taken
into consideration: {Autophony, Ear Fullness, Hearing
Loss, Headache}. At the same time we can nottice in the lattice
that Chronic Otitis Media and Otosclerosis have the
same symptoms, which makes the diagnosis difficult. However,
three of the diagnostics, namely Chronic Pharyngitis,
Chronic Sinusitis and Deviated Septum differentiate

themselves by some additional symptoms, such as Cough, Lump
in throat, and a few others that can be read from the lattice for
each concept.

Therefore, Figure 1 highlights all the diagnostics that a physician
should consider when treating a patient, together with a full list of
symptoms (either principal or secondary) which may appear.

Figure 2. Deviated Septum and Chronic Sinusitis as secondary diagnostics
in relation to corresponding symptoms: revealed diagnostics after

investigations - NEO4j

In order to gain more information about symptoms and diagnos-
tics, we switch our perspective to a different one, by choosing graph
databases. We have processed and stored our medical datasets in the
Neo4j graph database. Our purpose was to enrich our knowledge
about the medical data, while analyzing different connections be-
tween data in the form of correlated nodes. The nodes of the graph
correspond to the objects and attributes from the formal concept,
while the binary relation is modeled as the directed edges from the
graph database. Let us observe that in a formal concept the binary re-
lation is not directed, meaning that saying an object has an attribute
or that an attribute belongs to the object is exactly the same thing.
However, it does not make any sense to clutter the graph by adding
two type of relationships, one from the object to the attribute, and
one the other way around. Therefore, we chose to add a single re-
lationship, which in this case can be considered as unordered edges
with respect to the graph properties.



Figure 3. Deviated Septum and Chronic Sinusitis as secondary diagnostics
in relation to corresponding symptoms: revealed diagnostics after

investigations - NEO4j - zoom only on the concept

In Figure 2 nodes colored in blue are Diagnostics, while nodes
colored in red are Symptoms. In this particular case, the relation be-
tween Symptoms and Diagnostics is represented with an arrow la-
beled with isSymptom. By following the arrows, i.e. the relation-
ships between different nodes, we can find out different correlations
hidden in the medical dataset. Considering the orange highlighted
concept presented in Figure 1, we have looked at the graphical rep-
resentation to identify the same pattern in the generated data graph.
Figure 2 presents the same filtered medical dataset where the nodes
corresponding to the highlighted concept from Figure 1 are the ones
highlighted in the rectangle. This shows how formal contexts and
data graphs can be correlated. In this case, we can read the extent
and the intent of the corresponding formal concept directly from the
graph. We observe that there is no other red node, i.e. symptom,
which is in relation to all five diagnostic nodes. Similarly, one can
see that no other blue node, i.e. diagnostic, is in relation to all four
symptoms identified. Basically we can imagine that a formal con-
cept corresponds to a specific type of strongly connected component
in the graph, where there is a relation between all pairs of nodes,
with the property that the nodes are of different types, i.e. one is a

diagnostic and one is a symptom (obviously it wouldn’t make sense
to have the relationship ”is symptom of” between two diagnostics or
between two symptoms).

Figure 4. Deviated Septum and Chronic Sinusitis as secondary diagnostics
in relation to corresponding symptoms: revealed diagnostics after

investigations -3D visualisation of the lattice

Although some data graphs seem a bit hard to read with all the
relationships represented, in practice one can choose to exclude or
include certain vertices in order to focus on the aspects of interest.
Therefore, if we want to analyze the relationship between Symp-
toms and Diagnostics which are related to Deviated Septum and
Chronic Sinusitis we can choose to exclude nodes which are
not connected to all symptoms and diagnostics of interest. In that
way, in each of the presented data graphs, we chose to visualize cer-
tain relationships between diagnostics and symptoms of the patients.
Figure 3 presents the graph containing only the elements correspond-
ing to the formal concept, after choosing to exclude the nodes which
are not of interest for this particular example.

By comparing the two representations, the concept lattice obtained
with FCA and the data graph obtained with Neo4j, we can observe
an important advantage of the graph database approach, namely the
quantitative information of the clusters which can be easily observed
in the data graph, while it is not straightforward in the concept lattice.

When analyzing medical data, interesting facts might stand out,
such as rare connections between symptoms and diagnostics. Facts
that stand out like this should be analyzed on patients’ records over a
large period of time and, if they persist, it can lead to the formulation
of some hypotheses which can then be researched in more details by
medical staff. For instance it would be important to know if there are
diagnostics with very similar symptoms, especially if the diagnos-
tics correspond to different medical departments. In that case doctors
can be alerted that there is a high chance of a misplaced diagnostic
and that, before making the treatment decision, they should consult a
doctor with a different specialization in order to exclude diagnostics



Figure 5. The relation between Principal and Secondary Symptoms - LATTICE

with similar symptoms.
We are especially interested in finding new correlations between

symptoms in order to understand which is the cause that led to the
diagnostics. For that reason we have represented in Figure 5 the
concept lattice, considering principal symptoms as objects and sec-
ondary symptoms as attributes. By analyzing the obtained results,
doctors can visualize correlations between their patients and coordi-
nate treatment or analyze the differences between them and potential
disease progressions.

Due to the fact that usually medical datasets consist of a huge
amount of data, visualizing patterns or discovering knowledge is not
always an easy task. With the development of new technologies and
game engines, the modern graphic capabilities of these technologies
increased dramatically. Therefore, we propose a novel approach of
navigating through a concept lattice by combining the effectiveness
of conceptual scaling with virtual reality. The tool that we have im-
plemented for this purpose is TOSCANA goes 3D [20], which al-
lows us to visualize concept lattices by using HTC VIVE HR head-

sets. As far as we know, this is the first time when knowledge discov-
ery in medical data is enhanced with a virtual reality perspective.

The concept lattices are represented in 3D by using a circular cone
like view of the nodes which are at the same depth in the lattice.
While exploring the lattice there is the possibility to ”move” around
the lattice (teleport or fly) in order to view the lattice from differ-
ent perspectives or be closer to some nodes (i.e. fly to some node).
Moreover, one can choose to rotate the lattice or move the nodes
around. This movement options implemented in TOSCANA goes
3D offer an important advantage for focusing on a desired concept or
analyzing a formal concept through its extent or intent. These might
give a valuable perspective over the relations between diagnostics
and symptoms and how they are correlated. Moreover, the hidden
information extracted in the dyadic case or in the graph based visual-
ization, might be further analyzed in connection with other informa-
tion found in the analyzed dataset.

Figure 4 shows a printscreen from the 3D visualization of the
same concept lattice represented in Figure 1, namely Deviated



Figure 6. The relation between Principal and Secondary Symptoms -3D visualisation of the lattice

Septum and Chronic Sinusitis as secondary diagnostics in
relation to corresponding symptoms. However, such a flat visualiza-
tion of the 3D lattice is not conclusive and might seem hard to read,
but the whole point of the 3D representation is to be ”inside” the
lattice, where you can see all the nodes and navigate among them.
The difference between the 3D representation and the 2D represen-
tation of a lattice is that in 2D we represent the concepts and their
links, so that they do not intersect in the two-dimensional space. In
a three-dimensional space the representation looks completely dif-
ferent, since it tries to avoid intersections in the three-dimensional
space. Therefore, in 3D it is possible that, looking from one per-
spective one can see a lot of line intersections in the diagram, while
shifting the perspective might give you a clear view of the lattice
structure. The corresponding 3D lattice of Figure 5 is represented in
Figure 6. We can see that the ”flat” image shown in Figure 6 is not
conclusive and seem hardly readable, but, in order to give the reader
a feeling of the 3D navigation, a recording can be found following
this link3.

5 Conclusions
Knowledge Discovery based on FCA and graph databases proves to
be a valuable pattern extraction and visualization method which can
be used in various ways outside of the scientific community. Switch-
ing from 2D to 3D, for instance, makes a more detailed navigation
through these conceptual structures possible. This might not be very
clear while looking at the 2D variant of a 3D structure, but zoom-

3 http://www.cs.ubbcluj.ro/˜fca/toscana-goes-3d/

ing in, flying around, rotating and teleport are impressive new meth-
ods to navigate, explore or evaluate knowledge patterns. On the other
hand, using Neo4j to explore graph databases proves that graph based
knowledge representation can be used as a complementary explo-
ration method.

Further work will focus on further developing of the 3D capabili-
ties of our approach, including also temporal data and analyzing tri-
adic datasets, i.e., datasets comprising objects, which have properties
under some certain conditions. Then, the visualization methods de-
veloped will be validated and evaluated by experts of the field. Fi-
nally, with the help of experts we can compare our methods with
other approaches.
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A General Neural Architecture for Carbohydrate and
Bolus Recommendations in Type 1 Diabetes Management

Jeremy Beauchamp and Razvan Bunescu and Cindy Marling1

Abstract. People with type 1 diabetes must constantly monitor their
blood glucose levels and take actions to keep them from getting either
too high or too low. Having a snack will raise blood glucose levels;
however, the amount of carbohydrates that should be consumed to
reach a target level depends on the recent history of blood glucose
levels, meals, boluses, and the basal rate of insulin. Conversely, to
lower the blood glucose level, one can administer a bolus of insulin;
however, determining the right amount of insulin in the bolus can be
cognitively demanding, as it depends on similar contextual factors.
In this paper, we show that a generic neural architecture previously
used for blood glucose prediction in a what-if scenario can be con-
verted to make either carbohydrate or bolus recommendations. Ini-
tial experimental evaluations on the task of predicting carbohydrate
amounts necessary to reach a target blood glucose level demonstrate
the feasibility and potential of this general approach.

1 Introduction and Motivation
Type 1 diabetes is a disease in which the pancreas fails to produce
insulin, which is required for blood sugar to be absorbed into cells.
Without it, that blood sugar remains in the bloodstream, leading to
high blood glucose levels (BGLs). In order to manage type 1 dia-
betes, insulin must be administered via an external source, such as
injections or an insulin pump. People with type 1 diabetes also need
to monitor their BGLs closely throughout the day by testing the blood
acquired through fingersticks and/or by using a continuous glucose
monitoring (CGM) system. If the BGL gets too high (hyperglycemia)
or too low (hypoglycemia), the individual responds by eating, taking
insulin, or taking some other action to help get their BGL back to
within a healthy range. An issue with this, however, is that the person
with diabetes must react to their BGL, whereas, ideally, they would
be able to proactively control their BGL. There has been much work
in the area of BGL prediction in the past ([1] and [8] for example)
with the aim of enabling preemptive actions to manage BGLs be-
fore individuals experience the negative symptoms of hypoglycemia
or hyperglycemia. However, individuals still need to figure out how
much to eat, how much insulin to take, and what other actions they
can take to prevent hypoglycemia or hyperglycemia.

The broad goal of the research presented in this paper is to essen-
tially reverse the blood glucose prediction problem, and instead pre-
dict how many carbohydrates an individual should eat or how much
insulin to administer with a bolus in order to get their BGL to the
desired target. We have previously introduced in [6] an LSTM-based
neural architecture that was trained such that it could answer what-if
questions of the type “What will my BGL be in 60 minutes if I eat a
snack with 30 carbs 10 minutes from now”. We show that by using

1 Ohio University, USA, email: {jb199113,bunescu,marling}@ohio.edu

the BGL target as a feature and the carbohydrates or insulin as labels,
a similar architecture can be trained instead to predict the number of
carbohydrates that need to be consumed or the amount of insulin that
needs to be delivered during the prediction window in order to reach
that BGL target.

The work by Mougiakakou and Nikita [7] represents one of the
first attempts to use neural networks for recommending insulin reg-
imens and dosages. Bolus calculators were introduced as early as
2003 [11], wherein a standard formula is used to calculate the
amount of bolus insulin based on parameters such as carbohydrate in-
take, carbohydrate-to-insulin ratio, insulin on board, and target BGL.
Walsh et al. [10] discuss major sources of errors and potential targets
for improvement, such as utilizing the massive quantities of clini-
cal data being collected by bolus advisors. As observed by Cap-
pon et al. in [2], the standard formula approach ignores potentially
useful preprandial conditions, such as the glucose rate of change.
A feed-forward fully connected neural network was then proposed
to exploit CGM information and some easily accessible patient pa-
rameters, with experimental evaluations on simulated data showing
a small but statistically significant improvement in the blood glucose
risk index. Simulated data is also used by Sun et al. in [9], where a
basal-bolus advisor is trained using reinforcement learning in order
to provide personalized suggestions to people with type 1 diabetes
under multiple injections therapy.

The data-driven architecture proposed in this paper is generic in
the sense that it can be trained to make recommendations about any
variable that can impact BG levels, in particular carbohydrates and
insulin. The task of making carbohydrate recommendations is po-
tentially useful in scenarios where patients want to prevent hypo-
glycemia well in advance, or where a person is interested in achiev-
ing a relatively higher target BGL in preparation for an exercise event
that is expected to lower it.

As a first step, in this paper we approach the problem of making
carbohydrate recommendations. The rest of this paper is organized in
the following way: Section 2 provides a more detailed description of
the problem. Section 3 describes the model as well as the baselines
used to compare against. Section 4 describes the dataset that is used
and some of the features of the data. Section 5 discusses some of
the training techniques and methods used as well as the results of
the experiments that motivated the use of these techniques. Section 6
contains the conclusion and some plans for future work.

2 Three Carbohydrate Recommendation Scenarios

We assume that blood glucose levels are measured at 5 minute inter-
vals through a CGM system. We also assume that discrete deliveries
of insulin (boluses) and continuous infusions of insulin (basal rates)



Figure 1. The general neural network architecture for carbohydrate recommendation. The dashed blue line in the graph represents a subject’s BGL, while the
solid brown line represents the basal rate of insulin. The gray star represents the meal at tm. The other meals are represented by squares, and boluses are

represented by circles. Meals and boluses with a green outline are allowed in all three example scenarios, while those with an orange outline are allowed in
scenario S2 and scenario S3 examples, and those with a red outline are only allowed in scenario S3 examples. The blue units in LSTM1 receive input from
different time steps in the past. The green units in LSTM2 receive input from the prediction window. The purple trapezoid represents the 5 fully connected

layers, whereas the output node at the end computes the carbohydrate prediction.

are recorded. Subjects provide the timing of meals and estimates of
the amount of carbohydrates associated with each meal. Given the
data available up to the present time t, the problem can formally be
defined as predicting the number of grams of carbohydrates (number
of carbs) Ctm in a meal that is to be consumed at time tm 2 [t, t+⌧)
such that the person’s BGL reaches a specified target value BGt+⌧ at
time t+⌧ in the future. Without loss of generality, in this paper we set
the prediction horizon ⌧ = 30 and 60 minutes. We define three car-
bohydrate prediction scenarios, depending on whether events such as
boluses or other meals happen inside the prediction window [t, t+⌧):

1. Scenario S1 assumes that there are no events in the prediction
window [t, t + ⌧). Training a model for this scenario can be dif-
ficult due to the scarcity of corresponding training examples, as
meals are typically preceded by boluses. The example shown in
Figure 1 would be in this scenario if the orange and red outlined
meals and boluses were not present.

2. Scenario S2 subsumes scenario S1 by allowing events before the
meal, i.e. in the time window [t, tm]. The example that is shown
in Figure 1 would be a scenario S2 example if the bolus outlined
in red were not present, and would correspond to answering the
following what-if question: how many carbs should be consumed
at time tm to achieve the target BGt+⌧ , if the meal were to be
preceded by another meal and a bolus.

3. Scenario S3 is the most general and allows events to happen dur-
ing the entire prediction window [t, t + ⌧). The example in Fig-
ure 1 is a scenario S3 example but not a scenario S1 or scenario
S2 example because of the presence of the orange and red outlined
meal and bolus.

We train and evaluate carbohydrate recommendation models for each
scenario, using data acquired from 6 subjects with type 1 diabetes [5].
Given the scarcity of training examples for scenario S1, our starting

hypothesis is that models that are trained on examples from scenario
S3 will implicitly learn physiological patterns that will improve per-
formance for the fewer examples in scenario S1.

3 Baseline Models and Neural Architecture

Given training data containing meals with their corresponding time-
stamps and carbohydrates, we define the following baselines:

1. Global average: The average number of carbs over all of the
meals in the subject’s training data, µ, are computed and used
as the estimate for all future meals, irrespective of context. This
is a fairly simple baseline, as it predicts the same value for every
example.

2. ToD average: In this Time-of-Day (ToD) dependent baseline, an
average number of carbs is computed for each of the following
five time windows during a day:

• 12am-6am: µ1 = early breakfast/late snacks.

• 6am-10am: µ2 = breakfast.

• 10am-2pm: µ3 = lunch.

• 2pm-6pm: µ4 = dinner.

• 6pm-12am: µ5 = late dinner/post-dinner snacks.

The average for each ToD interval is calculated over all of the
meals appearing in the corresponding time frame in the subject’s
training data. At test time, to predict the number of carbs for a
meal to be consumed at time tm, we first determine the ToD inter-
val that contains tm and output the corresponding ToD average.

Given sufficient historical data, the ToD baseline is expected to per-
form well for individuals who tend to eat very consistently and have



regular diets. However, it is expected to perform poorly on individu-
als who have a lot of variation in their diets.

While simple to compute and use at test time, the two baselines are
likely to give suboptimal performance, as their predictions ignore the
history of BG values, insulin (boluses and basal rates), and meals, all
of which could significantly modulate the effect a future meal might
have on the BGL. To exploit this information, we propose the general
neural network architecture shown in Figure 1. The first component
in the architecture is a recurrent neural network (RNN) instantiated
using Long Short-Term Memory (LSTM) cells [3], which is run over
the previous 6 hours of data, up to the present time t. At each time
step (5 minutes), this LSTM network takes as input the BGL, the
carbohydrates, and the insulin dosages recorded at that time step.
While sufficient for processing data corresponding to scenario S1,
this LSTM cannot be used to process events in the prediction window
[t, t + ⌧) that may appear in scenarios S2 and S3, for which BGL
values are not available. Therefore, in these scenarios, the final state
computed by the first LSTM model (LSTM1) at time t is projected
and used as the initial state for a second LSTM model (LSTM2) that
is run over the time steps between (t, t+⌧). The final state computed
either by LSTM1 (for scenario S1) or LSTM2 (for scenarios S2 and
S3) is then used as input to a fully connected network (FCN) whose
output node computes Ĉtm , an estimate of the carbohydrates at time
tm. Besides the LSTM final state, the input to the FCN contains the
following additional features:

1. The target BGL at ⌧ minutes into the future, i.e. BGt+⌧ .
2. The time interval � = tm�t between the intended meal time and

the present.
3. The ToD average computed for Baseline 2 corresponding to the

time the meal was eaten.

The entire architecture is trained to minimize the mean squared error
between the actual carbohydrates Ctm recorded in the training data
and the estimated value Ĉtm computed by the output node of the
FCN module. Each LSTM uses vectors of size 100 for the states and
gates, whereas the FCN is built with 5 hidden layers, each consisting
of 200 ReLU neurons, and one linear output node.

4 Dataset
The data used for the model was collected from 6 subjects with type 1
diabetes [5]. Information including the basal rate of insulin, boluses,
meals, and BGL readings was collected over roughly 50 days, al-
though the exact amount of time varies from subject to subject. This
time series data is split into three sets, as follows: the last 10 days
of data for each subject are used as testing, the previous 10 days are
used as validation, and the remainder of the data is used for training.

4.1 From Meal Events to Examples
Since the total number of available examples is directly related to the
number of meals, it is useful to know how many meals each subject
had. This is shown in Table 1, together with the average number of
carbs per meal (Avg), and the corresponding standard deviation (Std-
Dev). Most subjects have a similar average number of carbohydrates
in their meals, with the exception of 570 who has a significantly
larger number of carbs per meal on average, and more importantly, a
much higher standard deviation than the other subjects.

A meal event occurring at time tm may give rise to multiple exam-
ples, depending on the position of tm in the interval [t, t+ ⌧). When
⌧ = 30 minutes, an example is created for every possible position

Table 1. Meal statistics, per subject and total.

Carbs Per Meal
Subject Meals Avg StdDev

559 179 36.0 16.0
563 153 29.9 16.3
570 169 105.3 42.0
575 284 40.6 22.9
588 257 30.8 16.6
591 249 31.6 14.2

Total 1291 43.5 33.1

of tm within [t, t + ⌧). However, when ⌧ = 60 minutes, an exam-
ple is created for every position of tm within [t, t + 30], to ensure
that there are at least 30 minutes between the meal and the prediction
horizon. Table 2 below shows the resulting number of examples for
⌧ = 30 and 60 minutes, in each of the three scenarios. Note that
there are fewer examples in scenarios S1 and S2 when ⌧ = 60 vs. 30
minutes, despite there being more scenario S3 examples. This can be
explained by the scenarios S1 and S2 criteria being even more dif-
ficult to meet when ⌧ = 60 minutes, i.e. there cannot be any event
within [t, t+ 60) for S1, or any event within [tm, t+ 60) for S2.

Table 2. Example counts by scenario, for 30 and 60 minutes.

Scenario S1 Scenario S2 Scenario S3

Dataset 30 60 30 60 30 60
Training 2396 1923 3889 3491 5096 5931
Validation 629 510 1061 981 1388 1626
Testing 469 339 950 851 1236 1435
Total 3494 2772 5900 5323 7720 8992

5 Experimental Evaluation
The Adam [4] variant of gradient descent is used for training, with
the learning rate and mini-batch size being tuned on the validation
data. In an effort to avoid overfitting, early stopping with a patience
of 5 epochs and dropout with a rate of 10% are used for both models.
Interestingly, dropout was found to help the model if it was only
applied to the LSTM networks of the model at each time step and
not the fully connected network.

Since the overall number of examples available in the dataset is
low, the performance was improved by first pretraining a generic
model on the combined data from all 6 subjects. Then, for each sub-
ject, a new model is initialized with the weights of the generic model,
and then fine-tuned on the subject’s training data. For each subject,
five models were trained with different seedings of the random num-
ber generators. We also experimented with fine-tuning models on the
union of the training and validation data instead of just the training
data. When this combined data is used, the average carb values used
in the baselines are recalculated over the union of the training and
validation data for each subject.

5.1 Results
The metrics used to evaluate the performance of the models are
the root mean squared error (RMSE) and the mean absolute error
(MAE), which is less sensitive to large errors. At the end of the train-
ing process, there are five fine-tuned models for each subject. The
average RMSE and MAE of the five models are reported, as well as



the RMSE and MAE of the best model. The model that is consid-
ered the ”best” is the one that had the lowest MAE on the validation
data. The results of the five models for each subject are also averaged
across all subjects to obtain one overall RMSE and one overall MAE
value for the average model and the best model scores. The baselines
are treated much the same, as their RMSE and MAE values are aver-
aged across all subjects to give an RMSE and an MAE score for each
baseline.

Table 3 compares the validation results achieved in scenario S3

by models with and without pretraining for ⌧ = 30 minutes. This
experiment clearly shows the benefit of pretraining the models: both
the RMSE and MAE are noticeably lower for the pretrained models.
As a result, pretraining is always used as part of the training process
for both values of ⌧ .

Table 3. Results with and without pretraining, ⌧ = 30.

Setting RMSE MAE
Without Pretraining 22.2 15.5

With Pretraining 20.7 14.5

Table 4 compares models that were fine-tuned on training and val-
idation data with models fine-tuned solely on the training data, in
scenario S3. The results show that the extra examples provided by
the validation data proved helpful in improving performance. It is
interesting to note that using the combined training-validation data
only slightly helped the baselines, but helped the LSTM-based mod-
els by a noticeable margin.

Table 4. Fine-tuning on Training vs. Training [ Validation, ⌧ = 30.

Fine-tuning Baselines & Models RMSE MAE

Training

Global Average 23.3 19.2
ToD Average 22.5 17.8

Average Model 21.3 16.0
Best Model 20.7 15.3

Global Average 23.1 19.0
Training [ ToD Average 22.2 17.7

Validation Average Model 20.1 15.0
Best Model 19.2 14.2

Table 5 compares the Baselines (Global and ToD averages) with
the trained Models (Best and Average) in terms of their RMSE and
MAE in the three scenarios.

Table 5. Results for scenarios S1, S2, and S3, for ⌧ = 30 and 60 minutes.

RMSE MAE
Baselines & Models 30 60 30 60

S1

Global Average 19.7 18.4 15.7 15.0
ToD Average 18.9 17.6 14.8 14.4

Average Model 19.3 19.5 14.1 13.9
Best Model 19.0 19.8 13.9 13.9

S2

Global Average 18.4 17.1 14.5 13.8
ToD Average 17.4 15.9 13.1 12.2

Average Model 16.2 15.3 11.9 11.4
Best Model 15.8 15.4 11.6 10.9

S3

Global Average 18.5 18.6 14.6 14.7
ToD Average 17.5 17.6 13.2 13.3

Average Model 15.7 15.6 11.5 11.3
Best Model 15.6 14.8 11.4 10.6

Overall, the LSTM-based models (Average or Best) had the best

RMSE and MAE performance across all three scenarios, with the ex-
ception of the RMSE scores for scenario S1. Compared to the other
two scenarios, the LSTM models and the baselines have a lower per-
formance in S1. The decline in performance is even more apparent
for the LSTM models, which cannot beat the time-dependent base-
line in terms of RMSE for both the 30 minute and 60 minute pre-
diction horizons. This can be explained by the limited number of
examples for scenario S1: since there are so few testing examples
in this scenario per subject, one bad prediction can hurt the results
significantly, more so for the RMSE than the MAE. Furthermore, the
trained models tend to make very similar predictions for all examples
stemming from a specific meal, meaning that if the model made a bad
prediction for one test example, it likely made a series of similarly
bad predictions.

To alleviate the scarcity of training examples in scenario S1, mod-
els trained on S3 examples, which are the most plentiful and subsume
S1, were evaluated separately on test examples from S1. This gives
an indication on whether any transfer learning is taking place. Table 6
shows the results of this transfer learning experiment, indicating that
training on the additional examples from scenario S3 helps improve
performance on scenario S1 to the level that now the LSTM-based
models outperform both baselines.

Table 6. Comparative performance on scenario S1 test examples:
Baselines vs. LSTM-based models trained on S1 and S3 examples.

RMSE on S1 MAE on S1
Baselines & Models 30 60 30 60

Global Average 19.7 18.4 15.7 15.0
ToD Average 18.9 17.6 14.8 14.4

Training on S1
Average Model 19.3 19.5 14.1 13.9

Best Model 19.0 19.8 13.9 13.9

Training on S3
Average Model 18.2 17.6 13.6 13.3

Best Model 18.3 16.7 13.8 13.0

6 Conclusion and Future Work

We introduced a generic neural architecture, composed of two
chained LSTMs and a fully connected network, with the purpose of
training data-driven models for making recommendations with re-
spect to any type of quantitative events that may impact BG levels,
in particular carbohydrate amounts and bolus insulin dosages. Ex-
perimental evaluations on the task of carbohydrate recommendations
within a 30 or 60 minute prediction window demonstrate the feasibil-
ity and potential of the proposed architecture, as well as its ability to
benefit from pre-training and transfer learning. Future plans include
evaluating carbohydrate recommendations within larger prediction
windows, as well as training the architecture for bolus recommenda-
tions.
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Region Proposal Network for Lung Nodule Detection and
Segmentation

Mohammad Hesam Hesamian1, Wenjing Jia, Xiangjian He, Paul Kennedy

Abstract. Lung nodule detection and segmentation play a critical
role in detecting and determining the stage of lung cancer. This
paper proposes a two-stage segmentation method which is capable
of improving the accuracy of detecting and segmentation of lung
nodules from 2D CT images. The first stage of our approach
proposes multiple regions, potentially containing the tumour, and
the second stage performs the pixel-level segmentation from the
resultant regions. Moreover, we propose an adaptive weighting
loss to effectively address the issue of class imbalance in lung CT
image segmentation. We evaluate our proposed solution on a widely
adopted benchmark dataset of LIDC. We have achieved a promising
result of 92.78% for average DCS that puts our method among the
top lung nodule segmentation methods.

key words: Nodule segmentation, Deep learning, Region proposal
network

1 Introduction
Lung cancer, as one of the deadliest cancers, is responsible for major
cancer deaths worldwide [16]. Early detection and accurate classifi-
cation of the lung nodules plays a significant role in increasing the
survival rate of the patients. Manual process of detection and seg-
mentation of lung nodule is a challenging task which requires lots
of time, proficiency and yet various types of errors may occur. With
the increasing growth in the availability of medical images such as
computed tomography (CT) scans, automatic nodule detection and
segmentation has become a reliable tool to help the radiologist in
their tough task of lung image analysis.

Recently, convolutional neural networks (CNNs) have shown the
capability to effectively extract image features for successful pattern
detection and segmentation across a variety of situations from scene
to medical images [18, 3, 4]. Similarly, deep learning approaches
have been used for various tasks of medical image analysis, including
organ detection, lesion classification and tumour segmentation [13, 6,
7]. Among all those applications, lung nodule segmentation is known
to be a challenging task due to the heterogeneous appearance of the
lung tumour and also the great similarity between tumour and non-
tumour substances in the lung area.

Another severe challenge in medical image segmentation is to deal
with the class imbalance [20]. In a fully annotated CT image of the
lung, the area occupied by tumour is much smaller than the rest of
the lung. This is due to the sparse distribution of pulmonary nodules
in the lung. This issue gets more severe when we are performing a
semantic segmentation task in which each pixel is considered as one
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sample. In such a case, the number of samples (pixels) corresponding
to the tumour is significantly lower than the rest of the lung area. The
class imbalance issue affects the fully convolutional networks [23]
more than others. Moreover, the ratio of tumour pixels to background
pixels significantly varies from sample to sample. To address this
problem, we propose an adaptive weighted loss to alleviate the class
imbalance issue at the sample level.

The main contributions of this paper can be summarized in three
folds. First, we propose a two-stage network to reduce the depen-
dency on dense sliding window searching for accurate segmentation
of the lung nodules. Second, we propose an adaptive weighted loss
function to address the class imbalance issue to improve segmenta-
tion accuracy. Third, we perform a far distant transfer learning strat-
egy in which the weights are transferred from a general object detec-
tion model.

2 Related works

Two major categories of studies have explored lung image segmen-
tation. The first one is the whole lung segmentation, and the second
is the lung tumour segmentation. Whole lung segmentation aims to
distinguish the border of the entire lung from the rest of the elements
appearing in a cardiac CT image [2, 5]. It helps to determine the
size and shape of the lung. It is also often used as the first stage for
the lung tumour segmentation with the purpose of reducing the false
positive cases caused by non-lung areas of CT image.

Recently, many CAD systems based on deep learning are pro-
posed for automatic lung cancer detection. For example, ZNET [24]
employed U-Net fully convolutional network architecture for candi-
date selection on axial slices. For the subsequent false positive reduc-
tion, three orthogonal slices of each candidate were fed to the same
wide residual network. Wang et al. in [22] proposed a model that can
capture a set of nodule-sensitive features from CT images. The 2D
branch of the model learns multi-scale 2D features from 2D patches.
In the 3D branch, a novel central pooling layer helped the model
to select the features around the target voxels effectively. In another
study, a region CNN (R-CNN) is proposed for lung nodule segmen-
tation from 3D lung patches [23]. In this model, Deep Active Self-
paced Learning (DASL) was introduced to reduce the dependency of
the network to fully annotated data. It utilized unannotated samples
by taking to account both the knowledge know before training and
the knowledge made during the training. Jiang et al. [12] proposed
a residually connected multiple resolution network, which was able
to combine the features in various resolution inputs simultaneously.
Images with different resolution were passed through two separate
residual networks, and the extracted features were refined and con-
catenated. This technique helped them to improve the localization
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and negative effect of multiple pooling operation.
Generally, 3D models have a huge demand for memory and high

processing cost. Due to these limitations, the algorithms that can
be implemented on 3D image analysis are restricted. Moreover, CT
scans usually have different slice thicknesses which are not recom-
mended to be treated uniformly in a 3D model [24]. Moreover, 2D
models require fewer resources for training and also not affected by
the slice thickness.

In two-stage detections methods, region proposal networks (RPN)
attracted lots of attention. RPN was first introduced to general object
detection tasks by [19]. In the proposed structure, there is a classifier
which determines the probability of having a target object at the an-
chor. Then the regression regresses the coordinates of the proposal.
The candidature multiple anchors and sharing the features make the
RPN efficient in time and detection. Employing the bounding box
regression enables the RPN to produce more precise proposals. RPN
has many successful variation and application[17, 15] yet it has not
been explored adequately in lung nodule segmentation task.

According to all shortcomings of the current methods mentioned
above, and the enormous potential of the RPN networks, we were
motivated to design and develop a model to combine the benefits of
two-stage detection and segmentation models with higher segmenta-
tion accuracy.

3 The Proposed Method
There are several image modalities, which can be used for lung
abnormality detection such as PET, SPECT, X-Ray, MRI and CT.
PET and SPECT are mainly utilized for metabolism characterization.
Therefore, they can unveil the functional abnormalities in an organ.
CT, X-Ray and MRI are structural image modalities which are able
to hand out anatomical information about the organ. The simplicity
and lower price of CT scan have changed it to primary image modal-
ity for cancer detection and screening [25]. For this study, we used
the benchmark dataset of LIDC-IDRI [1], consisting of 1024 chest
CT scans. Each case is associated with an XML file, denoting the
boundary pixels of the tumour, marked by four radiologists. For this
study, the nodules with size > 3mm are selected. These scans are
broken down to slices and converted to JPG format in the original
size.

3.1 Network Structure
There are some two-stage nodule detection systems, where in the first
stage the nodule candidates are detected, and in the second stage, the

false positive is reduced [24]. But in our approach, inspired by the
development of general object detection [8], we propose a two-stage
method capable of nodule detection and segmentation. The model
segments the elements of CT scan into two classes of tumour and
background. The general building block of the network is presented
in Fig. 1. The first section of the network is the feature extractor in
which general feature maps are created. The ResNet101 [9] is used as
the backbone of the system. The residual connections of the ResNet
allow using deeper structures without facing the gradient vanishing
problem.

The extracted feature maps are then passed to the RPN. By this
method, the convolution layers are reuses. Thus, it saves lots of com-
putations. This module produces several candidate regions, contain-
ing the potential malignant tumours. Since our model has only two
classes of tumour and background, we limit the number of proposed
regions to 300. Having a limited number of regions will help to re-
duce the possibility of false positive as well as speed up the training
process. Each of the candidate bounding boxes is then given to the
ROI pooling. At this stage, the network evaluates the proposed re-
gions according to intersection over union (IoU) value. The IoU is
set to 0.5 to reduce the false positive. It means a fixed number of
the ROIs (50) with the IoU more than 0.5 will be passed to the seg-
mentation module for semantic segmentation task. In case of no ROI
satisfying the condition, the input sample is considered as a negative
sample. The last block of the network will produce the segmentation
mask for the proposed ROI.

3.2 Adaptive Loss Coefficients
One of the main reasons of accuracy drop in nodule segmentation is
the class imbalance of the training samples, due to which, during the
training model will not learn equally from all classes. Therefore, one
of the main challenges in medical image analysis is how to effec-
tively modify the model to overcome the class imbalance issue and
maximize the learning capability of the model.

In the segmentation section of the proposed model, samples will
be segmented in the two classes of background and tumour. Thus,
we applied a binary cross-entropy function as the segmentation loss.
This is shown in Eq. 1.

L(S) = � 1
N

NX

n=1


yn log ŷn + (1� yn) log(1� ŷn)

�
(1)

In this equation, y and ŷ represent the ground truth and the predicted
value of each pixel, and N is the total number of the pixels in the
given sample of S.



Figure 2. Visualization of the network output. The green color is the ground truth marked by the radiologists. The yellow is the prediction, generated by the
proposed model. Best viewed in color.

Then the dynamic loss coefficients of �1 and �2 are calculated
for each of the given ROIs representing the proportion of tumour
and background pixels. These coefficients compensate the imbalance
between the numbers of pixels in the two classes.

Since in our model, each pixel is considered as one sample, the
loss will be calculated at the pixel level. Therefore, the final loss
function of Eq. 2 is formed by applying the dynamic loss coefficient
to the Eq. 1. The loss is calculated for each pixel of pi, where pi
denotes the ith pixel of a given flattened ROI.

Loss(pi) =

8
>>>><

>>>>:

�1 ⇥
h
� y(pi) log ŷ(pi)

i
, if pi 2 tumour

�2 ⇥
h
� y(pi) log(1� ŷ(pi))

i
, if pi 2 bg

(2)
The proposed weighted loss updates its coefficients for each ROI

proposed by ROI selection module. This process helps to address the
class imbalance more accurately because the proportion of tumour to
background varies significantly from sample to sample. The common
weighting loss such as what proposed in [11] applies a fixed set of
the coefficient for all the samples. These coefficients are calculated
by counting and averaging the tumour pixel and background pixels
over the entire dataset. Application of a fixed set of weight to all the
samples does not seem to be an optimal solution while the adaptive
weighted loss allows the network to address the class imbalance more
effectively within individual samples.

4 Experiments and Discussion
In this section, we experimentally evaluated our solution on the
widely used benchmark dataset LIDC [1]. Our model is implemented
with the Keras library, and all the experiments are conducted on
Linux (REH7.0) with an Nvidia Quadro P5000 GPU of 16 GB mem-
ory.

4.1 Data preparation
We evaluated our solution on the publicly available dataset of
LIDC [1], which contains 1024 lung scans each annotated by at least
four radiologists. All data are selected and used for training and test-
ing of the network with the 5-fold cross validation approach.

Similar to most of the other medical datasets, our data was also
imbalanced toward the tumour class. Training a model on such data
will lead to learning more features from one class and ignoring the
others. As another technique to combat this issue, we have selected
a patch-wise training strategy. For this purpose, we have extracted
the patches around the tumour and use them as training samples. Ac-
cording to nodule size distribution statistics, 85% of nodules can be
covered by a patch of 30 ⇥ 30 (voxels), and 99% of nodules can be
covered by a 40⇥ 40 (voxels) patch [24]. Hence, we have extracted
the patches of 76 ⇥ 76 pixel to ensure almost all of the tumours are
covered. At the next stage, we heavily augment our training data by
using filipping, rotating, zooming and shrinking the input samples.
Data augmentation is reported that data augmentation can also help
to improve the performance and robustness of CNNs [10]. This data
augmentation serves two purposes of avoiding the overfitting and ex-
tending the training dataset size.

4.2 Training

We have employed a two-step full network adaptation strategy to
transfer the weights from a far distant source. In this process,
the weights are initialized from a pre-trained model trained on
COCO [14] dataset for the general object detection task. Transfer-
ring the weights from such model and using them for a different
task of medical object segmentation, is called ‘far transfer learning’.
Generally, transfer learning is proven to alleviate the overfitting issue
on the small training dataset and improve the convergence speed of
the training. Theoretically, transfer learning has better performance
when the task of source and target models are more similar [10].
Thus, some believe that far transfer learning may not produce good
results [21] but, our achieved results are demonstrating that far trans-
fer learning combined with a careful fine-tuning strategy can deliver
competitive results.

As a part of our weight transferring, the weights for the feature
extractor layers are initialized from the pre-trained model, and the
last layers are initialized randomly. During the first stage of training,
all the network weights except for the feature extractor weights are
fixed. At this stage, only the feature extractor is trained on the input
data for a couple of epochs. The rest of the network weights are in-
jected at the second stage of the training, and all the network layers
are trained together afterwards.



Table 1. The detection rate of nodules of various sizes, obtained with our proposed approach.

Size Measurements (%)
IoU=0.3 IoU=0.4 IoU=0.5 IoU= 0.6

Tumour size <10mm 97.54 ± 0.56 95.81 ± 0.67 92.32 ± 1.07 84.76 ± 1.55
10 < Tumour size < 30 mm 98.13 ± 0.72 97.56 ± 0.64 95.57 ± 1.06 92.04 ± 0.95
Tumour size > 30mm 95.91 ± 4.56 94.25 ± 4.21 93.26 ± 4.46 90.16 ± 7.95

Average 97.21 ± 1.95 95.87 ± 1.84 93.73 ± 2.19 88.99 ± 3.78

5-fold cross-validation is employed to validate the results of the
testing. The data set is divided into five equal subsets, and each time
four of them are used for training, and the one remaining is used for
testing. The LIDC dataset has not a separate set of train and test set.
Hence, we divided the data into two main sets of train and test for the
purpose of 5-fold cross-validation. Moreover, a portion of training
data (10%) has already been used for validation at the end of each
epoch. By this method, we will ensure that all the samples are used
at least once for training and testing.

4.3 Experiment results
Fig. 2 shows the qualitative results of tumours detected and seg-
mented for various tumour types and sizes.

To highlight the performance of our proposed model, we quan-
titatively evaluate its performance for two tasks, i.e., detection and
segmentation, respectively.

4.3.1 Results of tumour detection

Our proposed method performs the detection task through a segmen-
tation approach. This detection method differentiate our model from
the pure detection models. For the detection part, we measure the de-
tection accuracy of the tumours under various IoU values of 0.3, 0.4,
0.5 and 0.6. Table 1 shows the results of tumour detection for three
tumour size categories. The results are presented with various IoU
values to analyse the detection performance clearly. For instance, in
the case of IoU = 0.5, if the IoU of prediction mask with the ground
truth is more than 0.5, the tumour is considered as correctly detected.
As expected, the detection accuracy is dramatically increased when
the tumour size increased.

The results in Table 1 highlights the significant detection accuracy
of the proposed model in detecting the small size tumours.

4.3.2 Results of tumour segmentation

To evaluate the segmentation performance, we measure the Dice
score of segmentation (DCS), sensitivity and positive predictive
value (PPV) as defined as in Eqs. 3, 4 and 5, respectively, as:

DSC =
2TP

2TP + FP + FN
(3)

Recall =
TP

TP + FN
(4)

and
Precision =

TP
TP + FP

(5)

TP and FP refer to true positive and false positive while TN and
FN denote the true negative and false negative.

The results presented in the Table 2 show that the proposed method
is able to perform the challenging task of lung nodule segmenta-
tion with higher accuracy than the state-of-the-art methods. The dice
score of our segmentation model is almost 10% higher than the listed
methods. Similarly, the precision of our method is much higher than
all the listed methods. In case of the recall, we got slightly (less than
1 percent) lower than CF-CNN, but CF-CNN produced wider stan-
dard deviation. It shows that our model was more stable throughout
all the input cases.

4.3.3 Discussion

The main reason for this improvement is the structure of the network.
In the proposed structure, at the first stage, some ROIs are extracted
as the potential tumour. Then, the most tumour-like ROIs are selected
through the ROI pooling module. Then the second stage performs the
segmentation on the selected ROIs. This two-step strategy eliminates
the necessity to scan the entire input image via a sliding window
that leads to creating the prediction at every position. By performing
these two steps, many of the nodule-like patterns which may confuse
the model are eliminated. Therefore, the accuracy of segmentation
is improved by only focusing on the more relevant tumour features.
Moreover, the training and testing speed will increase as there would
be no full input search via the sliding window.

The second reason for the improved accuracy is the application
of novel adaptive loss in training of the segmentation module. This
adaptive loss helps to address the class imbalance issue of the medi-
cal images within the individual sample. By application of a dynamic
pair of class weight coefficients, the model can derive more balanced
features from each sample.

The transfer learning strategy used for training of the model helped
the model to be more stable and prevent it from overfitting. More-
over, one of the reasons for achieving a smaller standard deviation
value compared with other studies could be the application of trans-
fer learning.

5 Conclusion

We have proposed a two-stage framework for accurate segmentation
of the lung nodules. The first stage of the network provides some
potential nodule areas. The second stage accurately segments the se-
lected ROIs. To effectively address the class imbalance issue of the
small organ segmentation, we proposed an adaptive weighted loss
function, where the weight coefficients are calculated per sample.
This approach leads to extract more accurate features and therefore,
more precise segmentation of the input. The model was tested on the



Table 2. Quantitative evaluation of the achieved results and comparison. Models marked with * use 3D processing.

Methods Measurements
Dice (%) Recall (%) Precision (%)

Nodule R-CNN* [23] 64 ± 0.44 - -
Hesamian et al. [11] 81.24 ± 1.24 - 79.75 ± 4.08
CF-CNN* [22] 80.47 ± 10.76 92.75 ± 12.83 75.84 ± 13.14
Jiang et al. [12] 68 ± 0.23 85 ± 0.13 67 ± 0.22

Proposed method 92.78 ± 0.1 92.31 ± 0.27 93.17 ± 0.18

publicly available dataset of LIDC and was able to deliver an aver-
age detection accuracy of 93.73% (IoU = 0.5) and average dice score
of 92.78% for the segmentation part. At last, the achieved results
demonstrate that a far distant transfer learning with careful weight
initialization can perform competitive results.
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In Silico Comparison of Continuous Glucose Monitor
Failure Mode Strategies for an Artificial Pancreas

Yunjie (Lisa) Lu 1 2 and Abigail Koay1 and Michael Mayo1

Abstract. An artificial pancreas is a medical Internet of Things-
based system consisting of a continuous glucose monitor, an insulin
pump, and a micro-controller. The use of artificial pancreas systems
is becoming increasingly popular amongst patients with type 1 dia-
betes due to its effective ability to allow the patient better control of
his/her own blood glucose levels compared to other more standard
treatments. In this paper, the problem of missing sensor readings
in the glucose monitor data is considered. How should the micro-
controller (which adjusts the insulin pump based on monitor read-
ings) react when the glucose monitor stops transmitting for an un-
predictable period of time? A strategy that answers this question is
called a failure mode strategy. In this paper, several potential fail-
ure mode strategies are explored in the context of simulation exper-
iments. Results are presented showing that at least one effective and
simple failure mode strategy (0.5µ & LR<72) exists.

1 INTRODUCTION
An artificial pancreas (AP) [10] is a real-time, closed-loop insulin
delivery system for patients with type 1 diabetes (T1D). It consists
of three components: a continuous glucose monitor (CGM) [3], a
controller, and an insulin pump. The CGM estimates the wearer’s
blood glucose level (BGL) by sampling the interstitial fluid in the
subcutaneous tissue beneath the skin; a small needle-like sensor that
is applied usually to the abdomen or the upper arm is used for this
purpose. Readings from the sensor are taken at set intervals, typically
every five minutes, and are sent wirelessly to the controller. The con-
troller in turn adjusts the rate of delivery of insulin (or insulin dose
size) during the next interval on the basis of CGM readings [8].

In this work, the problem of missing data in the CGM trace is con-
sidered [2]. Missing data is a potentially significant problem for an
AP because the controller may not have been designed to deal with
this situation, and the default failure mode strategy may be to simply
turn the pump off or revert back to a preset basal rate [1] [8]. This
can lead to risks if the user is unaware of the problem. For example,
a reduced insulin dosage at meal times may lead to periods of se-
vere hyperglycemia, increasing the risk of long-term complications,
for example, heart attack and kidney damage. On the other hand,
if the pump keeps running while the sensor is off, it could poten-
tially overdose the patient on insulin leading severe hypoglycemia
such as coma or seizure, which can be more life-threatening than
hyperglycemia. Additionally, non-severe hypoglycemia can lead to
discomfort, such as anxiety or blurred vision.

Gaps in real CGM traces occur for a variety of reasons. In most
cases, they are benign (e.g. the sensor is no longer accurate and needs

1 Department of Computer Science, University of Waikato, New Zealand
2 contact author email: yl606@students.waikato.ac.nz

to be replaced) but there is also the possibility of deliberate malicious
interference (for example, [9] illustrate how the wireless connection
between CGM and controller can be jammed).

As mentioned, a simple default strategy if connectivity to the sen-
sor is lost is to simply turn the insulin pump off or switch to a preset
basal rate. However, this is unsatisfactory for the reasons mentioned
above. An alternative idea is to have the controller replace the miss-
ing CGM readings with estimates, and then use these for the insulin
dose calculations so that the decisions on insulin delivery rate can
still be made. Unfortunately, there is currently no effective method
for dealing with missing CGM readings in real-time [12], as most
effective time series forecasting (or replacement) methods require
readings from the future.

Therefore in this paper approaches based on changing the be-
haviour of the insulin pump when the sensor is down are considered.
It is shown via a set of experiments involving virtual patients and
a state-of-the-art AP controller that viable alternative failure mode
strategies that can replace the simplistic “pump off” strategy exist.
Note that imputation of missing glucose values is not a focus here;
instead we are concerning with how the pump should behave when
the sensor is unavailable.

2 BACKGROUND
To perform the comparison of failure mode strategies, a virtual pa-
tient simulator along with a modern AP controller based on fuzzy
logic was used.

2.1 Virtual Patient Simulator
The simulator utilised in this work is an open-source T1D patient
simulator Simglucose [11]. The simulator is a re-implementation of
the 2008 version of UVA/Padova T1D simulator described by Dalla
Man et al. [5] which has been approved by the Food and Drug Ad-
ministration (FDA) for pre-clinical trials of specific insulin treat-
ments such as control algorithms for an AP. In brief, the simulator
models all components of a patient and AP system. There are several
choices for CGM type, each of which come with appropriate sensor
error models and reading limits. Additionally, several different types
of simulated insulin pump are available.

The virtual patient model used by the simulator describes the glu-
cose/insulin subsystem and is modelled using compartments. Impor-
tant processes in the virtual patient simulator include a model of the
gastrointestinal tract, from which the rate of appearance of glucose
in the glucose subsystem is determined during simulated meals; the
insulin subsystem, which models both the rate of appearance of in-
sulin, its rate of degradation, and its interactions with the liver and



body tissues; and the production and storage of glucose in the liver
and its utilisation in muscle and adipose tissue. Each virtual patient
in the simulator is generated randomly from a joint probability distri-
bution over tens of physiological parameters, and ten different adult
patients are currently available in the simulator.

The simulator models meals as well, and the timing and size of
meals in terms of carbohydrate (CHO) count are also randomly gen-
erated from an appropriate probability distribution.

Figure 1 shows a trace of the simulator’s output for one virtual
patient. The figure shows CGM readings, actual BGL (not always
identical due to sensor lag and error), and the insulin pump rate. The
normoglycemia range (see Table 1) is also shown.

2.2 Fuzzy Logic Controller

The controller component of an AP serves the function of monitoring
(and aggregating) incoming CGM sensor trace data, and then using
this information to make making insulin pump rate adjustment deci-
sions in real time (for example, to reduce the risk of hypoglycemia
induced by a rapid decline in BGL).

Many algorithms have been proposed for solving this control prob-
lem, and they can be broadly grouped into control theory-based ap-
proaches such as proportional-integral-derivative (PID) controllers;
logic-based approaches; adaptive statistical based-approaches (e.g.
based on moving averages); and machine learning-based ap-
proaches [10]. A drawback of several of these approaches is the need
to either set parameters which are patient-specific (e.g. a PID con-
troller has at least three important constants to set) or to run the con-
troller for a period of time in order to train a predictive model.

In order to circumvent these issues (mostly), we implemented the
fuzzy logic controller (FLC) proposed by Mauseth et al. [6] and re-
cently updated [7]. The FLC encapsulates expert knowledge about
insulin dosing in the form of fuzzy logic rules. The idea is that the
fuzzy rules comprise knowledge about what an expert diabetes clin-
ician would do in a given situation where an insulin dose needs to
be set. Since it is a knowledge-based approach, the controller is not
overly dependent on setting constants or training data. Furthermore,
the inputs to the controller are straightforward: the current BGL is
the first input; the BGL velocity (change since the last reading) is the
second input; and the BGL acceleration (how the velocity is chang-
ing) is the third input.

These three inputs are then “fuzzified” (mapped to fuzzy sets), and
following that a fuzzy lookup table containing the expert knowledge
is consulted for optimal dose calculation. In general, the table is de-
signed such that higher accelerations and velocities lead to higher
doses, while low absolute BGL values and strongly negative veloci-
ties switch the insulin pump off.

The FLC does have a single patient-specific parameter, the “per-
sonalisation factor” (PF), which can range from zero to ten. The PF
dictates the aggressiveness of the insulin treatment, with a value of
ten corresponding to a very weak treatment (all doses being multi-
plied by a factor of 0.002), while a PF value of zero is the strongest
treatment (all doses scaled by 1.74). Most patients should be ex-
pected to have a PF of around five, indicating a scaling factor of 0.92
of the dose computed by the FLC.

3 METHOD

In this section, the experimental setup, in particular the methods by
which the PF values are set on a patient-wise basis, and how artificial

missing data gaps were generated in the simulated CGM trace are
described.

3.1 Optimised PF value

Each individual has significantly different insulin sensitivity. Some
are more sensitive to insulin, so their blood glucose levels drop
rapidly in response to the same insulin dose than those who are less
sensitive. Thus, the FLC’s PF value is necessarily unique for each
individual.

To determine the optimal PF value for each adult virtual patient
in the T1D simulator, the following procedure was followed: for
each possible PF value, the simulator was run for ten virtual days
at a sampling interval of five minutes. The amount of time spent in
normoglycemia for each patient and each PF value respectively was
recorded. The PF value for each adult virtual patient which max-
imised the time spent in normoglycemia was then selected.

3.2 Missing Data Generation

One guideline concerning proper usage of CGM [4] state that about
70-80% coverage of sensor reading coverage is required over two
weeks for calculating metrics. Assuming this is the usual case, then
336 hours of sensor use over two weeks can be expected, leaving 68
hours of total CGM sensor gap over two weeks, or 4.8 hours per day
on average. Additionally, gaps are usually not scattered random indi-
vidual sensor readings, but are likely to occur contiguously in blocks
since events such as faults tend to last for significant periods of time.
On the basis of this assumption, we implemented a method to gen-
erate missing data gaps in the CGM trace. Essentially, the program
generates a random start time (between midnight to 1900 hours, in-
cluding mealtime) for each gap as well as a random length for the
gap (between 0.5 hours and five hours). See Figure 1 for an example
of the trace with gaps.

3.3 Failure Mode Strategies

In this section, five different failure model strategies are described.
As a baseline, results for an “ideal” set of simulations in which there
are no sensor trace gaps are also included. The failure mode strategies
are as follows:

1. Pump off
This strategy simply switches the insulin pump off when sensor
gaps are detected.

2. µ
µ is defined as the average value of the total insulin dose from the
previous one hour. Since there are twelve readings per hour in an
AP with a five minute reading interval, the average dose is defined
as

µ =
1
12

12X

n=1

di (1)

where di is the insulin dose i adjustments previously. The µ strat-
egy operates the pump at a constant rate of µ.

3. 0.5µ
On the basis that µ may produce doses that are sometimes too
high, the 0.5µ strategy is calculated in the same way, except that
the constant dose size is halved.



Figure 1: Example of data generated by running Simglucose for one virtual patient for 72 hours by using 0.5µ method. Gaps are shown as
periods of zeros in the CGM trace. Not shown here is the CHO intake that primarily drives the fluctuations in BGL.

4. Random choice (Rand choice)
Random choice constructs a method that randomly chooses a
value from the last one hour of insulin dosages, on the basis that
varying the dose size might be beneficial compared to the µ strate-
gies which computes constant doses. The expected value of the
random choice strategy equivalent to the dose as calculated by µ.

5. Hybrid method (0.5µ & LR<72)
Following initial results showing that the 0.5µ strategy was ef-
fective, a new strategy was defined that extended 0.5µ with a con-
straint: if the last reading (LR) before the sensor is down is smaller
than a preset value (in this case, 72.0 mg/dL), then the pump will
be turned off; otherwise, the 0.5µ strategy will be applied. 72
mg/dL was chosen as a threshold because it is just above the L1
hypoglycemia threshold defined in Table 1, and it is desirable that
this threshold is not crossed. The equation for this strategy is:

dose =

(
0 if LR <72.0
0.5µ otherwise

(2)

4 EVALUATION
In each experiments, 100 simulated days per adult virtual patient per
failure mode strategy was run. This gave a total of 10⇥6 runs per
patient. Each run took approximately ten minutes on a laptop with
a 2.6GHz Intel Core i7-9750 CPU processor. For all experiments,
the simulated GuardianRT CGM was used in conjunction with the
Insulet insulin pump.

Table 2 shows for each patient with their personalised PF value
according to the method of selecting the optimal PF value described
in the previous section.

The effectiveness of each failure mode strategy was then deter-
mined by calculating the time spent in standard glycemic ranges as
defined in Table 1. As mentioned, hypoglycemia can be considerably
more dangerous than hyperglycemia, so therefore time spent in the
L2 Hypoglycemia range is the most significant statistic in the results.

Figure 2 shows that these five strategies provide similar perfor-
mance in the L1 Hyperglycemia range. All the median values are

Range Definition
L2 Hypoglycemia <54 mg/dL (<3.0 mmol/L)
L1 Hypoglycemia 54 to <70 mg/dL (3.0 to <3.9 mmol/L)
Normoglycemia 70 to 180 mg/dL (3.9 to 10.0 mmol/L)
L1 Hyperglycemia >180 to 250 mg/dL (>10.0 to 13.9 mmol/L)
L2 Hyperglycemia >250 mg/dL (>13.9 mmol/L)

Table 1: Definitions of glycemic ranges used by [4].

Adult# 1 2 3 4 5 6 7 8 9 10
PF 6 4 8 6 5 6 7 6 7 6

Table 2: The optimised PF value for each adult virtual patient.
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Figure 2: Percentage of time spent in L1 hyperglycemia by failure
mode strategy across ten adult virtual patients.

quite close to each other (i.e. between 18.21 and 19.44). µ and
Rand choice perform quite well most of the time. The lowest per-
centage obtained due to Rand choice is below 5% for one patient.
However, 0.5µ and hybrid strategy have a more stable performance



with no significant outliers.
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Figure 3: Percentage of time spent in L2 hyperglycemia by failure
mode strategy across ten adult virtual patients.

Figure 3 depicts time spend in L2 hyperglycemia by the virtual
patients. It can be noticed that because of the high chance of being
severe hyperglycemia, the pump off strategy is probably the least
ideal failure mode strategy. Two strategies that produce the lowest
chance of being L2 Hyperglycemic are µ and Rand choice.
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Figure 4: Percentage of time spent in normoglycemia by failure mode
strategy across ten adult virtual patients.

Figure 4 depicts time spent in normoglycemia. Unlike the other
figures where lower is better, in this case higher is better. The figure
indicates that the last four strategies output similar median values
which are all quite close to the baseline no missing value strategy.
The best two strategies that give us the highest median time are again
µ and Rand choice. However, it is quite noticeable that these two
methods, especially Rand choice, as not stable, as observed before.
The percentage time spent in normoglycemia can drop to under 10%
for one of these strategies. The 0.5µ & LR<72 strategy gives the
most stable performance across virtual patients.

Figure 5 and 6 show time spent in the hypoglycemic ranges. From
these box plots, it can be observed that both µ and Rand choice sig-

nificantly underperform compared to the other strategies. In terms of
the more dangerous L2 hypoglycemia range (Figure 6), the pump off
and hybrid strategies work best.
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Figure 5: Percentage of time spent in L1 hypoglycemia by failure
mode strategy across ten adult virtual patients.
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Figure 6: Percentage of time spent in L2 hypoglycemia by failure
mode strategy across ten adult virtual patients.

5 CONCLUSION & FUTURE WORK
In this study, it was found that the hybrid method works well and is
furthermore simple to implement. In most cases, it was close to the
no missing values baseline strategy, especially in terms of time spent
in the critical L2 hypoglycemia range.

The hybrid method could therefore be used as a baseline for the
development of more sophisticated failure mode strategies (such as
those based on online CGM imputation or machine learning meth-
ods) in the future. It is also important to test this failure mode strategy
with other controllers and on other twenty patients (i.e., ten children
and ten adolescent patients) in addition to the FLC and ten adult pa-
tients analysed in this paper.
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Towards Causal Knowledge Graphs - Position Paper
Eva Blomqvist1 and Marjan Alirezaie2 and Marina Santini3

Abstract. In this position paper, we highlight that being able to
analyse the cause-effect relationships for determining the causal sta-
tus among a set of events is an essential requirement in many contexts
and argue that cannot be overlooked when building systems target-
ing real-world use cases. This is especially true for medical contexts
where the understanding of the cause(s) of a symptom, or observa-
tion, is of vital importance. However, most approaches purely based
on Machine Learning (ML) do not explicitly represent and reason
with causal relations, and may therefore mistake correlation for cau-
sation. In the paper, we therefore argue for an approach to extract
causal relations from text, and represent them in the form of Knowl-
edge Graphs (KG), to empower downstream ML applications, or AI
systems in general, with the ability to distinguish correlation from
causation and reason with causality in an explicit manner. So far,
the bottlenecks in KG creation have been scalability and accuracy
of automated methods, hence, we argue that two novel features are
required from methods for addressing these challenges, i.e. (i) the
use of Knowledge Patterns to guide the KG generation process to-
wards a certain resulting knowledge structure, and (ii) the use of a
semantic referee to automatically curate the extracted knowledge. We
claim that this will be an important step forward for supporting inter-
pretable AI systems, and integrating ML and knowledge representa-
tion approaches, such as KGs, which should also generalise well to
other types of relations, apart from causality.

1 Introduction
Knowledge Graphs (KGs) have emerged in the past decade as a
prominent form of knowledge representation, frequently used by
large enterprises such as Google, Facebook, Amazon, Siemens, and
many more [16]. A KG is simply a graph representing some set of
data, usually coupled with a way to explicitly represent the mean-
ing of the data, e.g. an ontology. This can be seen as a revival of
graph-based knowledge representation, with roots in the early 1970’s
(for instance, the term knowledge graph was used as early as 1972
by [28]), but with recent advances mainly related to the Semantic
Web, such as Linked Data on the Web, and Semantic Web ontolo-
gies. This renewed popularity has been accelerated by two main re-
alisations regarding Machine Learning (ML), including Deep Learn-
ing (DL) models: Although outperforming humans on many specific
tasks, ML/DL methods (i) are often unable to determine the seman-
tics of the correlations found in the data, and (ii) lack the ability to
transparently explain a prediction. A particularly challenging exam-
ple is the case of causal relations. As pointed out by [17] the future
development of AI depends on building systems that incorporate the
notion of causality, e.g. to allow the system to reason about situations

1 Linköping University, Sweden, email: eva.blomqvist@liu.se
2 Örebro University, Sweden, email: marjan.alirezaie@oru.se
3 RISE, Research Institutes of Sweden, email: marina.santini@ri.se

that have not been previously encountered, based on general princi-
ples. There is an active field of research developing specific ML/DL
algorithms targeting causal learning and reasoning. However, only
targeting ML/DL-based causal reasoning does not necessarily im-
prove interpretability, hence there is a need to also develop methods
for producing and utilising interpretable causal models, as we shall
discuss further in Section 3.

KGs, being symbolic models, allow to define the semantics of
relations in data, at the level of formalisation necessary for an in-
tended task, e.g., through ontologies if needed, and by integration
with ML/DL methods this supports interpretability of predictions.
Hence, KGs can be used to address both the main shortcomings of
ML/DL mentioned earlier, but the construction of KGs is a major
bottleneck in their adoption, just as was the case with knowledge rep-
resentation in general, in early AI systems. Outside large companies,
such as Google, and huge crowdsourcing initiatives, such as Wikidata
[32], it is usually infeasible to construct large scale KGs ”manually”.
Rather, they have to be bootstrapped from existing sources, such as
semi-structured data or text. Current KG generation algorithms, how-
ever, either do not take into account the desired formalisation of the
KG at all, or they hard-code it into the extraction algorithm. An ex-
ample of the latter is DBPedia [20], which is specific to a Wiki source
and results are expressed using a fixed ontology, which means the
method does not generalise to new settings or other input structures.
Additionally, the quality of the generated KGs is usually poor [11],
requiring manual curation, and further, no automated approach so far
targets complex relations, e.g. causality. Therefore, it is our goal to
specifically target new methods and algorithms for KG generation
from text, which (a) explicitly take KG requirements into account,
e.g. allowing to flexibly specify the required schema of the output
graph, and (b) automate the curation process, to radically improve
the quality of resulting KGs. In order to fulfil a specific set of KG
requirements, as well as to achieve a sufficient level of accuracy, we
propose to use the notion of Knowledge Patterns (KPs) [?] as for-
malisations of KG requirements. A KP represents both a linguistic
frame that can be detected in text [2], but also the representation of
that frame in the desired KG output formalism, i.e. similar to the no-
tion of Ontology Design Patterns (ODP) [5, 4]. In order to tackle a
particularly important obstacle to the future development of the AI
field, i.e., considering the importance of causal models and reason-
ing, we intend to specifically target KPs and KGs targeting complex
causal relations.

2 ML - Causality and Interpretability

While ML methods perform very well in learning complex connec-
tions between large amounts of input and output data, there is no
guarantee that they capture causation (cause and effect relations).
This shortcoming stems in part from the ignorance of data-driven



methods with respect to reasoning techniques, which are effortlessly
applied by humans. Consider the two imaginary groups of people:
Group A: 100 asthmatic people with a death rate of 40%, and Group
B: 100 asthmatic people who also suffer from pneumonia, with a
death rate of 35%. A ML method solely fed with the data can only
learn a nonsense result saying: asthmatics with pneumonia have more
chances to live! [8]. The learning method has perhaps learned the as-
sociations (or correlations) among the variables in the data correctly.
However, due to the absence of context and common sense knowl-
edge, and also the lack of reasoning abilities, the method has not been
able to explicitly and correctly capture the cause-effect relations.
That is why the outcome of the example above is not only counterin-
tuitive, but also misleading. By context, we refer to any information
that may not be represented in the observed data directly, and may
include the actual causes behind the observations, e.g., some set of
background information about the setting. In the given example, peo-
ple in Group B are more high risk patients than those in Group A. The
lower death rate of people in Group B can have different reasons, for
instance, due to their high risk status they may more likely be taken
to the intensive care unit (ICU) or they may be taking more effective
medicines, which are all factors (or features) not considered by the
learning model [29]. Additionally, some common sense knowledge,
such that additional diseases generally increase mortality rather than
decreasing it, could have also supported a system in avoiding the er-
roneous conclusion, e.g., through using knowledge representations
as a referee for the learned model [1], as we will discuss furhter later
on in this paper.

To provide sufficient support for a reliable and precise prediction
or diagnosis process, every prediction made by a system needs to
be perfectly transparent and interpretable by the user. This is neces-
sary for any autonomous system to act as the support for humans in
making decisions, and even legally and ethically required in many
domains, including the medical domain. Although ML should def-
initely be a part of the solution, what is predicted needs to be in-
terpretable, so that any conclusion based on that knowledge can be
explained in detail, most often including some notion of reliability or
confidence. A solution to this shortcoming of ML methods is to inte-
grate them with explicitly represented knowledge, such as in the case
of causality, a formal causal model that reflects all the possible and
existing relations, including cause-effect ones, among the concepts
of a given domain.

3 Causal Models
By causal model, we refer to a parametric model that represents a set
of probability densities over variables including concepts defined in
a system (e.g., diseases and symptoms in the context of medicine),
together with the plausible causal relationships between them [31].
Once available, integration of causal information (inferred from a
causal model) with the training (observational) data, can enable a
ML/DL method to also learn the causes behind its mistakes (i.e., mis-
classification) [1], and consequently improve its performance. In this
paper we specifically target causal relations, i.e. the focus is not on
determining the probability distributions but rather on the underlying
knowledge representation.

Although recent research reflects the considerable impact of causal
inference in different domains, such as public health [15] or earth
science and climate change [27], it is still also challenging to involve
causal models within a learning process. One of the hindering fac-
tors is, in fact, the lack of available domain-related causal models
compatible with the data used for learning [22], which leads to the

need of manually creating such models for each use case. However,
for many domains nowadays, such as e-health and patient monitoring
through smart homes, both the set of potential outcomes and the set
of variables are extremely large. Therefore, manually constructing
and maintaining causal models requires a huge effort, and cannot be
easily adapted to a new domain. Even further, manual construction of
models representing all the environmental features and relations may
not even be practically feasible, due to the changing nature of the
environment. This has already changed the focus of research to auto-
matically generating causal models [22], which is a line of research
we are also contributing to.

Furthermore, causal relations are usually not as simple as one ex-
plicit link between two well-defined (cause and effect) concepts. De-
pending on the context and the conditions, we may, for instance, end
up with a set of causations with different certainty values. The ap-
propriate modelling of the causal relations also heavily depend on
the use cases of the resulting model, e.g., the kind of reasoning and
prediction tasks that it should support. For instance, reasoning on po-
tential guideline and treatment interactions in an individual patient
context, e.g., the target use case of [7], requires a highly complex
causal model, while in other cases a more simple one might suffice.
In Fig. 1, we illustrate this through two examples. At the right (b) is a
highly complex conceptual model (inspired by the model in [7]) rep-
resenting the belief that a causal relation exists, with some frequency
and strength. At the left (a) is a also a causal relation, but represented
as a much more simple conceptual model.

Our proposed method intends to address the lack of causal models,
by automating the generation of highly accuracte causal KGs from
text. We intend to cater for the differing requirements of specific use
cases by using Knowledge Patterns (KPs), similar to the conceptual
models in Fig. 1 coupled with linguistic frames, to represent require-
ments that make sure the resulting causal model enable the required
type of reasoning or predictions.

4 Proposed Approach: Generating Causal KGs
from Text

The overarching goal of our research is to support the integration
of ML/DL and Knowledge Representation, for improving both ac-
curacy and interpretability of downstream AI applications. As dis-
cussed previously, we believe that KGs can play a crucial role in
this integration, but then the KG construction bottleneck needs to be
resolved. Therefore, we propose to develop new methods and algo-
rithms for KG generation from text, which (a) explicitly take KG
requirements into account, e.g. allowing to flexibly specify the re-
quired schema of the output graph, and (b) automate the KG curation
process to radically improve the quality of resulting KGs with mini-
mal human effort. In order to fulfil a specific set of KG requirements,
as well as to achieve a sufficient level of accuracy, we argue that the
notion of Knowledge Patterns (KPs) [?] as formalisations of KG re-
quirements, is a crucial concept. We here specifically focus on KPs
and KGs targeting causal relations, since causal models and causal
reasoning are one of the main challenges for ML approaches today.
However, the approach we outline is generic, and by exchanging the
KPs used, it can be used to target any type of complex relation that
can be expressed in natural language. The proposed approach is a
novel combination of methods from ML/DL for NLP, with recent
advancement in Knowledge Representation, such as KGs and KPs.

As can be seen in Fig. 2, we propose a continuous process that
iteratively improves its ML/DL models based on feedback from a
curation step. As initial input (1), the process needs a set of KPs rep-
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Figure 1. Abstract (conceptual) illustration of two different KPs (here called a and b) for expressing causation, where the patterns produce models at different
levels of detail and complexity, hence, targeted at different use cases of the resulting KG. Notation in the figure is informal, but the models could be expressed
using an ontology language, such as OWL (as in [7]), in which case the boxes with rounded edges would represent classes, the unfilled arrows subclass relations,
and the filled arrows would be object or datatype properties attached to classes based on domain and range restrictions.
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Figure 2. We propose to use KPs to guide the iterative ML process for extracting a Knowledge Graph from unstrutured texts, as well as automating the curation
process using a semantic referee. The generated Knowledge Graph, can later be used to support a ML method to derive causal relations from observational data.

resenting the requirements of the output KG, one or more language
models, as well as a text corpus from which to extract the KG. The
language models then need to be tuned (2) to the relations expressed
by the specific KPs at hand. Next, initial instantiations of the KPs,
i.e., the linguistic frames they represent, are detected in the text cor-
pus and formalised using the KP as a “schema” (3), whereafter these
KP instantiations are merged into an initial KG (4). The initial KG is
then subjected to an automated curation and repair process (5), where
the formalisation of the KPs is used by a semantic referee to detect
postential mistakes in the extracted KG, and suggest repair actions.
The result of this curation process is not only a high-quality KG, but
also feedback sent back in order to tune, or even retrain, the language
models, and to iteratively extend the KG by continuously running the
overall process. Below, we go into more details of the ML/DL-based
NLP methods to be used, the role and nature of the KPs, and the
semantic referee used for curation, respectively.

4.1 Relation Extraction from Text
Causal relations can be extracted from running text by exploiting lin-
guistic cues and then the detected relations can be formalized, for in-
stance, in the form of simple facts (triples). For example, the causal
relation in the sentence COVID-19 is caused by the SARS-CoV-
2 virus, can be formalized as the fact <SARS-CoV-2 causes
COVID-19>, which could be represented as a triple in a standard
Knowledge Representation language, such as RDF4. However, in
4 https://www.w3.org/RDF/

many cases more complex representations are needed, such as in-
cluding unknown variables, as introduced by Pearl [24], in the notion
of Structural Causal Models. Creating a relation such as: COVID-
19:=f(SARS-CoV-2, randomness), which means that the appearance
of the COVID-19 disease depends on the virus and some other ran-
dom vairable(s) independent from the virus, e.g. environmental fac-
tors, and features of the person in question 5. An illustration of two
conceptual models for representing causal relations were already
given in Fig. 1. To instantiate such models (i.e., such KPs), linguistic
expessions of causation such as caused by, cause, as a result, for this
reason, due to the fact, consequently and similar are cues identified
by NLP tools, such as Part-of-Speech Taggers, Dependency Parsers,
lexicons, and the like [19, 9].

The NLP task that will contribute to our envisioned approach is
mainly Information Extraction (IE), or more specifically Relation
Extraction (RE). Recent work in this field includes [30], who de-
scribe an innovative approach for relation learning, based on the pre-
training of a huge language model, such as BERT [10], passing sen-
tences through its encoder to obtain an abstract notion of a relation,
and then fine-tuning on a certain schema, like Wikidata or DBpe-
dia, mainly containing simple binary relations. Our aim is similar,
although we intend to develop a slightly different method that can
be tuned to a (combination of) a set of smaller, abstract, KPs, tar-
geting more complex relations. An interesting aspect is that [30] are
also able to extract generic relations, i.e., potential schema exten-

5 The notation is again informal, but the symbol := is here used to indicate
the causal relation, and f() represents a function.
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sions, which might be a valuable addition in our proposed curation
and feedback step. Earlier work on frame detection in text [14, 12],
and generation of KGs from this, may also be relevant for compar-
ison, especially since [14] also applied the notion of KPs related to
the frames detected, however, they did not allow for the frames to be
preselected as the KG requirements, or exchanged.

Further, NELL [23] targets the learning of common facts, ex-
tracted from natural language texts. Although their approach does
not target a specific output structure or relation, i.e., specific KPs, the
continuous improvement process is similar to our proposal. In other
recent studies, such as by [25], KGs are also generated from natu-
ral language text, but they do not target complex relations such as
causality, and the approaches use a fixed output schema.

Very little research exists on extracting more complex relations,
i.e. relations that cannot be expressed as single facts (triples), and in
particular causal relations, directly from text. One study that gener-
ated causal KGs from text is [26]. The difference to our envisioned
approach is mainly the types of input data, as well as that [26] tar-
gets one fixed logical structure of the output, i.e., a single fixed KP
expressing simple direct relations between diagnoses and symptoms.
To learn a more complex formalisation of causality, we may also
need more complex learning, such as suggested by [18], who pro-
posed a method for extracting a relation graph directly from natural
language, where the relations express entailment rules rather than
simple facts (triples).

Another area where NLP has been widely used is KG comple-
tion, e.g., link and relation prediction in an existing KG. Although
we intend to generate a KG “from scratch”, the KG generation from
instantiated KPs, as well as the subsequent curation process, have
some similarities with link and relation prediction. Hence, inspira-
tion may come from work such as [33], who propose to use pre-
trained language models for knowledge graph completion, scoring
candidate triples for addition through their KG-BERT model. This
is similar to how we envision to assess potential links between the
instantiated KPs, when generating the overall KG. Another approach
was recently proposed by [6], where language models such as GPT-2
are combined with a seed KG, allowing the learning of its structure
and relations, whereafter the language model can generate new nodes
and edges. However, our KPs are abstract and do not contain concrete
facts, which is a main difference to the seed KGs they used.

4.2 Knowledge Patterns
The use of patterns in developing knowledge representation models
has a long tradition in AI, starting from the idea of Minsky in his pro-
posal of frames [21], and continued towards the notion of ontology
design patterns (ODP) in modern ontology engineering [5, 4]. ODPs
have also been generalised into KPs [13], where a KP may repre-
sents both a linguistic frame that can be detected in text [3], but also
the representation of that frame in a desired output formalism. How-
ever, in [13], KPs are described and defined informally, and there is
currently no concrete formalism for representing and applying KPs
specifically for KGs.

In order to capture specific types of knowledge from text, support-
ing a specific task, such as medical decision support, the knowledge
extraction process needs to be carefully guided by the requirements
of the intended task of the resulting KG. Tasks may include different
types of queries, prediction, applying specific graph pattern matching
algorithms, or reasoning. To address this challenge we argue for ap-
plying KPs as both a representation of the KG requirements, as well
as acting as a “schema” for the resulting KG. In short, as shown in

Figure 2, we propose to tune the language models to detect the spe-
cific KPs required, and further generate a KG from the instantiated
KPs.

Using KPs to guide the learning process makes it possible to cap-
ture different possible contextual situations separately, and target dif-
ferent causal models, each focused on a certain specific downstream
task. Depending on the relations that are found in the text, KPs will
also allow us to calculate more precise certainty values for each cap-
tured cause, similar to how we have used knowledge representations
as a referee for ML methods in our previous work[1]. This also al-
lows us to filter out extracted knowledge that does not make sense,
or is otherwise of questionable quality.

However, this also introduces new challenges, because although
KPs have been studied to some extent for ontologies and the Seman-
tic Web, there is so far no formal definition of a KP that can be used
operationally (technically) by a system, in particular for KGs. For
this purpose we need to operationalise the definition in [13], by ex-
panding on the connection between linguistic frames and ODPs, for
use within our KG extraction framework.

4.3 Semantic Referee

Related to the integration of ML/DL and symbolic models, and us-
ing knowledge representation to verify and repair results of ML/DL
algorithms, we rely on the idea of a semantic referee introduced in
our previous work [1]. In that work, we demonstrated the benefit of
a semantic referee applied upon a causal model in the form of an
ontology (OntoCity) for improving a satellite imagery data classifier.
In particular, the ontology together with a reasoning process acted
as a semantic referee to guide the ML method (i.e, the classifier).
Using causal information represented in the ontology, the semantic
referee was able to explain the causes behind errors, and send the ex-
planations as feedback to the classifier. In this way, the ML method
is able to know the causes behind its mistakes and therefore better
learn from them [1]. We argue that this previous work, will be highly
useful, when integrated as step (5) in our KG extraction framework,
illustrated earlier in Fig. 2.

5 Conclusion

In this paper, we propose a possible approach to capturing causal
knowledge, in a scalable fashion, and representing it as a shared KG.
We argue that the advantage of constructing causal KGs is the inte-
gration of causality in reasoning and prediction processes, such as the
medical diagnosis process, to improve the accuracy and reliability of
existing ML/DL-based diagnosis methods, by producing transparent
justifications and explanations of the output.

More specifically we focus on KGs as a means for providing back-
ground knowledge and reasoning capabilities to ML/DL-based AI
systems, and target the KG creation bottleneck. In particular, we
recognise the challenge related to causal relations, where the capabil-
ity of performing causal reasoning is often lacking in pure ML-based
systems. Therefore we propose to generate causal KGs from textual
information, to then be used as the basis for causal models. Our novel
framework is based on using a set of formal KPs as input, acting both
as the requirements of the KG as well as the means for formalising
the extracted knowledge and curate it through logical reasoning.
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Abstract. Fracture detection has been a long-standing
paradigm on the medical imaging community. Many algo-
rithms and systems have been presented to accurately detect
and classify images in terms of the presence and absence of
fractures in di↵erent parts of the body. While these solutions
are capable of obtaining results which even surpass human
scores, few e↵orts have been dedicated to evaluate how these
systems can be embedded in the clinicians and radiologists
working pipeline. Moreover, the reports that are included with
the radiography could also provide key information regarding
the nature and the severity of the fracture. In this paper, we
present our first findings towards assessing how computer vi-
sion, natural language processing and other systems could be
correctly embedded in the clinicians’ pathway to better aid
on the fracture detection task. We present some initial exper-
imental results using publicly available fracture datasets along
with a handful of data provided by the National Healthcare
System from the United Kingdom in a research initiative call.
Results show that there is a high likelihood of applying trans-
fer learning from di↵erent existing and pre-trained models to
the new records provided in the challenge, and that there
are various ways in which these techniques can be embedded
along the clinicians’ pathway.

Keywords: Fracture detection, natural language process-
ing, convolutional neural networks, clinicians’ pathway

1 Introduction

In recent years, fracture detection has been one of the most
cited challenges in medical imaging analysis, evidenced both
by public competitions [18] and clinical trials [9] alike. The
design of a system which aids clinicians in the automatic de-
tection of fractures is of paramount to reduce the workload of
the front line sta↵ and allow them more time to focus on the
most urgent cases. To address this issue, the Scottish Govern-
ment, Opportunity North East (ONE) and the Small Business
Research Initiative (SBRI) announced a challenge to carry out
a project towards looking at this problem in the healthcare
system in the northeast of Scotland3. A team comprised of

1 Robert Gordon University, Garthdee Road, Aberdeen, Scotland,
UK, Contact email: c.moreno-garcia@rgu.ac.uk

2 Jiva.ai Ltd, 132 Street Lane, Leeds, UK, Contact email:
info@jiva.ai

3 http://cfmgcomputing.blogspot.com/2019/11/artificial-
intelligence-for-fracture.html

members from the industry (Jiva.ai) and academia (Robert
Gordon University) was formed to look at the problem and
design a solution.

In addition, a key contribution of this work is the mod-
elling of the clinician’s pathway, exploring the current pro-
cess of radiology imaging for fracture treatment. This was
built through a series of co-creation sessions with a reporting
radiographer, then verified by two clinicians and two other
reporting radiographers. By designing this pathway, we iden-
tified three key stakeholders (clinician, radiologist, patient)
and four sub-processes: (1) requesting radiology images; (2)
acquiring radiology images; (3) reporting on radiology im-
ages; and (4) decision support. By understanding the current
approach to radiology imaging for fracture treatment, we con-
sider that we are capable of o↵ering a valuable contribution
that will allow research groups to pinpoint opportunities for
smart automation of this process in future.

The contributions of this paper are as follows:

1. Identify the current processes involved with the various pro-
cedures a↵ected by radiology imaging for fractures.

2. Explore where these processes can be improved through the
implementation of AI.

3. Identify what form of AI would be most applicable in order
to maximise the obtained benefits by the a↵ected stake-
holder.

4. Given the limited amount of samples provided by the chal-
lenge proposer, perform initial proof of concept tests using
baseline methods to identify the potential of transfer learn-
ing in this domain.

2 Related Work

2.1 Image recognition

Only a handful of demonstrations of machine learning, com-
puter vision and natural language processing for bone frac-
ture detection appear in scientific literature. Lindsey et al. [9]
demonstrated that a deep neural network trained on 256’000
x-rays could detect fractures with a similar diagnostic accu-
racy to a sub-specialised orthopaedic surgeon. Also, Olczak et
al. [10] applied deep learning to analyse 256’458 x-rays, and
concluded that artificial intelligence methods are applicable
for radiology screening, especially during out-of-hours health-
care or at remote locations with poor access to radiologists



or orthopedists. Smaller scale studies using tens to low thou-
sands of images include Lawn et al. [8], Kim and MacKinnon
[5], Tomita et al. [14], Dimililer [3] and Bandyopadhyay et al.
[1], amongst others.

Three technical frames have been described as applicable
for ML in radiology: image segmentation, registration and
computer-aided detection and diagnosis [17]. Out of these,
graph models, such as Bayesian networks and Markov ran-
dom fields, have been identified as the two most widely used
techniques for fracture modelling. However, recent advances
in generative deep models (e.g. variational autoencoders) [6]
have been applied to annotate both images and text; which
are yet to be exploited in radiology and related applications.
Similarly, multi-modal learners [16] have been used to learn
from image and text to improve recognition of objects; unlike
single modality learners these can combine mixed embedding
spaces that unite di↵erent modalities. These have been ap-
plied to public text and images but digital health applications
are yet to emerge. Given the relevance of both image and text
to clinical radiology we expect to adapt these algorithms to
create an innovative unified embedding suited to automated
annotation by deep generative algorithms. Indeed, we can use
state-of-the-art translation algorithms such as transformers
[15] which exploit similarity and capitalise on adjacency infor-
mation, to generate reports from both radiograms and clinical
text.

3 Modelling a Clinician’s Pathway

Any artificially intelligent solution which is suggested to re-
solve some problem within the field of radiology should be
rooted in deep understanding of the domain and user re-
quirements. With this in mind, we have received input from
domain-experts to develop a clinician’s pathway, detailing
current process of radiology imaging for fracture treatment. In
this paper, we aim to demonstrate the opportunities which of-
fer potential for smart automation in this field. In particular,
we aim to highlight the areas where the application of artifi-
cial intelligence would be impactful for increasing e�ciency,
improving patient experience and decreasing cost.

3.1 Co-Creation of Clinician’s Pathway

We performed a multi-stage co-creation process to model the
clinician’s pathway which was indicative of real-world radiol-
ogy practice. These stages were divided into a design phase,
where we aimed to understand and model the current pro-
cesses for the acquisition and reporting of radiology images,
and a validation phase, in which we obtained unbiased feed-
back on our model from personnel external to our co-creation.
The result is a clinician’s workflow which has been devel-
oped alongside a reporting radiographer, and verified by two
clinicians (one consultant radiologist and one senior accident
& emergency doctor) and two reporting radiographers from
within the National Health Service (NHS) Scotland. We are
therefore confident in its accuracy and its suitability to de-
scribe real radiology processes. Although this pathway has
been built with input from British radiologists, we suggest it
can be generalised to wider radiology practices (within rea-
son).

During the design phase, we organised two separate co-
creation sessions. In the first session, we met with a report-
ing radiographer to discuss the complete journey of a patient
who was given an appointment for radiology imaging for a
suspected fracture. This session was useful to establish the
process start-points and end-points. In the second session, we
observed a reporting radiographer reporting on a series of x-
ray images for suspected fractures. This session was intended
to identify relevant technologies and the role they played in
reporting on radiology images. The outcome of this two stage
design phase was an initial draft of the clinician’s pathway
which could be validated by domain experts.

We then organised three sessions for the validation of the
developed workflow. In the first session, we obtained feed-
back upon the pathway from the reporting radiographer who
was directly involved in its formation. This allowed any er-
rors which had arisen due to misunderstanding aspects of the
design phase to be corrected. In the second session, a mem-
ber of the research team met with a clinician and a reporting
radiographer to explain and discuss the draft pathway and
obtain feedback. This session was designed to ensure that the
pathway could be generalised to more than just the single
radiographer with whom it had been co-designed. In partic-
ular, the session resulted in a number of updates to the role
of the clinician as an actor in the process. Finally, we used
the third session as an opportunity to obtain blind feedback
on the developed pathway as a form of litmus test regarding
its accuracy to radiology practice. We presented the pathway
to a new clinician and reporting radiographer, and requested
feedback on any areas where they felt (a) that the pathway
was not indicative of real-world practice and (b) that there
were opportunities for artificial intelligence to make the pro-
cess more e�cient.

The results of the validation sessions were very valuable
for the design process. As a methodology, by performing our
co-creation of the clinician’s pathway in this manner, we are
confident it is accurate to real-world practice, and general-
isable beyond simply an individual’s viewpoint. In the final
validation session, the clinician did not highlight any areas of
the workflow which were not indicative of real-world practice,
while the reporting radiologist suggested only a minor amend-
ment to terminology. Furthermore, the areas which both of the
participants suggested were suitable for artificial intelligence
to make a process improvement very closely overlapped with
our own findings as researchers. We discuss this in more detail
in Section 3.3. In the following subsection, we will introduce
and discuss the developed clinician’s pathway in detail.

3.2 Resulting Clinician’s Pathway

In modelling the process of radiology imaging for fracture
treatment, we identified three key stakeholders (clinician, ra-
diologist, patient) and four sub-processes: (1) requesting radi-
ology images; (2) acquiring radiology images; (3) reporting on
radiology images; and (4) decision support. The complete fig-
ure can be accessed via this link4 and can be seen in Figure 1.
We summarise our pathway using a workflow diagram which
we will break down into respective processes in Figures 2, 3
and 4.

4 https://www.dropbox.com/s/3gx7bicf43bn0lx/wrk flw comp c.
pdf?dl=0
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Figure 1. A complete depiction of the current workflow for requesting, acquiring and reporting upon radiology images

1. Requesting Radiology Images: When requesting ra-
diography images for a patient, a clinician sends an imaging
request to the radiology department. This request contains in-
formation on the patient’s demographic (including a medical

history), information about the clinician making the request
and the examinations requested. It allows an appointment to
be scheduled on the Radiology Information System (RIS), and
the ordering information is dispatched to Picture Archiving



and Communications System (PACS). PACS is an end-to-end
system that supports the process of acquiring radiography
images of a patient from referral of the patient until diagno-
sis and subsequent treatment are agreed. Contained within
PACS is the RIS, where the textual components of patient
information is stored.

2. Acquiring Radiology Images: Each day, the RIS au-
tomatically generates a work list for each imaging modality.
This work list gives the radiologist (or the reporting radiog-
rapher) access to the request information created by the orig-
inal referring clinician, helping them to understand the imag-
ing requirements. This enables the radiologist to perform the
requested imaging. After the imaging has been performed,
the medical equipment will generate images in Digital Imag-
ing and Communication in Medicine (DICOM) standard, and
load them into a graphic user interface where they are made
available for the radiologist to annotate and report. A graph-
ical representation of this is displayed in Figure 2. DICOM
defines an image standard and format for medical images.
Images are high resolution and are linked directly with other
patient data (such as name, gender and age). It was devel-
oped by the National Electrical Manufacturers Association
(NEMA) as part of a set of standards that define best prac-
tice and inform the international standard for the capture,
retrieval, storage and transmission of medical imaging data.
DICOM is currently the most commonly used standard across
the world for medical imaging, and is implemented in most
radiology, cardiology and radiotherapy devices, as well as de-
vices in other medical domains such as dentistry.

3. Reporting on Radiology Images: Radiologists can
access these images by calling up a list of unreported examina-
tions. For each patient, previous images and reports are also
available to support diagnosis. PACS enables radiologists to
annotate the images to highlight areas of interest or identify
supporting evidence for their diagnosis. These annotations in-
clude the ability to perform simple measurements (length of
objects, angles of intersections, etc) and to mark a Region of
Interest (ROI) on the image. This allows the radiologist to
use tools to capture metadata about the ROI, including its
area, average pixel values, standard deviation, and range of
pixel values.

The radiologist will then generate a textual report to sum-
marise and describe their findings. These reports have no
set template or length, but generally include a statement of
whether a fracture has been detected, what type of fracture
it is, where it is located, and the seriousness of the breakage.
Furthermore, the reports may be appended to existing docu-
mentation on the patient (if previous radiology records exist)
or may be used to begin a radiology record (if no previous
visits have been recorded). Many countries then require the
reports to be authorised by a radiologist before being released
to a clinician. For example, within the United Kingdom the
standards for fail-safe communication of radiology reports are
governed by the Royal College of Radiologists (RCR)5. The
result of these factors is that the reports are a complex textual
data source with limited uniformity and describing a broad
range of diagnosis and observations. We represent this infor-
mation as part of the workflow displayed in Figure 3.

4. Decision Support In the existing pathway, decision

5 http://bit.ly/rcr-standards

support occurs after the radiology reports are generated. This
is non-optimal; often for accident and emergency fracture
cases (which make up the majority of fractures in a hospi-
tal) the clinician will attempt to read and comprehend the
generated radiology images without any input from an expert
radiologist. This can be seen in the current workflow in Fig-
ures 2 and 4. This occurs because experts can be unavailable
- not all radiology sta↵ are su�ciently trained to report on
acquired images. As a result the clinician is forced to make
a diagnosis and organise follow up treatment on the basis of
their individual knowledge. This can lead to misdiagnosis, if
the clinician’s findings are not consistent with the radiolo-
gist’s, which can have an impact on the patient’s health as
well as financial consequences for the hospital involved.

Having developed an understanding of the current proce-
dure of radiology imaging for fracture treatment, we are mo-
tivated to make some recommendations where artificial intel-
ligence could make improvements to this process.

3.3 Opportunities for Artificial Intelligence

The key outcome of this work is highlighting the applicabil-
ity of artificial intelligence in two places: to reduce burden
on radiologists by (1) autonomously classifying radiology im-
ages and (2) generating understandable and accurate medical
reports to describe the intelligent system’s findings. Appli-
cations of artificial intelligence to fill these gaps presents an
opportunity to improve decision-support for clinicians by giv-
ing them access to the information immediately. This is a key
factor that is missing from much of the research literature
on this topic; although an artificial intelligence method for
fracture recognition should enhance the e�ciency of radiolo-
gists, it should also improve the decision-making of clinicians.
Therefore, it should be of a suitable form to be absorbed by
that user group.

This outcome is supported by the verification obtained from
our test group of clinicians and radiologists. Based on their
feedback, we have highlighted the most impacted area of the
current clinical pathway in Figure 5.

As seen in our discussion of related work, there has been
much exploration of autonomous classification of fracture im-
ages throughout the literature [1, 3, 5, 8, 9, 10, 14]. However,
few works have considered how this could be integrated with
existing medical processes. It is clear that from a clinician’s
perspective, it would be desirable to have the classification of
the image and the report in order to support their decision-
making. This suggests an ecosystem of artificial intelligence
processes would be much more suitable than a standalone
method.

4 Experiments on Image Classification

The main purpose of the experimental framework was to test
the learning capabilities of di↵erent baseline algorithms and
settings to classify the images provided in the challenge as
fracture/no fracture. To do so, the first task consisted of hav-
ing a specialist re-annotate the data provided by splitting it
into fracture and no fracture labels, based both on the visual
aspect of the radiography and on the information provided
by the text reports. It was discovered that while most of the
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Figure 2. The co-created workflow for requesting and acquiring radiology images.
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Figure 3. The co-created workflow for reporting on radiology images.

images corresponded to ”regular” scenarios (where the pur-
pose is to assess whether the patient has su↵ered a fracture or
not), some other cases also contained follow-up reports (iden-
tified as POP) where the issue is not to identify the pres-
ence/absence of a fracture, but rather to give a follow up for

a patient which already has had the fracture identified in a
previous visit. We labelled 73 images as positive (i.e. with
fracture) and 138 negative (i.e. no fracture). Moreover, six
examples were POP fractures, and thus were not included in
our experiments.
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Figure 4. The co-created workflow for using radiology images for decision support.

Figure 5. AI provides an opportunity to provide decision support much more quickly by classifying an acquired image and generating

a suitable report to describe its findings.

4.1 Datasets

To demonstrate the potential of transfer learning capabilities
of the selected algorithms towards the NHS provided records,
we used the following publicly available dataset.

MURA: The MURA (MUsculoskeletal RAdiographs)
dataset is a large dataset of bone X-rays. Algorithms are
tasked with determining whether an X-ray study is normal or
abnormal. It consists of X-ray scans on elbow, finger, forearm,
hand, humerus, shoulder and wrist. The training set consists
of 14’873 positive cases and 21’939 negative cases while the
validation set has 1’530 positive examples and 1’667 negative
examples. Among them, forearm and wrist are close to our
problem, which consists of 7’443 negative and 5’094 positive
examples. Images from this dataset can be accessed here6.

6 https://stanfordmlgroup.github.io/competitions/mura/

4.2 Image Preprocessing

To increase the likelihood of classification and the training
sample size, We applied the following preprocessing tech-
niques, which are the most commonly used in related liter-
ature [18]:

• horizontal flip, width shift by 0.1,
• height shift by 0.1,
• shearing with range 0.1,
• zoom with range from 0.9 to 1.25 and
• random rotation from 0 to 15 degrees.

4.3 Architecture Details

These followings baseline architectures were used in our ex-
periments:

A VGG 16 [11] is a Convolutional Neural Network (CNN)
model proposed by Simonyan and Zisserman. The model



achieves 92.7% top-5 test accuracy in ImageNet, which is a
dataset of over 14 million images belonging to 1’000 classes.
It is an improvement over the classical AlexNet [7] by re-
placing large kernel-sized filters (11 and 5 in the first and
second convolutional layer, respectively) with multiple 3⇥3
kernel-sized filters one after another. The original VGG16
was trained for weeks and was implemented using NVIDIA
Titan Black GPU’s.

B Resnet 50 [4] is a CNN architecture of 50 layers deep,
each of which is formulated as learning residual functions
with reference to the layer inputs, instead of learning unref-
erenced functions. Because of these residual modules, the
architecture can become very deep. This architecture won
the 1st place on the ILSVRC 2015 classification challenge.

C Inception V3 [12, 13] is a CNN architecture which
achieved improved utilisation of the computing resources
inside the network by carefully crafted design that allows
for increasing the depth and width of the network while
keeping the computational budget constant. To optimize
quality, the architectural decisions were based on the Heb-
bian principle and the intuition of multi-scale processing.
The authors also proposed ways to scale up networks in
ways that aim at using the added computation as e�-
ciently as possible by suitably factorised convolutions and
aggressive regularization. Tests were made on the ILSVRC
2012 dataset, in which with an ensemble of four models
and multi-crop evaluation, authors reported 3.5% top-5 er-
ror on the validation set (3.6% error on the test set) and
17.3% top-1 error on the validation set.

4.4 Experiment Details

To have di↵erent points of comparison, we tested the results
of using the three aforementioned classifiers to classify im-
ages from the MURA dataset. We distinguished between the
following four configurations:

1. When the networks were pre-trained with ImageNet [2].
2. When they were initialised randomly.
3. When the networks were initialised randomly, trained on

all the MURA dataset (except wrist and arm images) and
then retrained on wrist and arm images.

4. When the networks were pre-trained from ImageNet ran-
domly, trained on all of MURA (except wrist and arm) and
then retrained on wrist and arm images.

The accuracy result can be seen in Table 4.4 and the run
time in Table 4.4:

Table 1. Accuracy results for cases from (1) to (4)

Case (1) Case (2) Case (3) Case (4)
VGG16 0.82 0.535417 0.535417 0.798958
Resnet50 0.8083 0.535417 0.535417 0.783333
InceptionV3 0.677083 0.535417 0.535417 0.536458

The results showed that case 1 with VGG 16 and ResNet
50 delivered the best accuracy overall (82% and 80% respec-
tively), implying that it is possible to obtain good accuracy
provided that we can train the systems with su�cient data,

Table 2. Running time (in seconds) for cases from (1) to (4)

Case (1) Case (2) Case(3) Case (4)
VGG16 1869.48 2024.83 5557.05 5374.36
Resnet50 1776.34 1308.95 11406.28 7378.9
InceptionV3 3128.09 3086.32 11429.92 8208.37

regardless of its origin. Moreover, case 2 with these same ar-
chitectures also showed good performance, (79% and 78% re-
spectively), but even with the retraining on wrist and arm
images, results were slightly worse than training only with
ImageNet images. This may be due to the fact that some
wrist/arm images had to be used for such retraining instead
of testing. In terms of run time, we also found out that case
1 overall is faster to train and test.

After this initial validation, we tested the transfer learn-
ing capability from MURA to the newly acquired images. We
tested the following three cases:

5. When networks were pre-trained on ImageNet, trained on
MURA and tested on the new dataset.

6. Mixing MURA and new images to generate both training
and test sets (70% train, 30% test).

7. Same as the previous case, however the test set was com-
posed of 70% of MURA images and 30% from the new
dataset.

The accuracy results are shown in Table 4.4:

Table 3. Accuracy results for cases from (5) to (7)

Case (5) Case (6) Case (7)
VGG16 0.668293 0.809524 0.704918
Resnet50 0.673171 0.76112 0.606557
InceptionV3 0.673171 0.727106 0.754098

In contrast to what was expected from the previous test, we
observed that for case 5, all CNNs were unable to learn how
to classify the new images. In contrast, it was more likely to
obtain higher accuracy rates for case 6 and VGG 16 (81%),
although this is a direct result of images from the MURA
dataset being mixed within the test set. Meanwhile, case 7
and Inception V3 obtained 75% accuracy, but keeping in mind
that the test set is only composed of new images, this was a
clear indication that it is possible to transfer a model using a
larger amount of images. In terms of run time, we discovered
that it was faster to train networks through case 6, followed by
case 6 and case 7 respectively. The complete run time results
can be seen in Table 4.4.

Table 4. Running time (in seconds) for cases from (5) to (7)

Case (5) Case (6) Case (7)
VGG16 2727.67 2700.84s 3718.74
Resnet50 1889.82 3495.72s 4280.42
InceptionV3 2763.39 10388.83s 9656.18

5 Conclusion

In this paper, we have presented a first step towards assessing
the most proper way to embed machine learning, computer vi-



sion and natural language processing into the clinicians’ path-
way to improve assisted diagnostics of fracture detection. We
have reviewed the most significant literature and designed a
pipeline where we have annotated the most relevant action
points where artificial intelligence can be used to improve the
current practices. In addition, we have carried out some ini-
tial experiments to verify how current methods and transfer
learning perform on identifying fractures in a reduced dataset
provided by the British public health service. Results show
that there is a great likelihood of being able to apply transfer
learning for these purposes, and in the case that more images
are provided by the challenge setter, then the accuracy can
vastly improve.

We will continue this partnership to explore more ways in
which we can further improve our findings and including other
technologies to enhance the existing results. Finally, we will
keep working with clinicians and radiographers to correctly
assess their pathways and e↵ectively applying these technolo-
gies in commercial settings.
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The OhioT1DM Dataset for Blood Glucose
Level Prediction: Update 2020

Cindy Marling and Razvan Bunescu 1

Abstract. This paper documents the OhioT1DM Dataset, which
was developed to promote and facilitate research in blood glucose
level prediction. It contains eight weeks’ worth of continuous glu-
cose monitoring, insulin, physiological sensor, and self-reported life-
event data for each of 12 people with type 1 diabetes. An associated
graphical software tool allows researchers to visualize the integrated
data. The paper details the contents and format of the dataset and tells
interested researchers how to obtain it.

The OhioT1DM Dataset was first released in 2018 for the first
Blood Glucose Level Prediction (BGLP) Challenge. At that time, the
dataset was half its current size, containing data for only six people
with type 1 diabetes. Data for an additional six people is being re-
leased in 2020 for the second BGLP Challenge. This paper subsumes
and supersedes the paper which documented the original dataset.

1 INTRODUCTION

Accurate forecasting of blood glucose levels has the potential to im-
prove the health and wellbeing of people with diabetes. Knowing in
advance when blood glucose is approaching unsafe levels provides
time to proactively avoid hypo- and hyper-glycemia and their con-
comitant complications. The drive to perfect an artificial pancreas
[2] has increased the interest in using machine learning (ML) ap-
proaches to improve prediction accuracy. Work in this area has been
hindered, however, by a lack of real patient data; some researchers
have only been able to work on simulated patient data.

To promote and facilitate research in blood glucose level predic-
tion, we have curated the OhioT1DM Dataset and made it publicly
available for research purposes. To the best of our knowledge, this
is the first publicly available dataset to include continuous glucose
monitoring, insulin, physiological sensor, and self-reported life-event
data for people with type 1 diabetes.

The OhioT1DM Dataset contains eight weeks’ worth of data for
each of 12 people with type 1 diabetes. These anonymous people
are referred to by randomly selected ID numbers. All data contrib-
utors were on insulin pump therapy with continuous glucose moni-
toring (CGM). They wore Medtronic 530G or 630G insulin pumps
and used Medtronic Enlite CGM sensors throughout the 8-week data
collection period. They reported life-event data via a custom smart-
phone app and provided physiological data from a fitness band. The
first cohort of six individuals wore Basis Peak fitness bands. Data for
this cohort was released in 2018. The second cohort of six individ-
uals wore the Empatica Embrace. Data for this cohort is included in
the 2020 release. Table 1 shows the gender, age range, insulin pump
model, and sensor band type for each data contributor, by cohort.

1 Ohio University, USA, email: {marling,bunescu}@ohio.edu

Table 1. Gender, age range, insulin pump model, and sensor band type for
each data contributor, by cohort

ID Gender Age Pump Model Sensor Band Cohort

540 male 20–40 630G Empatica 2020

544 male 40–60 530G Empatica 2020

552 male 20–40 630G Empatica 2020

567 female 20–40 630G Empatica 2020

584 male 40–60 530G Empatica 2020

596 male 60–80 530G Empatica 2020

559 female 40–60 530G Basis 2018

563 male 40–60 530G Basis 2018

570 male 40–60 530G Basis 2018

575 female 40–60 530G Basis 2018

588 female 40–60 530G Basis 2018

591 female 40–60 530G Basis 2018

The dataset includes: a CGM blood glucose level every 5 minutes;
blood glucose levels from periodic self-monitoring of blood glucose
(finger sticks); insulin doses, both bolus and basal; self-reported meal
times with carbohydrate estimates; self-reported times of exercise,
sleep, work, stress, and illness; and data from the Basis Peak or Em-
patica Embrace band. The data for individuals who wore the Basis
Peak band includes 5-minute aggregations of heart rate, galvanic skin
response (GSR), skin temperature, air temperature, and step count.
The data for those who wore the Empatica Embrace band includes
1-minute aggregations of GSR, skin temperature, and magnitude of
acceleration. Both bands indicated the times they detected that the
wearer was asleep, and this information is included when available.
However, not all data contributors wore their sensor bands overnight.

Data for the first six individuals was released in 2018 for the first
Blood Glucose Level Prediction (BGLP) Challenge, which was held
in conjunction with the 3rd International Workshop on Knowledge
Discovery in Healthcare Data, at IJCAI-ECAI 2018, in Stockholm,
Sweden. Data for six additional people is being released in 2020 for
the second BGLP Challenge, to be held at the 5th International Work-
shop on Knowledge Discovery in Healthcare Data, at ECAI 2020, in
Santiago de Compostela, Spain. This paper subsumes and supersedes
the paper which documented the original 2018 dataset [3]. In order
to provide a unified overview of the entire dataset, this paper incor-
porates most of the original paper verbatim.

The following sections of this paper provide background informa-
tion, detail the data format, describe the OhioT1DM Viewer visual-



ization software, and tell how to obtain the OhioT1DM Dataset and
Viewer for research purposes.

2 BACKGROUND
We have been working on intelligent systems for diabetes manage-
ment since 2004 [1, 4, 5, 6, 7, 8, 10, 11]. As part of our work, we
have run five clinical research studies involving subjects with type 1
diabetes on insulin pump therapy. Over 50 anonymous subjects have
provided blood glucose, insulin, and life-event data so that we could
develop software intended to help people with diabetes and their pro-
fessional health care providers.

Our most recent study was designed so that de-identified data
could be shared with the research community. All data contributors to
the OhioT1DM Dataset signed informed consent documents allow-
ing us to share their de-identified data with outside researchers. This
agreement clearly delineated what types of data could be shared and
with whom. The data in the dataset was fully de-identified according
to the Safe Harbor method, a standard specified by the Health Insur-
ance Portability and Accountability Act (HIPAA) Privacy Rule [9].
To protect the data contributors and to ensure that the data is used
only for research purposes, a Data Use Agreement (DUA) must be
executed before a researcher can obtain the data.

3 OhioT1DM DATA FORMAT
For each data contributor, there is one XML file for training and de-
velopment data and a separate XML file for testing data. This results
in a total of 24 XML files, two for each of the 12 contributors. Table 2
shows the number of training and test examples for each contributor.

Table 2 also indicates the BGLP Challenge for which the data was
released. For the 2018 BGLP Challenge, the number of test examples
was equal to the number of data points in the XML testing file. How-
ever, for the 2020 BGLP Challenge, the first hour of data in each
XML testing file is excluded from the set of points used for eval-
uation. This is to allow unbiased comparison of prediction models
using all training data to predict each test point, as the first test points
would otherwise be too close chronologically to the training data.
Thus, for the 2020 BGLP Challenge, there are 12 more data points
in each XML testing file than the number of test examples shown in
Table 2.

Table 2. Number of training and test examples per data contributor

ID
BGLP
Challenge

Training
Examples

Test
Examples

540 2020 11947 2884

544 2020 10623 2704

552 2020 9080 2352

567 2020 10858 2377

584 2020 12150 2653

596 2020 10877 2731

559 2018 10796 2514

563 2018 12124 2570

570 2018 10982 2745

575 2018 11866 2590

588 2018 12640 2791

591 2018 10847 2760

Each XML file contains the following data fields:

1. <patient> The patient ID number and insulin type. Weight is set
to 99 as a placeholder, as actual patient weights are unavailable.

2. <glucose level> Continuous glucose monitoring (CGM) data,
recorded every 5 minutes.

3. <finger stick> Blood glucose values obtained through self-
monitoring by the patient.

4. <basal> The rate at which basal insulin is continuously infused.
The basal rate begins at the specified timestamp ts, and it continues
until another basal rate is set.

5. <temp basal> A temporary basal insulin rate that supersedes
the patient’s normal basal rate. When the value is 0, this indi-
cates that the basal insulin flow has been suspended. At the end
of a temp basal, the basal rate goes back to the normal basal rate,
<basal>

6. <bolus> Insulin delivered to the patient, typically before a meal
or when the patient is hyperglycemic. The most common type of
bolus, normal, delivers all insulin at once. Other bolus types can
stretch out the insulin dose over the period between ts begin and
ts end.

7. <meal> The self-reported time and type of a meal, plus the pa-
tient’s carbohydrate estimate for the meal.

8. <sleep> The times of self-reported sleep, plus the patient’s sub-
jective assessment of sleep quality: 1 for Poor; 2 for Fair; 3 for
Good.

9. <work> Self-reported times of going to and from work. Intensity
is the patient’s subjective assessment of physical exertion, on a
scale of 1 to 10, with 10 the most physically active.

10. <stressors> Time of self-reported stress.
11. <hypo event> Time of self-reported hypoglycemic episode.

Symptoms are not available, although there is a slot for them in
the XML file.

12. <illness> Time of self-reported illness.
13. <exercise> Time and duration, in minutes, of self-reported ex-

ercise. Intensity is the patient’s subjective assessment of physical
exertion, on a scale of 1 to 10, with 10 the most physically active.

14. <basis heart rate> Heart rate, aggregated every 5 minutes. This
data is only available for people who wore the Basis Peak sensor
band.

15. <basis gsr> Galvanic skin response, also known as skin con-
ductance or electrodermal activity. For those who wore the Ba-
sis Peak, the data was aggregated every 5 minutes. Despite this
attribute’s name, it is also available for those who wore the Em-
patica Embrace. For these individuals, the data is aggregated every
1 minute.

16. <basis skin temperature> Skin temperature, in degrees
Fahrenheit, aggregated every 5 minutes, for those who wore the
Basis Peak, and every 1 minute, for those who wore the Empatica
Embrace.

17. <basis air temperature> Air temperature, in degrees Fahren-
heit, aggregated every 5 minutes. This data is only available for
people who wore the Basis Peak sensor band.

18. <basis steps> Step count, aggregated every 5 minutes. This data
is only available for people who wore the Basis Peak sensor band.

19. <basis sleep> Times when the sensor band reported that the sub-
ject was asleep. For those who wore the Basis Peak, there is also
a numeric estimate of sleep quality.

20. <acceleration> Magnitute of acceleration, aggregated every 1
minute. This data is only available for people who wore the Em-
patica Embrace sensor band.



Note that, in de-identifying the dataset, all dates for each individ-
ual were shifted by the same random amount of time into the future.
The days of the week and the times of day were maintained in the
new timeframes. However, the months were shifted, so that it is not
possible to consider the effects of seasonality or of holidays.

4 THE OhioT1DM VIEWER

The OhioT1DM Viewer is a visualization tool that opens an XML
file from the OhioT1DM Dataset and graphically displays the inte-
grated data. It aids in developing intuition about the data and also
in debugging. For example, if a system makes a poor blood glucose
level prediction at a particular point in time, viewing the data at that
time might illuminate a cause. For example, the subject might have
forgotten to report a meal or might have been feeling ill or stressed.

Figure 1 shows a screenshot from the OhioT1DM Viewer. The
data is displayed one day at a time, from midnight to midnight. Con-
trols allow the user to move from day to day and to toggle any type
of data off or on for targeted viewing.

The bottom pane shows blood glucose, insulin, and self-reported
life-event data. CGM data is displayed as a mostly blue curve, with
green points indicating hypoglycemia. Finger sticks are displayed as
red dots. Boluses are displayed along the horizontal axis as orange
and yellow circles. The basal rate is indicated as a black line. Tem-
porary basal rates appear as red lines. Self-reported sleep is indicated
by blue regions. Life-event icons appear at the top of the pane as
dots, squares, and triangles. The data in the bottom pane is clickable,
so that additional information about any data point can be displayed.
For example, clicking on a meal (a square blue icon) displays the
timestamp, type of meal, and carbohydrate estimate.

The top pane displays sensor band data. Blue regions in the top
pane are times the sensor band detected that the wearer was asleep.
The step count is indicated by vertical blue lines. The curves show
heart rate (red), galvanic skin response (green), skin temperature
(gold), air temperature (cyan), and magnitude of acceleration (black).

5 OBTAINING THE DATASET AND VIEWER

The original 2018 OhioT1DM Dataset and the OhioT1DM Viewer
are now available to researchers. The full 2020 OhioT1DM Dataset
is currently being released to participants in the second BGLP Chal-
lenge. The second BGLP Challenge will take place June 9, 2020, in
conjunction with the 5th International Workshop on Knowledge Dis-
covery in Healthcare Data at ECAI 2020, in Santiago de Compostela,
Spain.

After the completion of the BGLP Challenge, the entire dataset
will be made available to other researchers. To protect the data con-
tributors and to ensure that the data is used only for research pur-
poses, a Data Use Agreement (DUA) is required. A DUA is a bind-
ing document signed by legal signatories of Ohio University and
the researcher’s home institution. As of this writing, researchers
can request a DUA at http://smarthealth.cs.ohio.edu/OhioT1DM-
dataset.html. Once a DUA is executed, the OhioT1DM Dataset and
Viewer will be directly released to the researcher.

6 CONCLUSION

The OhioT1DM Dataset was developed to promote and facilitate re-
search in blood glucose level prediction. Accurate blood gluocose
level predictions could positively impact the health and well-being

of people with diabetes. In addition to their role in the artificial pan-
creas project, such predictions could also enable other beneficial ap-
plications, such as decision support for avoiding impending prob-
lems, “what if” analyses to project the effects of different lifestyle
choices, and enhanced blood glucose profiles to aid in individualiz-
ing diabetes care. It is our hope that sharing this dataset will help to
advance the state of the art in blood glucose level prediction.
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Abstract.
The management of type 1 diabetes mellitus (T1DM) is a burden-

some life-long task. In fact, T1DM individuals are request to per-
form every day tens of actions to adapt the insulin therapy, aimed at
maintaining the blood glucose (BG) concentration as much as possi-
ble into a safe range coping with the day-to-day variability of their
life style. The recent availability of continuous glucose monitoring
(CGM) devices and other low-cost wearable sensors to track impor-
tant vital and activity signals, is stimulating the development of de-
cision support systems to lower this burden. Modern deep learning
models, trained using rich amount of information, are a suitable and
effective instrument for such purpose, especially if used to predict
future BG values. However, the high accuracy of deep learning ap-
proaches is often obtained at the expense of less interpretability.

To surpass this limit, in this work we propose a new deep learn-
ing method for BG prediction based on a personalized bidirectional
long short-term memory (LSTM) equipped with a tool that enables
its interpretability. The OhioT1DM Dataset was used to develop a
model targeting future BG at 30 and 60 minute prediction horizons
(PH). The accuracy of model predictions was evaluated in terms of
root mean square error (RMSE), mean absolute error (MAE), and the
time gained (TG) to anticipate the actual glucose concentration.

The obtained results show fairly good prediction accuracy (for
PH = 30/60 min): RMSE = 20.20/34.19 mg/dl, MAE = 14.74/25.98
mg/dl, and TG = 9.17/18.33 min. Moreover, we showed, in a repre-
sentative case, that our algorithm is able to preserve the physiological
meaning of the considered inputs.

In conclusion, we built a model able to provide reliable glucose
performance ensuring the interpretability of its output. Future work
will assess model performance against other competitive strategies.

1 INTRODUCTION
Diabetes is a chronical metabolic disease in which patients are no
longer able to effectively control blood glucose (BG) concentration
[2]. In particular, type 1 diabetes mellitus (T1DM) is characterized
by an autoimmune attack on the pancreatic �-cells resulting to im-
paired insulin production. As a consequence, people with T1DM are
required to manage their glycemia to keep it within the safe range
(i.e. BG 2 [70, 180] mg/dl) without incurring in dangerous complica-
tions induced by hypoglycemia (BG < 70 mg/dl) and hyperglycemia

1 University of Padova, Department of Information Engineering, Padova
Italy, email: {cappongi, meneghet, prendinf, pavanjac, gianni, sdelfave, fac-
chine}@dei.unipd.it

(BG > 180 mg/dl). Such a burdensome process can be eased by in-
tegrating in T1DM therapy newly developed decision support algo-
rithms [15] [3]. Specifically, methodologies based on deep learning
aimed to predict future BG levels [6] represent a unique way to equip
people with T1DM with an effective tool to proactively tackle the
shortcoming of adverse events.

The increasing amount of data that can be easily collected by sen-
sors continuously monitoring BG levels (CGM), insulin infusion,
and physical activity, just to mention a few, enables researchers to
build new BG prediction algorithms that are effective, personalized,
and able to empower T1DM management [4]. In particular, in 2020,
Marling et al. [13] started the second edition of the Blood Glucose
Level Prediction (BGLP) Challenge, i.e., an open competition aimed
to promote and facilitate research in this field. Alongside with the
competition, the second version of the so-called OhioT1DM Dataset
was released. In particular, by including CGM recordings, insulin in-
fusion logs, daily event reporting, and patient vital parameters’ mon-
itoring, this dataset represents a unique source of data that can be
used for the purpose.

In this paper, we present a new BG level prediction method based
on deep learning that we developed and submitted to the second
BGLP Challenge. Specifically, given the complexity of the problem
at hand and the ”temporal” nature of the feature set, here we trained
a long-short term memory (LSTM) [11] neural network targeting fu-
ture BG levels. Even if recurrent neural networks such as LSTMs
are known to achieve good performance for the specific task of BG
prediction [14], they lack of interpretability. In fact, when develop-
ing models for T1DM decision support, there is the need of provid-
ing transparent models able to produce reliable but also interpretable
predictions [1]. To the best of our knowledge, current state-of-the-
art algorithms for BG prediction based on LSTMs have never been
interpreted to explain the model ”rationale” behind its outcomes. As
such, the aim being equipping our model with this feature, we ex-
ploited SHapley Additive exPlanations (SHAP), i.e., a newly devel-
oped approach to interpret deep learning model predictions [12]. This
represents a novelty in the field and offers useful insights on the use
of recurrent neural networks for T1DM management.

2 DATASET PREPARATION
2.1 Dataset description and preprocessing
The model was trained and evaluated on data obtained from the
updated OhioT1DM Dataset developed by Marling et al. [13]. In
the specific, data from 6 people with T1DM were provided. These



anonymous people (numbered as 540, 544, 552, 567, 584, and 596)
wore Medtronic 530G and 630G insulin pumps and Medtronic En-
lite CGM sensors during an 8-week data-collection period. They re-
ported their meals and other life-event data (time of exercise, sleep,
work, stress, and illness) via a custom smartphone app. Furthermore,
additional physiological data were collected by a Empatica fitness
band, including galvanic skin response, skin temperature, and mag-
nitude of acceleration.

In the training dataset, several intervals of missing values were
observed. Such discontinuities reduce the number of training data
available but also compromise the dynamical structure of the data,
thus causing a bad impact on the training procedure. Because of this,
a first order interpolation was performed, on the training set only, on
the missing portions that were shorter than 30 minutes.

The data were re-sampled onto a uniform time grid with regular
intervals of 5 minutes for training and testing the model. Each sample
is placed in the new grid at the closest timestamp with respect to its
original timestamp. The final prediction obtained was then realigned
to the original timestamps by reassigning every predicted sample to
the original timestamps, inverting the re-sampling procedure.

2.2 Feature extraction
Deep learning models, such as the one used in this work, are able to
deal with raw data without resorting to manual feature engineering.
However, this is in general true when large amount of data are used
for their training. Therefore, given the limited size of the dataset at
hand, we resorted to manual feature engineering. This is furtherly
substantiated by several tests that we performed during our study
(not reported here for the sake of simplicity), which confirmed that,
using the extracted features described in the following, we were able
to improve model performance.

An initial observation of the data revealed that the information reg-
istered by the fitness band were partial or incomplete in the major-
ity of the people. Therefore, we decided to discard these signals. As
such, along with the CGM measurements, we considered the follow-
ing signals as input to our predictive algorithm: the injected insulin
as reported by the pump, the reported meals and the self-reported
physical exercise.

Since whenever a meal is consumed, an insulin bolus is injected
to counter the post-prandial hyperglycemic excursion the two signals
(meals and insulin) tend to be highly correlated. Therefore, to try to
overcome this problem, we generated a new signal consisting of only
the correction boluses (INSC ), determined as the injections of insulin
that are administered at a time of minimum 90 minutes after a meal.

A consumed meal or an injected insulin bolus do not impact the
BG levels immediately. Instead, their effect can only be observed
after a minimum time of 30-60 minutes. Similarly, the impact of
physical activity has a delayed effect on the BG levels [16]. Be-
cause of this, the signals of injected insulin (INS), INSC , reported
meals (MEA) and physical activity (PA) are transformed to better
account for the underlying physiological dynamics. The transforma-
tion consisted of a 2nd order low-pass filtering with impulse response
h(t) = �te��t, where we set �=0.02. This procedure has been
adopted in literature to produce feature sets for the development of
ML algorithms for T1DM decision support [3] [15]. Additionally, a
transformation of the CGM signal is obtained using the dynamic risk
[7], which empowers the model with additional features that capture
the dynamics of the CGM signal (e.g., glycemic variability).

In summary, the following features were considered: CGM, DR,
INS, INSC , MEA, and PA.

3 METHODS

3.1 A Bidirectional LSTM to Predict Future BG

Figure 1. Scheme of the implemented bidirectional LSTM.

As introduced, BG level prediction is a very challenging and com-
plex task. By analyzing the nature of our dataset, it is natural to think
that proper modeling of the temporal between-feature dependencies
is crucial to effectively solve the problem at hand. For this reason,
in this work we decided to adopt an LSTM-based model architecture
since LSTMs are well-known in the literature to be the ideal choice
to build a predictive model for time series [9]. An LSTM consists
of a set of recurrently connected blocks, known as LSTM memory
cells. Each LSTM cell consists of an input gate, an output gate, and
a forget gate. Each of the three gates can be thought of as a neuron,
and each gate achieves a particular function in the cell. In particular,
LSTMs are able to exploit learned temporal dependencies to predict
the future output according to their previous states, thus well-fitting
the purpose of this work. A common drawback of LSTM networks is
that, by processing the input in a temporal order, they tend to produce
as output, something that is strongly based on forwards dependencies
only. To solve this issue, a bidirectional LSTM can be exploited [8].
Briefly, it consists of presenting, to two parallel LSTMs, each train-
ing sequence forwards and backwards and then merging the LSTMs
outputs to obtain the resulting target estimate. As such, this allows to
learn potentially richer representations and capture patterns that may
have been missed by the chronological-order version alone. More-
over, the use of bidirectional LSTMs for BG level prediction allowed
to obtained promising results in several seminal works [17][18].
The final model architecture, shown in Figure 1 and hereafter labeled
as BLSTM, consists of a four-layer neural network: a bidirectional
LSTM input layer composed of 128 cells having a look back period
of 15 minutes (i.e. 3 samples), two LSTM layers respectively com-
posed of 64 and 32 cells, and a fully connected layer consisting of
a single neuron computing the BG level prediction at two different
prediction horizons (PH), i.e. 30 and 60 min. BLSTM architecture,
hyperparameters, and look back period have been chosen by trial-
and-error to compromise between model complexity and accuracy.
The BLSTM is implemented in Python using the Keras library [5].

3.2 Equipping BLSTM with interpretability

New algorithms for decision support in T1D management require
to be interpretable [1] to avoid potentially adverse or even life-
threatening consequences. Unlike traditional physiological-based
strategies, deep learning models (such as LSTMs) are black-boxes,



meaning that their high accuracy is often achieved by learning com-
plex relationships that even experts struggle to interpret. For black
box models to be adopted in the field of T1D, it is thus desirable to
understand whether or not they retain the physiological significance
of the inputs they use.

In this work, we aim to overcome the issue of interpretability by
analysing our BLSTM with a novel unified approach to interpret
model predictions, SHAP [12]. SHAP is a newly developed game
theoretical approach to explain how much a given feature impacts on
model prediction (compared to if we made that prediction at some
baseline value of that feature). By this method, we were able to fully
interpret the BLSTM. Indeed, SHAP allowed to both visualize the
feature importance and what is driving it.

3.3 Software framework

For each subject and considered PH we trained, thus personalized,
a different BLSTM model. The training of each BLSTM has been
performed through the gradient descent RMSprop algorithm applied
in a mini-batch mode [10]. In particular, as schematized in Figure 2,
we developed an ad-hoc software framework to automatically per-
form both model training and tuning. In details, in block A, the

Figure 2. Scheme of the experimental framework.

preprocessed data have been divided into training and test data, re-
spectively. Then, in block B, to optimally tune the BLSTM, fea-
ture selection is performed. To do so, we generated the power set of
S = {DR, INS, INSC ,CHO, PA}, i.e. the set of all subsets of S, in-
cluding the empty set and S itself. Then, given its obvious impact on
model performance, we constrained each feature subset in the power
set to also contain the CGM feature. As a result, we exhaustively ex-
amined all the possible sub-sets of features, each containing CGM
and other, possibly useful, input features. Block B also splits data into
training and validation set. Here, we explored multiple ”split points”
s, thus assigning {50, 60, 70, 80}% of the data to the training data
and the remaining {50, 40, 30, 20}% to the validation data (used to
early stop the training of BLSTM in block C to avoid overfitting).
For each feature set h in the above-described power set and each
considered split point s, the performance of the BLSTM is assessed
in terms of mean squared error (MSEhs). To prevent such evalua-
tion from being affected by the random initialization of the BLSTM
weights, the whole training and evaluation process is repeated, in
block C, three times per feature set. In turn, for each feature set h

and split point s we computed MSEhs as:

MSEhs =
1
3

3X

k=1

MSEk (1)

where subscript k = 1, . . . , 3 refers to the repetition at hand.
In block D, the best feature set h and split point s are selected
as the h and s that obtained the minimum MSEhs. Then, five
BLSTMs, namely BLSTMi i = 1, . . . , 5 are trained on the entire pa-
tient/prediction horizon-specific training set. Finally, in block E, we
evaluated the model performance by comparing the true BG values in
the test set against the respective predictions obtained by averaging
each BLSTMi estimate and we interpret model predictions through
SHAP.

4 ASSESSMENT OF BLSTM PERFORMANCE
For the BGLP challenge, the considered metrics for evaluating the
accuracy of the obtained prediction are the Root Mean Squared Er-
ror, (RMSE) and the Mean Absolute Error (MAE). Considering the
prediction error e(n) = y(n) � ŷ(n), where y(n) and ŷ(n) are the
CGM measurements and the computed prediction, respectively, the
RMSE and MAE are obtained as follows:

RMSE =
X

N

p
e(t)2, MAE = mean(|e(t)|)

where N is the number of total points.
In this paper, we considered an additional performance metric: the

Time Gain (TG), which quantifies the time gained thanks to the pre-
diction. A measure of the average TG is obtained as:

TG(y, ŷ) = PH � delay(y, ŷ)

where PH is the prediction horizon used to perform the prediction
ŷ and the delay(y, ŷ) between the original and the predicted pro-
files quantified by the temporal shift k that minimizes the distance
between y and ŷ:

delay(y, ŷ) = argmin
k

NX

i=1

(y(i)� ŷ(i� k))2

5 RESULTS
5.1 BLSTM performance in terms of prediction

accuracy
In Figure 3, we present an example of the prediction obtained on a
representative subject (544). In the top panel, we report in blue the
actual CGM measurements and in red the prediction performed by
the BLSTM; in the bottom panel, we report the consumed meals (in
grams) as reported by the subject. Albeit affected by the CGM signal
noise, the prediction is able to follow the CGM measurements during
the post-prandial rises with minor delay. Predicting hypoglycemic
episodes with high accuracy resulted to be one of the harder task
(an example of inaccurate prediction can be seen at around 12:20).
A possible explanation for this is that hypoglycemic episodes are
sporadic events which do not happen often, therefore the BLSTM
may not have enough training data to learn how to predict similar
patterns occurring in the test set.

In Table 1, we report the optimal feature sets that were identi-
fied on the training set, in block C, for each subject and PH. The
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Figure 3. Example of prediction obtained on subject 596. In the top panel,
the CGM measurements (blue) and the respective prediction (red). In the bot-
tom panel, the consumed meals reported by the patient.

Table 1. Optimal feature set selected on the training set in block C.

ID PH = 30 min PH = 60 min
540 CGM, INS CGM, DR, INS
544 CGM, DR, INS, MEA, INSC CGM, MEA, INSC

552 CGM, INS, MEA CGM, INS, INSC

567 CGM, DR, INS CGM, INS, PA
584 CGM, DR, INSC CGM, INSC

596 CGM, INS, MEA CGM, INS, MEA

CGM feature is included in every set by default as described ear-
lier in Section 3.3. The feature INS is adopted in almost every case,
expect some where it is replaced by the feature INSC . The feature
MEA is adopted less often, especially in patients where we observed
a lower consistency in reporting meals. The feature PA was selected
only once, denoting its limited effectiveness in improving the per-
formance of the BLSTM. In general, different PH lead to different
features sets for the same patient. This is due to the fact that some
features, e.g. MEA, might be relevant, in a specific patient, for PH =
30 min and not for PH = 60 min given their impact on BG level in
the very short-term.

In Table 2 we report the RMSE, the MAE and the TG obtained
for each subject and PH. A mean RMSE = 20.20 mg/dl is obtained

Table 2. Results obtained on the test-set.

PH = 30 min PH = 60 min

ID RMSE MAE TG RMSE MAE TG
540 23.19 17.33 10 41.41 31.77 20
544 18.88 13.23 15 31.06 22.54 30
552 17.97 13.50 10 31.20 24.48 20
567 21.18 15.20 10 37.40 28.50 20
584 21.91 16.38 5 35.95 27.59 5
596 18.09 12.81 5 28.13 20.99 15
mean 20.20 14.74 9.17 34.19 25.98 18.33

for PH = 30 min, together with a value of MAE = 14.74 mg/dl and
TG = 9.17 min. For PH = 60 min, a mean RMSE = 34.19 mg/dl was
obtained, together with MAE = 25.98 mg/dl and TG = 18.33 min.

Table 3 reports the number of samples predicted per patient and
the percentage of predicted samples over the total CGM samples
available. Except for one case, the BLSTM was able to compute a
prediction for more than 90% of the samples.

Table 3. Predicted samples per subject.

PH = 30 min PH = 60 min

ID Total samples predicted % predicted %
540 2884 2820 97.78 2697 93.52
544 2704 2586 95.64 2638 97.56
552 2352 2275 96.73 2235 95.03
567 2377 2157 90.74 2232 93.90
584 2653 2354 88.73 2473 93.22
596 2731 2683 98.24 2647 96.92

5.2 Model interpretation
As discussed in Section 3.2, thanks to SHAP we are able to interpret
each trained BLSTM. The plot in Figure 4 reports the application of
SHAP to the BLSTM obtained for patient 596 for a PH of 60 min.
This plot is made of many dots. Each dot has three characteristics:

Figure 4. Impact of each input feature on model output obtained via SHAP
in patient 596 with PH = 60 min.

vertical location shows what feature it is depicting, the color shows
whether that feature assumed an high or low value for that row of
the dataset, horizontal location shows whether the effect of that value
caused a higher or lower prediction of future BG levels. Results show
that high values of CGM translate in high predicted CGM values. On
the other hand, high INS impacts negatively on model output mir-
roring the actual impact of insulin on BG dynamics. Parallely, high
MEA induces an increase on predicted glucose values, correctly ac-
counting for the effect of meal intakes on BG level. As such, the
physiological meaning of all input features is preserved by the con-
sidered representative BLSTM.

For brevity, we do not report the results obtained on other patients,
being very similar and consistent with that previously showed.

6 CONCLUSION
The possibility of collecting important vital and activity signals from
low-cost wearable sensors in patients with T1DM is calling for the
development of individualized proactive decision support systems to
lower the daily burden in the application of BG control therapy. In
this work, the aim being providing patients with reliable BG pre-
dictions, we leveraged the OhioT1DM Dataset to build a new deep
learning-based approach for the scope that we submitted for the sec-
ond edition of the BGLP Challenge. The novelty here is that, beside
obtaining fairly good BG predictions considering both a 30 min and
a 60 min-long PH, our algorithm is also interpretable. Indeed, the in-
tegration of SHAP in our procedure allowed to obtain a ”transparent”
model where the impact of each feature on model output is explicitly
expressed.



The presented study has some limitations that need to be addressed
in future work. In particular, we will concentrate on two main is-
sues. First, to fully evaluate its performance, BLSTM will be as-
sessed against other competing baseline and state-of-the-art BG pre-
diction methodologies, e.g., neural networks, random forests, and
vanilla LSTMs. Then, we will tackle the limitation represented by
the dataset length. In fact, methodologies like LSTMs usually ben-
efit from having more data to be used for their training and tuning.
For this purpose, we will investigate the potential advantage of using
longer datasets on BLSTM performance.
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Neural Multi-class Classification Approach to Blood
Glucose Level Forecasting with Prediction Uncertainty

Visualisation
Michael Mayo1 and Tomas Koutny2

Abstract. A machine learning-based method for blood glucose
level prediction thirty and sixty minutes in advance based on highly
multiclass classification (as opposed to the more traditional regres-
sion approach) is proposed. An advantage of this approach is the
possibility of modelling and visualising the uncertainty of a predic-
tion across the entire range of blood glucose levels without paramet-
ric assumptions such as normality. To demonstrate the approach, a
long-short term memory-based neural network classifier is used in
conjunction with a blood glucose-specific data preprocessing tech-
nique (risk domain transform) to train a set of models and generate
predictions for the 2018 and 2020 Blood Glucose Level Prediction
Competition datasets. Numeric accuracy results are reported along
with examples of the uncertainty visualisation possible using this
technique.

1 INTRODUCTION AND BACKGROUND
Maintaining blood glucose level (BGL) in the normoglycemic range
is a significant challenge for patients with type 1 diabetes (T1D).
Traditionally, patient BGL self-management is achieved using finger
stick blood samples, testing strips and glucose meters (see [13] for
an overview), combined with bolus insulin dosing to approximate
proper insulin delivery in the body of non-diabetic person. However,
with the recent development of continuous glucose monitors (CGMs)
and semi- and fully closed-loop artificial pancreas (AP) systems [14],
much finer grained control of patient BGL is now possible. Addition-
ally, significantly greater volumes of BGL data is also available when
these devices are used. AP technology has been show to improve pa-
tient outcomes [5].

In this paper, the problem of forecasting BGL thirty and sixty min-
utes in advance is considered using the 2020 BGL Prediction Chal-
lenge [3] as a testbed. Although several past systems have consid-
ered machine learning techniques for BGL forecasting (see [16] for a
comprehensive survey), most approaches take a regression approach
to solving the problem. In other words, each “forecast” is a numeric
point prediction (such as BGL at some point in the future), and over-
all system accuracy is a measurement of the error between the fore-
cast and the actual future BGL. Accuracy metrics may be statistical
(e.g. mean absolute error) or clinical (e.g. Clarke error grid analysis
[12]). Regardless, the focus is usually on point predictions.

Here, an alternative approach is taken: instead of treating BGL
forecasting as a regression problem, it is instead viewed as a clas-
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sification problem. This is achieved by dividing the range of pos-
sible BGL values into 100 bins equally spaced in the risk domain
[9]. Each bin is mapped to a class, and therefore a given forecast is
generated by predicting the probability of each class and computing
the expected value across all of the classes. An advantage of this ap-
proach is that the probabilities associated with the forecast can be
visualised across the BGL range. This could be useful for patients,
since it enables the patient to take the reliability of the forecast into
consideration when making a decision. Additionally, the probability
distribution can be used to estimate the chance of significant events
such as hypoglycemic episode. Although a similar idea was explored
in the context of regression recently [11], the underlying assumption
there was that the uncertainty distribution was Gaussian, whereas in
the classification approach presented here, no assumptions need be
made about the distribution.

Figure 1. Risk function. The vertical green line at 112.5 mg/dl is the point
of least risk while vertical red lines represent (from left to right) the

thresholds [6] for level 2 and level 1 hypoglycemia, normoglycemia, and
level 1 and level 2 hyperglycemia respectively.

In order to transform the problem of BGL forecasting into a clas-
sification problem, a method of breaking the BGL range into sensi-
ble classes is required. This is not trivial because the range of BGL
values is continuous, and the sizes of clinically-relevant subranges
varies non-linearly. For example, a small change in the hypoglycemic
part of the BGL range may be highly significant clinically but an
equivalent change in the hyperglycemic part of the range may be
considered insignificant.

One option is to use the five ranges proposed by Danne et al. [6] as
the classes. These ranges are: levels I and II hypoglycemic, normo-
glycemia, and levels I and II hyperglycemia. In this case, the size and
split points of each range are defined. However, this would amount



to only five classes, and predictions in such a case may lack accuracy
within a class. Another option is to arbitrarily divide the BGL range
into a much larger number of bins (e.g. 100) which both increases the
number of classes considerably (making the machine learning more
challenging) but simultaneously increases the granularity of the pre-
dictions so that better probability distributions can be produced. In
this paper, the latter approach is taken, however this in turn leads to
the necessity to decide how the bins should be defined/split across
the range of BGL values.

Because of the inherent non-linearity of the BGL range, an ap-
proach called the risk domain transformation, first proposed by Ko-
vatchev et al. [9], is utilised. The idea is to define a non-linear trans-
formation function (and by implication, its inverse) that shifts a CGM
sensor reading from the blood glucose domain to a new “risk” do-
main that is better suited for subsequent analysis. This transforma-
tion function is illustrated by Figure 1. Also shown by the figure are
the breakpoints for the five ranges defined by Danne et al. [6].

As can be observed in the figure, risk domain values typically
spans a range from approximately -2 to just over 2, and most nor-
moglycemic readings lie more or less in the range range [�0.9, 0.9].
A risk value of 0.0 corresponds to the BGL of 112.5 mg/dl, which is
considered the point of least risk. An advantage of the risk domain
is that the hypo- and hyperglycemic ranges now have equal size and
significance, which reduces the chance of bias in statistical analysis
(e.g. due to larger absolute error sizes in the hyperglycemic range).

r(xt) = yt = 1.509
�
log(xt)

1.084 � 5.381
�

(1)

r�1(yt) = xt = exp

✓⇣
yt

1.509
+ 5.381

⌘ 1
1.084

◆
(2)

The exact definitions of the risk domain transformation and its
inverse are given in Equations 1 and 2 where xt is a CGM reading at
time t and yt is its corresponding risk value.

2 METHOD
For dividing the BGL range into classes, the following exact pro-
cedure is used. The risk domain range [�2, 2] is considered and
100 bin midpoints are placed on it. The bin midpoints are denoted
y⇤
1 , y

⇤
3 , y

⇤
3 . . . y

⇤
100 with y⇤

1 = �2 and y⇤
100 = 2. The remaining bin

midpoints are equally spaced along the risk range between y⇤
1 and

y⇤
100. This ensures that for the smaller hypoglycemic range, the bin

sizes will be scaled properly in size and that there will be a propor-
tionate number of bins (and therefore classes) in each subrange of
the BGL scale.

Next, in order to a assign a new CGM reading x (in mg/dl) to a bin,
its corresponding risk value y = r(x) is computed using Equation 1.
The reading is then assigned the bin with the closest midpoint. This
means that the split points between bins do not need to be calculated
explicitly, and if a reading is outside the risk range (either x < �2 or
x > 2) then it will be assigned to one of the bins at the ends of range.
However, this tends not happen often since the significant majority
of readings in the competition datasets lie on the [�2, 2] range.

Finally, once its class is determined, the reading x is transformed
into a one-hot encoded vector (0, 0 . . . 0, 1, 0 . . . 0, 0) of length 100
where the single 1 in the vector corresponds to the bin that x is as-
signed to.

To summarise the process, the predictors X for the model com-
prise a time series of risk-transformed CGM readings, and the target
Y is a one-hot encoded class vector of dimension 100. Predictions are

therefore numeric vectors, e.g. (0, 0 . . . 0.25, 0.6, 0.3 . . . 0, 0). Note
that whichever type of model is used, the values should be positive
and sum to unity so that they can be interpreted as normal probabili-
ties.

To evaluate this idea, 100-class classification experiments using
a neural network as a predictive model were performed. Figure 2
depicts the particular neural network architecture used here.

LSTM(units=12)

Flatten

Batch Normalisation

Dense(units=50, act=RELU)

Batch Normalisation

Dense(units=100, act=Softmax)

Figure 2. Architecture of the neural network used in the experiments.

The inputs to the neural network are twelve risk value readings,
representing the past sixty minutes of BGL variation as sensed by
the CGM (assuming that readings occur every five minutes). Since
this is a time series, a long-short term memory (LTSM) layer with
twelve units is used for initial input processing. Next, the LSTM out-
put is flattened and passed through two dense fully connected layers
for further processing. Both of these layers apply batch normalisa-
tion first, which ensures faster convergence times and stability during
training. Finally, the last dense layer predicts the class and applies a
softmax activation function to ensure that the output is a probability
vector.

To train each instance (one per patient) of this neural network, the
ADAM optimiser [7] was used with a learning rate of 0.0001, 10k
epochs, batch size of 32, and validation data set to a random 15% sub-
set of training data. The loss function utilised was categorical cross-
entropy, which is commonly used for multiclass classification prob-
lems. Early stopping during training was permitted if no improve-
ment in loss was observed for 100 epochs. All other settings were
identical to those used in keras v. 2.3.1 [4] with tensorflow v.
2.1.0 [2] as a base neural network system. The neural network param-
eters and architecture decisions were made as a result of single-run
experiments using data from the first patient in the 2018 competition
dataset [10].

To generate data for training the neural network, a strict approach
was taken towards missing data and all examples with gaps or time
discrepancies (e.g. readings not exactly five minutes apart) exist were
excluded. Therefore, to generate one example for the thirty minute
(t+30) forecasting problem, it is required that nine consecutive read-
ings (from the start of the example up to and including the prediction
target) exist, and for the sixty minute problem (t + 60), twelve con-
secutive readings were required. No missing value imputation was
performed. As a result, the number of test examples varies slightly
depending on the forecasting horizon: i.e. the number of 2020 dataset
test examples is 2,743, 2,579, 2,177, 2,185, 2,393 and 2,624 for the



30-minute horizon and 2,689, 2,531, 2,111, 2,113, 2,297 and 2,582
for the 60 minute horizon respectively.

With the neural network architecture and training data construc-
tion approach described, the final aspect of methodology to be de-
scribed is the way that numeric point predictions were generated for
the competition purposes (which require point predictions). A sim-
plistic approach is allow only bin midpoints (i.e. y⇤

1 . . . y
⇤
100) to be

predictions, and select the bin/class with the highest probability. Ini-
tial tests showed that this technique had low accuracy. Instead, a more
sophisticated approach is to calculate the expected BGL value, as de-
scribed by the following equation:

(3)

x̂t+n = f(mn, yt�55, yt�50 . . . yt�5, yt)

=

100X
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where n 2 {30, 60}, mn is the neural network for the current patient
with forecasting horizon n, yt is the risk-transformed BGL level at
time t (yt = r(xt)), y⇤

1 . . . y
⇤
100 are risk bin midpoints, f() represents

the application of mn to the observed CGM values, and x̂t+n is the
expected value or prediction at time t + n. Since the probabilities
across the 100 bins sum to 1, the resulting point prediction will be
scaled correctly. Initial experiments showed that this expected value
approach produced accurate estimates. Source code is available [1].

3 RESULTS
Two rounds of experiments were performed. In the first round, neu-
ral networks models were independently trained and tested for each
of the twelve patients from both the 2018 and 2020 competition
datasets. There was no sharing of information between models. In
the second round, models for the 2020 patients only were trained,
and the training data for each patient included all of the training data
from the 2018 competition in addition to the specific 2020 patient’s
training data. An individual patient’s own training data was therefore
a small subset of his/her full training dataset. To account for this im-
balance in the second round, samples from the target patient were
re-weighted by a factor of six compared to the sample weights from
the other patients.

Results for the first round of experiments are given in Tables 1
and 2. The first table is mean absolute error (MAE) results, and the
second table gives root mean squared error (RMSE) results. Units
are mg/dl. Using both metrics, predictive performance is comparable
between the two datasets, with patient 540 from the 2020 dataset
being the most “difficult” patient to predict. Conversely, the patient
with lowest forecast error is patient 570 from the 2018 dataset.

Results for the second round of experiments are given in Tables
3 and 4. It can be observed that the additional training data leads
to a very slight improvement in accuracy. Performing a paired t-test
across the six 2020 patients reveals that the improvement in MAE is
significant even albeit small (average improvement for thirty minute
forecasting is 0.45 with significance p = 0.000056, and for sixty
minute forecasting it is 0.82 with significance p = 0.008096).

More interesting are the prediction plots that can be generated
when making a forecast using the classification approach. Figures
3-6 depict some probability densities produced by the model when
making four different predictions. For each figure, the point predic-
tion generated using the expected value computation (Equation 3) is
shown as red line.

The tidiest example is Figure 3, which depicts a single-peaked dis-
tribution with the forecast coinciding with the peak of the distribu-

Patient ID MAE t+ 30 std MAE t+ 60 std

559 14.7 0.2 26.2 0.1
570 12.2 0.4 21.0 0.4
588 14.0 0.1 23.4 0.2
563 13.6 0.1 22.5 0.2
575 15.0 0.1 25.9 0.2
591 16.0 0.1 26.3 0.1

Avg. 14.3 24.2

540 16.8 0.1 30.8 0.1
544 12.9 0.2 23.3 0.2
552 12.5 0.1 23.0 0.1
567 14.9 0.1 27.9 0.2
584 16.7 0.1 28.0 0.2
596 12.6 0.1 21.7 0.0

Avg. 14.4 25.8

Table 1. Mean absolute error (MAE, mg/dl) results by patient and
prediction horizon, averaged over five runs.

Patient ID RMSE t+ 30 std RMSE t+ 60 std

559 21.6 0.2 35.5 0.2
570 17.2 0.5 28.3 0.3
588 19.1 0.1 31.8 0.2
563 20.6 0.3 31.2 0.4
575 23.8 0.4 36.4 0.3
591 21.8 0.2 33.7 0.1

Avg. 20.7 32.8

540 23.0 0.2 40.6 0.14
544 17.4 0.2 30.5 0.17
552 16.9 0.0 30.2 0.10
567 20.9 0.2 36.9 0.22
584 23.0 0.1 36.6 0.16
596 17.8 0.1 29.5 0.03

Avg. 19.8 34.0

Table 2. Root mean squared error (RMSE, mg/dl) results by patient and
prediction horizon, averaged over five runs.

Patient ID MAE t+ 30 std MAE t+ 60 std

540 16.4 0.1 29.8 0.1
544 12.3 0.1 22.9 0.2
552 12.2 0.1 22.2 0.2
567 14.5 0.2 27.4 0.4
584 16.1 0.2 26.4 0.1
596 12.2 0.3 21.3 0.1

Avg. 13.9 25.0

Table 3. Mean absolute error (MAE, mg/dl) results by patient and
prediction horizon, averaged over five runs for the 2020 dataset only.

Training data includes the entire 2018 dataset.

Patient ID RMSE t+ 30 std RMSE t+ 60 std

540 22.4 0.1 39.5 0.1
544 17.0 0.1 30.1 0.2
552 16.5 0.1 29.3 0.1
567 20.8 0.2 36.9 0.4
584 22.4 0.2 35.9 0.2
596 17.2 0.3 29.0 0.2

Avg. 19.4 33.4

Table 4. Root mean squared error (RMSE, mg/dl) results by patient and
prediction horizon, averaged over five runs for the 2020 dataset only.

Training data includes the entire 2018 dataset.



tion. While this class of forecast is common, it is not the only type of
distribution that is output from the model.

Figure 4 shows a two-peaked distribution with an expected value
between the peaks. While the expected value is a useful point predic-
tion, the dual peaks are also useful information since it can be clearly
observed that the two most likely outcomes are normoglycemia vs. a
state most likely in level I hyperglycemica, although the model is not
certain.

Figure 3. Probability distribution over BGLs for one prediction. In this
example, the expected BGL coincides with the distribution peak.

Figure 4. In this probability distribution over BGL levels, two peaks exist
in the distribution and the expected BGL lies between the peaks.

Figure 5. In this example, the distribution is skewed to to the right with the
expected BGL quite a distance to the left of the peak.

Figure 5 shows a skewed distribution a significant mass of the
probability distribution is at the upper end of the range, but the ex-
pected value is closer to the middle of the range (albeit still in the hy-
perglycemic range). In this case, the expected value underestimates

Figure 6. An example of a prediction with considerable uncertainty over
the hypoglycemic and normoglycemic ranges.

the true risk to the patient at the current time. Again, this is clearly
noticeable.

Finally, Figure 6 depicts a prediction with considerable noise in the
distribution. While the forecast is normoglycemic, there is significant
mass in the hypoglycemic range. Therefore it could be concluded that
although the point prediction is reasonably, there is still significant
risk of hypoglycemia.

Further analysis was performed with respect to the variance of the
prediction distributions. It was found that for most patients, the dis-
tribution of variances is skewed to the left indicating that on average
most predictions are more certain (more like Figures 3 and 4) than
uncertain. However, more analysis needs to be done on this point.

4 CONCLUSION
This paper describes a system for forecasting BGL at thirty and sixty
minutes in advance. This main distinctiveness of this approach is the
adoption of a highly multi-class classification-based technique and
use of a domain-specific transform for normalising BGL values (op-
posed to more traditional min/max scaling or standardisation). The
ability to visualise non-parametric probability distributions accom-
panying predictions as a meaningful context is a clear advantage.

To test the proposed method with real patients, we will use a
system known as SmartCGMS [8]. SmartCGMS is a continuous
glucose monitoring and controlling software framework. It pro-
vides infrastructure to connect and develop “building blocks” for an
insulin-pump software stack. Principally, the pump developer con-
nects CGM-sensor blocks to computing blocks, which predict BGL
and subsequently schedule insulin boluses or adjust the insulin basal
rate. Next, another block transforms the results of these computa-
tions into insulin-pump control commands. With SmartCGMS, we
can close the loop in-silico[15] first, before conducting an in-vivo
experiment to ensure maximum safety.

Our specific approach will be to transform the best trained
keras/tensorflow-based neural network into a hard-coded and con-
stant feed-forward neural network in C++. This will enable efficient
deployment and computation on low-power devices such as insulin-
pump controllers, while we can still train the original neural network
using high-performance computers. As a result, a flow in which a
neural network is continuously learned from patient BGL measure-
ments, providing personalised BGL predictions, can be established.
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Investigating potentials and pitfalls of knowledge
distillation across datasets for blood glucose forecasting

Hadia Hameed, Samantha Kleinberg1

Abstract. Individuals with Type I diabetes (T1D) must frequently
monitor their blood glucose (BG) and deliver insulin to regulate it.
New devices like continuous glucose monitors (CGMs) and insulin
pumps have helped reduce this burden by facilitating closed-loop
technologies like the artifical pancreas (AP) for delivering insulin au-
tomatically. As more people use AP systems, which rely on a CGM
and insulin pump, there has been a dramatic increase in the availabil-
ity of large scale patient-generated health data (PGHD) in T1D. This
data can potentially be used to train robust, generalizable models for
accurate BG forecasting which can then be used to make forecasts
for smaller datasets like OhioT1DM in real-time. In this work, we in-
vestigate the potential and pitfalls of using knowledge distillation to
transfer knowledge from a model learned from one dataset to another
and compare it with the baseline case of using either dataset alone.
We show that using a pre-trained model to do BG forecasting for
OhioT1DM from CGM data only (univariate setting) has compara-
ble performance to training on OhioT1DM itself. Using a single-step,
univariate recurrent neural network (RNN) trained on OhioT1DM
data alone, we achieve an overall RMSE of 19.21 and 31.77 mg/dl
for a prediction horizon (PH) of 30 and 60 minutes respectively.

1 Introduction
Type 1 diabetes (T1D) is a chronic lifelong disease that requires
dozens of daily decisions to manage blood glucose (BG). While
keeping BG in a healthy range is critical for avoiding complications,
it is challenging, as meals and many other factors like exercise and
stress can affect BG and insulin sensitivity. Closed-loop technolo-
gies, which connect a continuous glucose monitor (CGM) and insulin
pump with a control algorithm, could relieve this burden by auto-
matically dosing insulin. This requires an accurate forecast of where
glucose is headed so the right amount of insulin can be delivered to
keep BG within a target range dynamically.

Prior works include using system identification techniques to
model glucose-insulin interactions [18, 3] , using classic autoregres-
sive models for time series forecasting [23, 1, 5, 6] or training deep
neural networks to implicitly learn the changing glucose level pat-
terns [16, 17, 4, 24]. Neural network architectures such as LSTM
have been used successfully for many time series forecasting prob-
lems [10, 8, 7, 19, 15], but require large amounts of training data.
This is a challenge for BG forecasting, as it is time consuming and
can be infeasible to collect such massive datasets. However, there
are now large public datasets created by people with diabetes sharing
their own data, which we believe could be leveraged. In particular,
the open source artificial pancreas system (OAPS) [11], a collabora-
tive project led by people with T1D, has data donated by individuals

1 Stevens Institute of Technology, USA, email: hhameed@stevens.edu

using the system. To date, there is open source diabetes data avail-
able for more than 100 subjects, collected over a period of 1 – 4 years
(more than 1000 days worth of data for some individuals). This pa-
tient generated data is self-reported, noisy, heterogeneous, and irreg-
ularly sampled, but its much larger than the datasets routinely col-
lected in controlled studies.

We propose that large public datasets like OAPS can be used to
pretrain models, allowing deep learning to be used on smaller curated
datasets for forecasing BG. In particular, we show by augmenting and
distilling knowledge across models trained on data obtained from
different sources using RNN, we achieve an accuracy comparable
to that achieved by using OhioT1DM dataset alone for univariate
setting. We also compare the performance with multi-output setting
in which multiple BG values are estimated in the prediction horizon
simultaneously. The code is available at https://github.com/health-ai-
lab/BGLP BG forcasting.

2 Methodology

The task here is to forecast future values for BG. We compare single-
step and multi-output forecasting. In the single-step setting, a single
glucose value is estimated several minutes into the future, whereas
in multi-output forecasting several future values are estimated simul-
taneously to model the signal trajectory over the prediction horizon.
We begin by describing our time series forecasting approach, and
later discuss the dataset specific preprocessing.

2.1 Problem setup

We define the feature vector X0:t = {x0, x1, ..., xt} 2 Rn with
n being the number of variables. We use only raw CGM values
and do not incorporate additional features like carbohydrate intake
and insulin dosage. We also have a corresponding output time series
X 0

t+1:t+h = {x0
t+1, x

0
t+2, . . . , x

0
t+h} 2 R representing multiple fu-

ture glucose values across a given prediction horizon (PH) of 30 and
60 minutes. As CGM data is recorded at a frequency of 5 minutes, a
PH of 30 and 60 minutes will lead to h = 6 and h = 12 samples,
respectively. For the single step setting, this target vector becomes
X 0

t+h = {x0
t+h} estimating only a single value h time instances in

the future. Multi-output forecasting, on the other hand, aims to es-
timate the joint probability p(X 0

t+1:t+h|X0:t) simultaneously. How-
ever, root mean square error (RMSE) was calculated by comparing
the actual future glucose level and the last future value in the esti-
mated multi-output sequence, to accurately measure the performance
of the forecasting model across the two output settings.



2.2 Learning Framework
Our proposed approach is to make glucose estimations for a small
dataset by pre-training an RNN on a larger dataset and then re-
training it using a smaller dataset. We compare four learning ap-
proaches for glucose forecasting, as shown in Fig.1: I) training and
testing an RNN on OhioT1DM only (red path), II) training an RNN
on OAPS dataset and testing on OhioT1DM without any re-training
(blue path), III) training an RNN on OAPS dataset, training again
OhioT1DM, and then testing on the OhioT1DM (purple path), and
IV) the pre-trained RNN model makes intermediate estimates called
soft predictions, which are given as target estimates to a student artifi-
cial neural network (ANN) model instead of the actual ground truth,
as done for a classification task in [2]. As shown in the figure, the
black edges from the two datasets to the teacher model show that it is
pre-trained using the source data (OAPS here) but uses target data for
making final predictions in Approach II, for re-training in Approach
III, and making soft estimations in Approach IV (mimic learning),
thus always having access to the two datasets.
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Figure 1: Four learning pipelines to estimate blood glucose levels in
OhioT1DM test data.

2.3 Network Architecture
We use a vanilla RNN with a single hidden layer, H(t) with 32 units,
followed by a fully-connected output layer O(t). This was used as
the teacher model in Approaches II, III and IV and trained on the
source patient-generated data. In Approach I where no teacher model
was involved, the RNN was used as a student model trained only on
the target OhioT1DM dataset to observe the effects of using datasets
of different sizes and from different sources with the same network
architecture. In Approach IV, a teacher RNN model trained on OAPS
was used to teach a student ANN model using OhioT1DM data to
study the effects of knowledge distillation between different kinds of
networks. We use a simple, fully-connected ANN with a single hid-
den layer with 32 units. The number of units for both RNN and ANN
were chosen after trying and testing [28, 32, 64, 128] and optimiz-
ing for the least RMSE. The output layer O(t) predicts the glucose

value(s) 30 or 60 minutes into the future depending on the PH and
the output setting (single-step or multi-output).

2.4 Training models
The teacher model was trained on OAPS dataset which was pre-
processed the same way as OhioT1DM, as discussed in Section
4. Early stopping was used to halt the training process if valida-
tion loss was not improving significantly, with the maximum num-
ber of epochs being 1000 with a batch size of 248 and 128 for
OAPS and OhioT1DM, proportional to size of each dataset. Glo-
rot normal initialization [9] was used to initialize the weight matrix.
For the OhioT1DM dataset, the same training configurations (maxi-
mum epochs, batch size, initialization technique etc.) were used with
all the learning approaches (i.e. student, teacher, retrained teacher,
teacher-student) for a fair comparison. The experiments for Ap-
proach I, III and IV were repeated 10 times and the average RMSE
and MAE was recorded for each subject, along with the standard de-
viation as presented in the Section 5.

3 Data
We aim to evaluate the impact of using a large noisy dataset for im-
proving forecasting in a smaller more controlled dataset. The larger
(source) dataset from OAPS [20] was used to pre-train the model
before it was trained on OhioT1DM [12] (target), which is much
smaller in terms of the total number of subjects and days for each.

3.1 OAPS
The collection of OAPS data started in 2015 as part of an initiative
to make APS technology more accessible and transparent for people
with T1D and to enable them to create their own customized AP sys-
tems. Participants can voluntarily donate their data, including glu-
cose levels recorded via CGM, insulin basal and bolus rates, carbs
intake, physical activity, and other physiological data. Researchers
can gain access to this dataset free of charge, provided they share
their insights and research findings with the public within a reason-
able frame of time [21]. For this work, we used a subset of the dataset
from individuals with multiple calendar years of data (55 people to-
tal, 320±158.3 days of data on average). Since this data is largely
self-reported, it is noisy, irregularly sampled, and heterogeneous in
terms of the variables recorded, but because of its sheer size, it is
highly useful for pre-training a robust machine learning model for
accurate BG forecasting.

3.2 OhioT1DM
The training data consists of 12 subjects: six from the OhioT1DM
dataset shared in 2018 for the First BGLP Challenge (Group I)[13],
and six from the second BGLP Challenge 2020 (Group II)[12]. The
validation and test samples are drawn from the last 10 days of data for
subjects in Group I and Group II, respectively. The dataset contains
around 8 weeks of data for 20 variables including raw CGM values,
insulin basal and boluses, carbohydrate intake, exercise, and sleep.

4 Data pre-processing
For both OAPS and OhioT1DM, we use four recorded variables and
one attribute derived from the raw glucose values. The list of features



used in the experiments includes raw CGM values (glucose level, in-
sulin basal rate (basal and temp basal), bolus amount (bolus), carbs
intake (meal), and difference between consecutive glucose values
calculated during data pre-processing (glucose diff ). The first step
in data pre-processing was to synchronize the multi-modality data
by generating a single timestamp data field based on the timestamps
for each of the four fields, generating an irregularly sampled multi-
variate time series.

In OAPS dataset, there were two types of gaps present in the data,
first where both timestamp and glucose values were missing, and sec-
ond where the timestamp was recorded but the corresponding glu-
cose value was missing. In OhioT1DM, missing glucose values were
identified once the multi-modality data was synchronized since basal,
bolus, and meals are not recorded at the same 5-minute frequency as
glucose levels. When there was missing glucose data for more than
25 consecutive minutes, these times were not used during training.
Each data segment (series of points not separated by gap longer than
25 minutes) was then imputed and windowed separately to maintain
temporal continuity in the data.

For the rest of the data, which may contain shorter gaps, we used
linear interpolation to impute missing glucose values in training data.
Missing values in test data were imputed by extrapolation to avoid
using data from the future. Basal rates were imputed with forward
filling, meaning replacing missing values with the last recorded basal
rate, since the value is only recorded when it changes and thus miss-
ing values mean the last recorded one is still active. However, if
the field “temp basal”, recording temporary basal infusion rate, was
present for a given set of timestamps, it was used to replace the
recorded basal rate [12] by evenly distributing the rate across the
time duration which was divided into 5-minute intervals, as imple-
mented in [14, 22]. Bolus rates were imputed in a similar manner
by calculating the rate for every 5-minute interval and distributing it
evenly across the specified duration, and was set to 0 when it was not
recorded, thereby indicating that insulin was not bolused for those
time instances. Similarly, the data field “meal” which recorded the
amount of carbohydrate intake was set to 0 when it was missing.

In addition to missing data, the sensors are also noisy, leading to
sudden changes in glucose levels, which can cause high variance in
the learned model. To remove these spikes, the signal was passed
through a median filter with a window size of 5 samples, as in [25].
This was only done for training data and not for the validation and
test sets to test robustness of the model.

A sliding window was used to split the data into fixed sized se-
quences for further downstream analysis. There are three parameters
for the moving window configuration: history window size (number
of past samples to use for forecasting), prediction horizon (PH) and
output window (how far into the future and how many future values
to predict), and stride (number of samples to skip while sliding the
window). An hour (12 samples) of past values were used to predict
the glucose levels 30 and 60 minutes into the future (PH = 30, 60)
with a unit stride, which means overlapping windows were used to
partition the data.

In OhioT1DM train and test data, the raw CGM values range from
70 – 275 mg/dl and 75 – 290 mg/dl on average, respectively. To en-
sure that values of all the features were in the same range, insulin
basal, bolus rates and carbs intake were normalized based on the
minimum and maximum value of glucose levels using Min-Max Nor-
malization.

5 Experiments
5.1 Experimental set up
The last ten days of data for subjects with ID 559, 563, 570, 575, 588
and 591 were used as validation set and test set was sampled from
data for subjects 540, 544, 552, 567, 584, 596. The processing steps
for the test data included linear extrapolation for imputing missing
values and normalization. The test data was not passed through a
median filter like the training set to see how robust the trained models
were to unseen, noisy data. We use root mean square error (RMSE)
and mean absolute error (MAE) to compare the predicted values with
the actual ground truth to evaluate the model. MAE and RMSE can
be expressed as,

MAE =
1
n

nX

n=1

|yi � ŷi| (1)

RMSE =

vuut 1
n

nX

n=1

(yi � ŷi)
2 (2)

where yi is true glucose level and ŷi is estimated glucose level,
both measured in mg/dl. We repeated the experiments 10 times and
calculated the average RMSE and MAE for each subject across the
ten trials. We also report the best, worst and mean RMSE (MAE)
across all the subjects for each of the four pipelines using both single-
step and multi-output models.

5.2 Results

Table 1: RMSE (MAE) for single-step forecasting with different
learning pipelines for a PH of 30 minutes.

(a) Single-step

Subject ID I II III IV

540 19.55 (14.00) 20.32 (14.60) 20.36 (14.69) 20.46 (14.81)
544 16.56 (11.51) 17.84 (12.51) 17.50 (12.20) 17.92 (12.53)
552 15.04 (11.14) 16.17 (11.90) 15.72 (11.63) 16.20 (12.06)
567 23.07 (14.67) 24.09 (15.38) 23.91 (15.32) 24.74 (15.65)
584 25.19 (16.16) 26.47 (16.88) 26.97 (16.65) 26.83 (16.84)
596 15.85 (10.98) 17.24 (12.06) 16.50 (11.52) 17.50 (12.12)

Best 15.04 (11.14) 16.17 (11.90) 15.72 (11.63) 16.20 (12.06)
Worst 25.19 (16.16) 26.47 (16.88) 26.97 (16.65) 26.83 (16.84)
Average 19.21 (13.07) 20.36 (13.89) 20.16 (13.67) 20.61 (14.00)

(b) Multi-output

Subject ID I II III IV

540 20.30 (14.64) 20.41 (14.77) 20.36 (14.68) 20.55 (15.18)
544 17.61 (12.19) 18.07 (12.59) 17.68 (12.23) 18.41 (12.91)
552 15.68 (11.57) 15.98 (11.74) 15.66 (11.54) 16.06 (12.08)
567 23.94 (15.29) 24.88 (15.58) 23.66 (15.08) 24.47 (15.55)
584 26.61 (16.65) 26.29 (16.71) 25.82 (16.43) 26.70 (17.01)
596 16.46 (11.43) 17.17 (11.86) 16.54 (16.54) 17.57 (12.21)

Best 15.68 (11.57) 15.98 (11.74) 15.66 (11.54) 17.57 (12.21)
Worst 26.61 (16.65) 26.29 (16.71) 25.82 (16.43) 26.70 (17.01)
Average 20.10 (13.63) 20.46 (13.87) 19.95 (13.57) 20.63 (14.16)

I: Student model only, II: Teacher model without re-training,

III: Teacher model with re-training, IV: Mimic learning (teacher + student model)

The results for a PH of 30 and 60 minutes are shown in Tables 1
and 2, respectively.



Overall, approach I achieved the lowest RMSE (MAE) with 19.21
(13.07) for a PH of 30 minutes and 31.77 (23.09) for PH = 60 min-
utes. In this approach an RNN was trained only using the OhioT1DM
data, using raw CGM values. The worst performance was from ap-
proach IV, where estimations made by a teacher model pre-trained on
OpenAPS dataset were given as ground truth to student ANN model
for training on OhioT1DM, as shown in Tables 1a and 2a. This ap-
proach did not improve the forecast accuracy as it did in [2]. It might
be because [2] used this technique for a classification task of mor-
tality prediction which involved predicting hard labels and evaluated
performance using misclassification error instead of estimating con-
tinuous valued deviations from the ground truth as is the case in BG
forecasting.

For BG forecasting using multi-output model, all approaches per-
formed equally well, with approach I, II, and IV (student model,
teacher and teacher student model) giving the same RMSE on aver-
age. For approach II, the error did not worsen significantly, show-
ing that pre-trained models can be used for making forecasts for
OhioT1DM data in real-time, without having to set aside a portion
of the dataset for retraining the model, an important consideration
for smaller datasets. However, the RMSE improved slightly for ap-
proach II when the teacher model was retrained.

Approach IV

Table 2: RMSE (MAE) for single-step forecasting with different
learning pipelines for a PH of 60 minutes.

(a) Single-step

Subject ID I II III IV

540 33.94 (25.40) 35.54 (26.74) 35.16 (26.94) 35.84 (27.35)
544 27.79 (20.34) 31.07 (22.45) 30.79 (22.84) 31.23 (22.69)
552 26.68 (20.15) 28.36 (21.08) 27.99 (21.33) 28.54 (21.53)
567 37.99 (26.50) 39.89 (27.76) 40.63 (28.47) 39.57 (28.09)
584 37.47 (27.00) 39.74 (27.87) 39.40 (27.60) 39.36 (27.85)
596 26.72 (19.12) 28.41 (20.42) 27.89 (20.31) 28.75 (20.83)

Best 26.68 (20.15) 28.36 (21.08) 27.89 (20.31) 28.54 (21.53)
Worst 37.99 (26.50) 39.89 (27.76) 40.63 (28.47) 39.57 (28.09)
Average 31.77 (23.09) 33.84 (24.39) 33.64 (24.58) 33.88 (24.72)

(b) Multi-output

Subject ID I II III IV

540 35.23 (26.94) 35.32 (26.99) 35.33 (27.06) 35.66 (27.05)
544 30.68 (22.83) 31.17 (22.74) 30.73 (22.79) 31.23 (22.84)
552 28.22 (21.57) 28.57 (21.56) 28.13 (21.43) 29.23 (21.98)
567 39.53 (28.03) 39.07 (27.95) 39.32 (21.43) 41.33 (28.57)
584 39.60(27.71) 39.43 (27.91) 39.43 (21.43) 39.07 (27.37)
596 27.92 (20.27) 28.48 (20.55) 28.13 (20.42) 28.81 (20.81)

Best 27.92 (20.27) 28.48 (20.55) 28.13 (20.42) 28.81 (20.81)
Worst 39.60 (27.71) 39.43 (27.91) 39.43 (21.43) 41.33 (28.57)
Average 33.53 (24.56) 33.67 (24.62) 33.516 (24.52) 34.22 (24.77)

I: Student model only, II: Teacher model without re-training,

III: Teacher model with re-training, IV: Mimic learning (teacher + student model)

6 Conclusion
In this work we have compared four different learning strategies for
BG forecasting using two different datasets. We have shown that
an RNN model pre-trained on a bigger dataset such as OpenAPS
can be used directly to do BG forecasting for a smaller dataset like
OhioT1DM when using CGM data only. We predicted BG levels 30
and 60 minutes into the future using single-step and multi-output
models, using univariate BG data. Overall, a single-step RNN trained

only on univariate data from OhioT1DM dataset achieved the least
RMSE of 19.21 and 31.77 mg/dl for a PH of 30 and 60 minutes,
respectively.
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Blood Glucose Prediction for Type 1 Diabetes
Using Generative Adversarial Networks

Taiyu Zhu1, Xi Yao2, Kezhi Li3, Pau Herrero4 and Pantelis Georgiou5

Abstract. Maintaining blood glucose in a target range is essential
for people living with Type 1 diabetes in order to avoid excessive
periods in hypoglycemia and hyperglycemia which can result in se-
vere complications. Accurate blood glucose prediction can reduce
this risk and enhance early interventions to improve diabetes man-
agement. However, due to the complex nature of glucose metabolism
and the various lifestyle related factors which can disrupt this, dia-
betes management still remains challenging. In this work we pro-
pose a novel deep learning model to predict future BG levels based
on the historical continuous glucose monitoring measurements, meal
ingestion, and insulin delivery. We adopt a modified architecture of
the generative adversarial network that comprises of a generator and
a discriminator. The generator computes the BG predictions by a
recurrent neural network with gated recurrent units, and the auxil-
iary discriminator employs a one-dimensional convolutional neural
network to distinguish between the predictive and real BG values.
Two modules are trained in an adversarial process with a combina-
tion of loss. The experiments were conducted using the OhioT1DM
dataset that contains the data of six T1D contributors over 40 days.
The proposed algorithm achieves an average root mean square er-
ror (RMSE) of 18.34 ± 0.17 mg/dL with a mean absolute error
(MAE) of 13.37 ± 0.18 mg/dL for the 30-minute prediction hori-
zon (PH) and an average RMSE of 32.31± 0.46 mg/dL with a MAE
of 24.20 ± 0.42 for the 60-minute PH. The results are compared
for clinical relevance using the Clarke error grid which confirms the
promising performance of the proposed model.

1 INTRODUCTION

Diabetes is a chronic metabolic disorder that affects more than 400
million people worldwide with an increasing global prevalence [27].
Due to an absence of insulin production from the pancreatic � cells,
people living with Type 1 diabetes (T1D) require long-term self-
management through exogenous insulin delivery to maintain blood
glucose (BG) levels in a normal range. In this regard, accurate glu-
cose prediction has great potential to improve diabetes manage-
ment, enabling proactive actions to reduce the occurrence of adverse
glycemic events, including hypoglycemia and hyperglycemia.

In recent years, empowered by the advances in wearable devices
and data-driven techniques, different BG prediction algorithms have
been proposed and validated in clinical practice [29]. Among these,
continuous glucose monitoring (CGM) is an essential technology

1 Imperial College London, UK, email: taiyu.zhu17@imperial.ac.uk
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that measures BG levels and provides readings in real-time. CGM
has produced a vast amount of BG data with its increasing use in the
diabetes population. Taking advantage of this, the emergence of deep
learning algorithms for BG prediction has achieved recent success
and outperformed several conventional machine learning approaches
in terms of accuracy [1, 16, 17, 23, 28]. Generally, the major chal-
lenge of BG prediction lies in accounting for the intra- and inter-
person variability that leads to various glucose responses under dif-
ferent conditions [25]. Furthermore, many external events and factors
can influence glucose dynamics, such as meal ingestion, physical ex-
ercise, psychological stress, and illness. Deep learning is powerful
at extracting hidden representations from large-scale raw data [15],
making it suitable for accounting for the complexity of glucose dy-
namics in diabetes.

In this work, we propose a novel deep learning model for BG pre-
diction using a modified generative adversarial network (GAN). As a
recent breakthrough in the field of deep learning, GANs have shown
promising performance on various tasks, such as generating realistic
images [13], synthesizing electronic health records [4] and predicting
financial time series [31]. Normally, a GAN framework is composed
of two deep neural networks (DNNs) models as the generator and the
discriminator, respectively. They are trained simultaneously through
an adversarial process [10]. The proposed generator captures feature
maps of the multi-variant physiological waveform data and gener-
ates predictive BG samples, while the discriminator is designed to
distinguish the real data from generated ones. To model the temporal
dynamics of BG data, we adopt a recurrent neural network (RNN)
in the generator and a one-dimensional convolutional neural network
(CNN) in the discriminator with dilation factors in each DNN layer
to expand receptive fields, which have been verified as adequate net-
work structures for BG prediction in our previous works [5, 17, 33].

2 METHODS

2.1 Dataset and Pre-processing

The data that we used to develop the model is the OhioT1DM
dataset, provided by the Blood Glucose Level Prediction (BGLP)
Challenge [20, 21]. It was produced by collecting BG-relevant data
on 12 people with T1D over an eight-week period. The first half of
the cohort released for the 2018 BGLP challenge was used for model
pre-training, and we focus on the performance of the rest six indi-
viduals that numbered 540, 544, 552, 567, 584, and 596. The dataset
contains BG levels collected by CGM readings every five minutes,
insulin delivery from insulin pumps, self-reported events (such as
meal, work, sleep, psychological stress, and physical exercise) via
a smartphone app and physical activity by a sensor band. However,
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Figure 1: The system architecture of the proposed GAN framework to predict BG levels.

there are unavoidable differences between the collected data and ac-
tual physiological states. For example, the CGM sensor measures in-
terstitial fluid glucose level and then estimate BG levels by applying
signal processing techniques, such as filtering and calibration algo-
rithms. The meal and insulin are discrete values manually input by
users, instead of series of carbohydrates and insulin on board.

It should be noted that the dataset contains many missing gaps
and outliers affecting BG levels, both in the training and testing
sets, mainly due to CGM signal loss, sensor noise (e.g., compres-
sion artifacts), or some usage reasons, such as sensor replacement
and calibration. To compensate for some of the missing data, we ap-
ply linear interpolation to fill the missing sequences in the training
sets, while we only extrapolate missing values in the testing set to
ensure that the future information is not involved as partial inputs
in the prediction. We then align processed BG samples and other
features, e.g. exogenous events, with the same resolution of CGM
measurements, and normalize them to form a N -step time series:
XN = [x1, . . . ,xN ] 2 RN⇥d, where x is a d-dimensional vector
mapping the multivariate data at each timestep.

2.2 Problem Formulation
Considering a target prediction horizon (PH) (e.g. 30 or 60 minutes),
the goal of the predictor is to estimate the future BG levels Gt+w

of individuals given past and current physiological states, where w is
the number of timesteps determined by PH and CGM resolution (e.g.
5 minutes). Hence, the objective of predictor is consistent with that
of GANs, aiming to learn the DNN approximator p̂ from the pattern
of glucose dynamics p measured in the human body, which can be
expressed by the form of the Kullback-Leibler divergence [30]:

min
p̂

D((p(Gt+w|X1:t)||(p̂(Gt+w|X1:t)) (1)

where D is a measurement of the distance between distributions.
Thus, we need to select highly-related data features to represent
the physiological state. Referring to some previous work and hyper-
parameter tuning [16, 17, 22, 23], we use X , [G,M, I] as the
physiological time series, where G is pre-processed CGM measure-
ments (mg/dL); M denotes the carbohydrate amount of meal inges-
tion (g); and I is the bolus insulin delivery (U). In order to reduce
the bias in the supervised learning, we set the changes of BG levels
in PH as the training targets of the generator: �Gt = Gt+w � Gt.

Then the predictive BG level Ĝt+w from the generator is defined as
follows:

Ĝt+w = fG(Xt+1�L:t) +Gt (2)

where fG represents the parameters of the generator. Instead of us-
ing the whole series, we divide X into small contiguous sequences
with a length of L as a sliding window, then feed them into the deep
generative model in a form of mini-batches, aiming at improving sta-
bility and generalization of the model [12]. According to the feature
selection in [22] and the model validation, we empirically set L = 18
which indicates that the input contains 1.5 hours historical data.

2.3 System Architecture
The RNN-based algorithms performed well in BG level prediction
in previous studies [1, 23, 28]. Thus, we instantiate a three-layer
RNN with 32 hidden units to build the generator, which can be
seen as a typical setup of time series GANs [9, 24, 30]. In general,
vanilla RNN architecture faces the problem of gradient vanishing
and exploding, making it difficult to capture long-term dependencies.
Thus, the gated RNN units are proposed to meet this challenge using
element-wise gating functions [7], including long short-term mem-
ory (LSTM) units [11] and gated recurrent units (GRUs) [6]. Com-
pared to the vanilla RNN, the gated units are able to control the flow
of information inside units by a set of gates, which allows an eas-
ier backward propagation process. Compared to the LSTM, the GRU
was proposed more recently and removed the memory unit. This cell
structure uses less parameters and computes the output more effi-
ciently [32] . During the hyper-parameter tuning, GRU-based algo-
rithms also achieved the best predictive outcomes, so we naturally
adopt GRU cells in the RNNs .

As depicted in Figure 1, the multi-dimensional input is fed into a
RNN with GRU cells given a state length of L. Then the data is pro-
cessed by a set of hidden neurons to calculate the last cell state Ct.
A fully connected (FC) layer with weights WFC and a bias bFC are
used to model the final scalar output: �Ĝt = WFCCt + bFC . Fi-
nally, after adding the current BG level to predictive glucose change,
we obtain the output Ĝt+w.

In general, the prediction performance degrades with the increase
of PH, due to the complicated physiological conditions of people
with T1D and the uncertainties of exogenous events between t and
t+w. For instance, if there was a meal intake with large carbohydrate



20-30 minutes before t+ w, the BG level would raise fast and make
the target �Gt suddenly increase. These cases occur frequently in
the daytime with a large PH, which could affect a supervised learning
model to achieve global optimum. This motivated us to make use
of the information between t and t + w during the training process
to investigate the contiguous glucose change. Therefore, we append
the predictive BG level to the end of series Gt+1:t+w�1 to form a
synthetic sequence ŷ and use Gt+1:t+w as the corresponding real
sequence y. Then we introduce a CNN-based discriminator to extract
features and distinguish the real from synthetic sequences, benefiting
from the good classification ability of CNNs [15]. There are three
one-dimensional (1-D) causal CNN layers employed with rectified
linear unit (ReLU) activation and 32 hidden units to compute the final
binary output. The discriminator is expected to classify the real and
synthetic sequences by 1 and 0, while the generator is pitted against
the discriminator and aims to estimate a BG value that is close to the
real BG distribution over the PH. Thus the loss of discriminator is
computed by cross-entropy. Consequently, this adversarial training
contains two loss functions LG and LD for the generator and the
discriminator respectively, which are given by

LG = �1LSL + �2m
mX

i=1

log(1� fD(ŷ(i))), (3)

LD =
1
m

mX

i=1

[� log fD(y(i))� (log(1� fD(ŷ(i))))], (4)

where fD represents the calculation in the discriminator; LSL

is the means square error loss of supervised learning: LSL =P
m

i=1(G
(i)
t+w

� Ĝ(i)
t+w

)2; �1 and �2 are used to adjust the ratio be-
tween supervised loss and adversarial loss [31]; and m stands for
the mini-batch size. In practice, we employ two separate Adam opti-
mizer [14] to minimize LG and LD with batch size of 512 and learn-
ing rate of 0.0001.

Moreover, we introduce dilation to both the RNN and the CNN
layers [3, 26], which has shown the promising performance of BG
level prediction in previous work [5, 17, 32, 33]. By skipping certain
number connections between neurons, the receptive field of the DNN
layers can be exponentially increased, which is helpful to capture
long-term temporal dependencies in the BG series. In particular, the
dilation of layer l is set to rl = 2l�1, increasing from the bottom
layer to the top layer. The computation of DNN layers are defined as
follows:

h(l)
t

= fN (h(⇤)
t�rl

, in(l�1)
t

) (5)

where h(l)
t

and in(l�1)
t

are the output and input of layer l at timestep
t; fN denotes the computation in hidden neurons, referring to convo-
lution and cell operation in CNN and RNN layers, respectively. As
a feed-forward neural network, the CNN hidden units fetch all the
inputs from the layer at a lower level (⇤ = l � 1), whereas RNNs
skip cell state by rl � 1 timesteps to perform the recursive operation
(⇤ = l).

2.4 Training and Validation
The training and testing sets are separately provided by the BGLP
challenge, which contains the data for around 40 and 10 days, re-
spectively. To tune the hyper-parameters by grid search, we vali-
dated the models by the same range of hyper-parameters values as
in our previous work [32]. We considered many validation methods,
such as simple splitting, k-fold cross-validation, and blocked cross-
validation [2]. Due to the temporal dependencies and limited size of

the training set, we use the last 20% data of the training set to validate
the models and guarantee that future information is not involved in
current prediction. The early-stop technique is applied to avoid over-
fitting; we stop the training process when the validation loss keeps
increasing. In particular, we set the maximum number of epochs to
3000 with stopping patience of 50. The data sufficiency and over-
fitting occurrences are further investigated by means of the learning
curves.

2.5 Metrics
A set of metrics is applied to evaluate the performance of the GAN
model, including root mean square error (RMSE) (mg/dL), mean ab-
solute error (MAE) (mg/dL), which are denoted as:

RMSE =

vuut 1
N

NX

k=1

(Gk � Ĝk)
2, MAE =

1
N

NX

k=1

|Gk � Ĝk|,

(6)
In addition to the RMSE and MAE metrics, we also use the Clarke
error grid (CEG) [8], which is a semi-quantitative tool from the clin-
ical perspective. As shown in Figure 2, there are five zones labeled
to intuitively reveal the medical consequence based on the prediction
results. In general, the data points (BG pairs) in zone A and B are
regarded as positive for medical treatment, while the rest (C, D and
E) are considered undesirable.

3 RESULTS
After tuning the hyper-parameters, we tested the model on the test-
ing sets. Table 1 shows the RMSE and MAE results for the PH of
30 minutes and 60 minutes. Considering the randomness of the ini-
tial weights in DNNs, we conducted 10 simulations and reported
results by Mean±SD, where SD is the standard deviation. The av-
erage (AVG) RMSE and MAE over all 6 contributors respectively
achieve 18.34 ± 0.17 and 13.37 ± 0.18 mg/dL for 30-minute PH,
and 32.21 ± 0.46 and 24.20 ± 0.42 for 60-minute PH. The best
RMSE and MAE results in experiments are also presented in the last
row, which are slightly smaller than the average results. It is noted the
standard deviation of multiple simulations is small, which indicates
the stability of the model.

Table 1: Prediction performance of the GAN model evaluated on 6
data contributors.

ID Number 30-minute PH 60-minute PH

(#) RMSE MAE RMSE MAE
540 2884 20.14± 0.21 15.22± 0.17 38.54± 0.46 29.37± 0.21
544 2704 16.28± 0.11 11.62± 0.15 27.64± 0.43 20.09± 0.38
552 2352 16.08± 0.20 12.03± 0.22 29.03± 0.35 22.47± 0.34
567 2377 20.00± 0.14 14.17± 0.22 35.65± 0.41 26.68± 0.53
584 2653 20.91± 0.08 15.11± 0.11 34.31± 0.53 25.55± 0.52
596 2731 16.63± 0.25 12.12± 0.23 28.10± 0.57 21.06± 0.57
AVG 18.34 13.37 32.21 24.20
SD 0.17 0.18 0.46 0.42
Best 18.21 13.21 31.64 23.70

To visualize clinical significance between the reference and pre-
diction outcomes, Figure 2 shows the CEG of the contributor 544
that obtains the best statistic performance in Table 1. The specific
percentage of the distribution in five regions is presented in Table 2.



(a) 30-minute PH (b) 60-minute PH

Figure 2: The Clarke error grid plots for contributor 544

Table 2: The percentage distribution in Clarke error gird (%).

ID 540 544 552 567 584 596
30-minute PH

CEGA 86.15 93.91 89.41 89.01 86.75 91.03
CEGB 12.18 5.76 8.80 10.06 12.26 7.57
CEGC 0 0 0 0 0 0
CEGD 1.67 0.33 1.79 0.93 0.98 1.40
CEGE 0 0 0 0 0 0

60-minute PH
CEGA 60.22 79.38 68.01 60.81 69.46 76.60
CEGB 33.37 19.20 28.91 30.80 28.34 20.78
CEGC 0.14 0 0 0.25 0.18 0
CEGD 6.27 1.38 3.08 8.14 2.01 2.62
CEGE 0 0 0 0 0 0

4 DISCUSSION
As shown in Table 2, the majority of the CEG points are located
in zones A and B. These zones signify that the data is within 20%
value of the reference, where the treatment suggestions are appro-
priate regardless of the prediction error. It indicates the high clinical
accuracy of the proposed model. The percentage of zone D is small
for the 30-minute PH and increases for the 60-minute PH. The points
in zone D mean the predictive model missed the hypoglycemia or
hyperglycemia events and could lead to poor treatment. In Figure 2b,
the most error points are concentrated on the bottom-right corner of
the left panel of zone D. It reveals that the model outputs higher
predictions when BG levels enter the hypoglycemia region, which is
undesirable in the clinical setting. Figure 3 shows the correspond-
ing BG curves for the contributor 544, where the findings from CEG
analysis can be validated, and time lags between the predictions and
measurements can be observed. The overestimation is observed in
several BG regions with low BG levels or a sharp decrease. Aligning
the error region with the timesteps, we find that some of the mis-
estimation occurs in nocturnal hypoglycemia. Similar findings are
identified by the CEG analysis and BG curves of the other contribu-
tors. Therefore, future work will include training and switching be-
tween different models for different glucose regions, evaluated by
more advanced error grid analysis.

During the experiments, we explored Tikhonov regularization to
filter out the outliers in training sets, as described in [1]. However, it
was prone to degrade the validation performance but largely reduce
the training loss. Then we used the 2018 OhioT1DM dataset [21] and
the in silico datasets from UVA/Padova T1D simulator [19] for model
pre-training. The simulator produced data of an average virtual adult
subject with the scenarios defined in [32] over 360 simulated days.
The population model was trained by 5 epochs and then fine-tuned

(a) 30-minute PH

(b) 60-minute PH

Figure 3: The comparison between the model predictions and the
ground truth of CGM measurements during the first 24-hour period
in the testing set of contributor 544. There are three missing BG val-
ues between 8:00 and 8:15.

by subject-specific data, but the average validation RMSE slightly
increased by around 0.5 mg/dL, compared with the models without
pre-training. As shown in Table 1, there are two groups: one includ-
ing contributors 544, 552, and 596 with better RMSE and MAE per-
formance, and the other including contributors 540, 567 and 584.
We introduced the data from the former group to pre-train a pop-
ulation model for the latter group, but the RMSE almost remained
unchanged. Thus, one explanation of the pre-training performance is
that large inter-person variability exists. For example, in the testing
set, contributor 552 has a gap of 1415 missing data points (⇠ 5 days),
and contributor 567 did not record the meal ingestion, for which we
reduced the dimension of the input data. To this end, multiple pre-
possessing methods are needed to mitigate these missing or incor-
rect inputs, such as the detection of unannounced meals. In addition,
as future work, we consider incorporating personalized physiologi-
cal and behavioral models [18], such as insulin and carbohydrate on
board, to better explain the observed variability.

Compared with the RNN prediction model in our previous
work [32], the GAN model achieved better validation performance
and smaller RMSE for most of the data contributors in the training
process, especially for the 60-minute PH. During the testing phase,
the GAN model can output the predictions without using the discrim-
inator. Hence, the complexity of the proposed model is similar to that
of the conventional RNN models, which can be easily implemented
on smartphone applications [16, 17] to provide real-time predictions
and control insulin pump via Bluetooth connectivity. The code cor-
responding to this work is available at: https://bitbucket.org/deep-
learning-healthcare/glugan.



5 CONCLUSION

In this work, a novel deep learning model using a modified GAN
architecture is designed to predict BG levels for people with T1D.
We developed the personalized models and conducted multiple eval-
uations for each data contributor in the OhioT1DM dataset. The
proposed model achieves promising prediction performance for 30-
minute and 60-minute PH in terms of average RMSE and MAE. The
CEG analysis further indicates good clinical accuracy, but there are
opportunities for enhancement. In particular the model falls short
sometimes in capturing a small number of hypoglycemia events.
Nevertheless, the model is able capture most of the individual glu-
cose dynamics and has clear potential to be adopted in actual clinical
applications.
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Abstract. Real-time forecasting of blood glucose (BG) levels has
the potential to drastically improve management of Type 1 Diabetes,
a widespread chronic disease affecting the metabolic system. Most
notably, if hypo or hyperglycemia episodes (i.e. glycemic excursion
below or above a safe range) could be accurately predicted, then the
patient could be timely warned, thus enabling proactive countermea-
sures to avoid these dangerous conditions. In this work, a novel per-
sonalized algorithm for the real-time forecasting of BG is developed
by combining the output of a shallow feed forward neural network
with an error imputation module composed by an ensemble of trees.
Past glucose readings as well as insulin, meals and work/sleep time
information are carefully handled to train and boost the prediction
performance of the algorithm. The root mean square error over the 6
subjects achieves a mean value of 18.69 mg/dL and 32.43 mg/dL for
30- and 60-minute prediction horizon respectively.

1 INTRODUCTION
Type 1 diabetes (T1D) is a metabolic disease characterized by the
destruction of the pancreatic cells responsible for insulin production
and thus resulting in an impaired Blood Glucose (BG) homeosta-
sis. Diabetes treatment relies on external insulin injection aimed at
maintaining BG levels within a physiological range [1], since poor
BG regulation is responsible of comorbidities and reduced life ex-
pectancy [2]. In particular, concentrations below or above the normal
range (called hypo- and hyper-glycemia respectively) can either rep-
resent an immediate threat to patient safety or could cause severe
long-term complications.

Measures to mitigate/avoid these conditions include the admin-
istration of exogenous insulin to reduce hyperglycemic excursion
or the consumption of fast-acting carbohydrates for hypoglycemic
events. Unfortunately, both insulin injection and carbohydrates con-
sumption affects BG only after a considerable amount of time: 45
minutes for insulin and at least 15 minutes for carbohydrates.

Therefore, accurate BG prediction would be of paramount impor-
tance to enable timely corrective actions and thus ensure successful
BG control. This holds true both for standard therapy, where correc-
tive actions are manually performed by patients, and in automated
and semi-automated systems such as an artificial pancreas [1].

Nevertheless, BG prediction is by no mean a trivial task. BG con-
centration is the result of complex non-linear dynamical interaction
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of multiple physiologic subsystems and is influenced by several fac-
tors, often hard to measure. They include timing and magnitude
of carbohydrates consumption, protein and fat content of the meal,
length, intensity and even type (aerobic vs anaerobic) of physical ex-
ercise, stress, illness or menstrual cycle. Furthermore, the modeling
of BG dynamics is hindered by the large variability in the physi-
ological metabolic response of different individuals. For these rea-
sons, non-linear and personalized models can represent one of the
best options to address the task. The introduction of continuous glu-
cose monitoring (CGM) sensors in T1D care has encouraged the use
of data-driven models based on past BG readings, whereas the fur-
ther availability of data offered by infusion pumps and fitness bands
opened the possibility of using exogenous inputs as additional fea-
tures for describing the model [15, 3].

Over the last two decades, several non-linear algorithms have been
tested in this framework, including support vector machine [4], gaus-
sian process regression [14], random forest (RF) [5] and several kinds
of neural networks (NN) [17, 10, 16, 9], up to deep-learning ap-
proaches like long short-term memory networks [13] and convolu-
tional NN [6]. While some works assessed that only past CGM in-
formation is actually useful to describe an accurate model [6, 13, 8],
many others claims that exogenous inputs play an important role in
describing BG dynamics. These extra features include time of the
day, insulin administration, food intake, energy expenditure, lifestyle
and emotions [5, 4, 6, 10, 18].

Up to the present, none of the these models has stand out from the
others in terms of prediction accuracy. This consideration lead our
group to focus more on feature manipulation, selection and hyper-
parameters optimization and to explore the possibility of combining
different kinds of non-linear learners. In conclusion, the aim of our
work is to synthesize an accurate model of BG dynamics by starting
from a simple, feedforward NN and to investigate:

• the impact of hyperparameters optimization and feature selection;
• the improvement achievable by combining the NN with an error

imputation module (EIM) based on a regression trees ensemble.

2 DATASET
Our study is based on the real patient data provided by the
OhioT1DM Dataset, described in detail in [7]. In its 2020 update,
six new patients are introduced in the dataset, with roughly 8 weeks
of data each (6 weeks of training set, 10 days of testing set). Each
of them wore a CGM device (Medtronic Enlite CGM sensor), and
an insulin pump (Medtronic 530G or 630G). Daily life-events (e.g.



work/sleep, exercise) are reported via smartphone app while other
physiological data (e.g. skin temperature) are provided by using Em-
patica Embrace fitness wristbands. We will work exclusively on these
six new subjects.

Some of these signals are quasi-continuously measured, like
CGM, acceleration or basal insulin. Some others are impulse-like,
e.g. self-monitoring BG or meal consumption, which are provided
only a few number of times along the day. Some others, like work
intensity or sleep quality, are instead defined for time windows of the
order of some hours.

Some of the impulsive-like features, e.g. insulin boli, have an im-
pact on glucose dynamics that could last up for several hours. In
order to include this information in the framework of feedforward
NNs, which have no memory about the dynamics of inputs, we had
to rely on new features. We described the insulin-on-board (IOB) by
convolution of insulin boli and basal with a 6 hours activity curve,
whereas the convolution of consumed carbohydrates with an absorp-
tion curve (different for slow- and fast-acting carbohydrates) returned
the carbohydrates-on-board (COB). These two variables carry infor-
mation about the dynamics of slow insulin absorption and carbohy-
drates slow impact on BG, hence they are suitable for being used
with feedforward NNs. In a similar way, we described the physical-
exercise-on-board by low-pass filtering with second order transfer
function the physical activity intensity.

We also introduced the slope of CGM, computed by using the last
2 hours of readings, since the trend of the glycemic profile resulted
to be significantly correlated to future CGM readings in the train-
ing set. Other tested features include daytime, time and amount of
last carbohydrates intake and several filtered version of the original
signals.

3 METHODS
As shown in Figure 1, the proposed model is composed by two parts.
The first one is a shallow NN, which is the main predictor. It is trained
to predict future BG values with a certain prediction horizon (PH).
The second predictor is based on an ensemble of trees. It is called
error imputation module, since it is trained to predict the error that
is committed by the shallow NN. Finally, as shown in Figure 1, the
prediction of the proposed algorithm is obtained by combining the
output of the shallow neural network CGMs(t+PH) with the out-
put of EIM, ê(t + PH), to have an accurate value for the expected
glucose concentration.

Figure 1: Complete architecture of the predictive model. Variable
CGMs(t+ PH) is the original prediction, CGMc(t+ PH) is the
corrected prediction and ê(t+ PH) is the predicted error.

3.1 SHALLOW NEURAL NETWORK
The feature set for the shallow NN is manually determined on a pop-
ulation level, i.e. by looking for a unique set of feature which can be

used by all subjects. The first criterion for feature selection consists
in excluding all those features that presents too many missing val-
ues in the training set and hence cannot be considered reliable. For
instance, COB was discarded because, in some subjects, the infor-
mation about meal is missing for a large part of the training set (e.g.
subject 567 reported only 31 of the expected 141 meals). A second
criterion consists in excluding the features that are expected to have
a negligible impact on prediction accuracy, e.g. the state of illness
or work. This selection was performed with domain experts and by
means of some preliminary evaluation on the training set. The se-
lected features still presented many missing values that could hinder
the training procedure. Thus we performed, exclusively on the train-
ing set, a first order interpolation on any gap of samples shorter than
30 minutes. Finally, we investigated how many past CGM readings
should be used as inputs in order to improve model accuracy. To this
purpose we performed a bayesian optimization [12], using 70% of
the data in the original training set for training and the remaining
30% for validation. The result was that using the last 16 CGM in-
stants (corresponding to the last 1 hour and 20 minutes of readings)
leads to the optimal prediction performances in the six subjects. In
conclusion, the resulting feature pool we adopted included present
and past CGM readings, CGM slope and IOB.

Similarly, we determined the number of hidden layers and num-
ber of neurons in each layer with an exploratory optimization, which
was also performed via bayesian optimization and using the same
training/validation split we employed for feature selection. The best
performances on the validation set were found when using a single
hidden layer with a reduced number of inner nodes (only 5).

While the architecture of the net was optimized on a population
level and it will be the same for every subject, the weights of the net
were trained individually for every subject, meaning that the result-
ing model is tailored on each of them. The shallow net is trained on
the whole original training set, with its target being either the 6- or
12-steps ahead prediction of CGM, i.e. prediction horizons of 30 and
60 minutes, respectively. Inputs and targets of the net are normalized
by the mean and standard deviation computed on the training set.

3.2 ERROR IMPUTATION MODULE
We noticed that the prediction of the main NN is affected by a large
error when abrupt changes occur in its inputs. For instance, consecu-
tive CGM readings showing a large difference in values are often as-
sociated with poor BG predictions. However, other explanatory fac-
tors for the prediction error could be found in those features which
were not used by the shallow NN. The key idea behind the EIM is
to provide an estimate ê(t + PH) of the true error, e(t + PH), af-
fecting the prediction of the shallow net. The first step to build this
module is to create a new pool of feature, named Corrective Fea-
ture Set, containing the first order differences, at several time lags,
of: CGM, IOB, COB, sleep/work period, skin temperature and ac-
celeration data. Then, to take into account the large inter-individual
variability, a feature selection step (based on ReliefF [11]) is ap-
plied to the Corrective Feature Set. Then, only the features with
highest ranks are used to train the model. A further level of in-
dividualization is achieved by optimizing several hyperparameters.
For each subject, a bayesian optimization procedure returns the best
method to train the ensemble of trees (i.e., Bagging or Boosting),
the best number of trees (searched among the range {10,500}), the
best number of leaves for each tree (searched among the log-scaled
range {1,max(2,number of training sample/2)}), the best tree-depth
(searched among the log-scaled range {1,max(2,number of train-



Figure 2: 30-minute prediction for subject 544. The three curves represent real CGM data (blue line), the prediction with CGM-NN (red line),
and the prediction with NN-EIM (green line).

ing sample-1)}), the best learning rate (among the log-scaled range
{0.001,1} if boosting method is chosen). Both the feature selection
and the hyperparameters optimization exploits the training set only.

3.3 BENCHMARK NEURAL NETWORK
The effectiveness of the proposed approach is assessed by comparing
the predicted profiles with the ones obtained by a benchmark predic-
tor: a shallow neural network based on CGM data only (CGM-NN).
This network resorts the structure of the main predictor (i.e. a single
hidden layer with 5 inner nodes) but it exploits past CGM data only
(16 samples) as input features. This model will also be personalized
for each patient.

4 METRICS
The accuracy of the predicted profiles is evaluated by using four met-
rics. The Mean Absolute Error (MAE) is defined as:

MAE =
1
N

NX

t=1

(y(t)� ŷ(t|t� PH))

where PH is the prediction horizon, y(t) is the current CGM read-
ing, N is the length of the whole signal y and ŷ(t|t�PH) is the the
PH-steps ahead prediction using the information available up to in-
stant t. Similarly we can define the Root Mean Square Error (RMSE):

RMSE =

vuut 1
N

NX

t=1

(y(t)� ŷ(t|t� PH))2

and Coefficient of Determination (COD):

COD = 100 · (1� ||(y(t)� ŷ(t|t� PH))||22
||(y(t)� ȳ(t))||22

)

where ȳ(t) is the average value of y. COD counts for the variance
explained by the predictive model with respect to the total variance
of the signal. Its maximum value is 100%.

The delay existing between the target signal and the predicted one
can be computed as the temporal shift that minimizes the square of
the mean quadratic error between these two signals:

delay = argmin
j2[0,PH]

h 1
N

N�PHX

t=1

((ŷ(t|t� PH) + j)� y(t))2
i
.

5 RESULTS
Since the shallow net is initialized with random weights, results will
be reported in terms of mean and standard deviation of the various
metrics on 10 different initialization of the algorithm.

We compared two models: one is the benchmark, shallow NN
using exclusively past and present CGM readings (CGM-NN); the
other is the shallow net employing the Predictive Feature Set and
the error imputation module (NN-EIM). Table 1 and Table 2 reports
the results obtained with these two models, on each subject, for 30
and 60 minutes prediction horizons respectively. The last row of the
tables averages the mean values of the metrics on every subject.

As aforementioned in Section 3.1, no kind of operation was per-
formed on the testing set in order to impute missing values. Table 3
reports the number of CGM samples available for each subject and
the number of those predicted by our CGM-NN and NN-EIM.

NN-EIM achieves better results on each subject for all the eval-
uation metrics, both for PH = 30 and PH = 60 minutes. On aver-
age, the RMSE improves from 19.50 mg/dL with CGM-NN to 18.63
mg/dL with NN-EIM on the 30 minutes PH (p-value=0.031) and
from 34.26 mg/dL with CGM-NN to 32.27 mg/dL with NN-EIM
(p-value=0.031). The p-values are computed with a Wilcoxon signed
rank test and show that the improvement, albeit small (⇠ 5% in both
cases), is statistically significant with 1�↵ = 0.95 confidence level.

Figure 3 show the boxplots and scatter plots of the average RMSE
values for every subject, for a PH of 30 minutes (Figure 3a) and
60 minutes (Figure 3b). The color of the lines linking the scatter
plots indicates the magnitude of the difference in RMSE between
the two strategies: green-shaded lines mean an improved accuracy
from CGM-NN to NN-EIM; viceversa, the lines are red if model ac-
curacy worsen. Both for 30 and 60 minutes ahead predictions, the use



Table 1: Evaluation of RMSE, MAE, COD and delay (mean (± standard deviation)) with CGM-NN and NN-EIM on a 30 minutes PH.

Subj RMSE MAE COD delay
CGM-NN NN-EIM CGM-NN NN-EIM CGM-NN NN-EIM CGM-NN NN-EIM

540 21.66 (±0.20) 20.42 (±0.27) 14.09 (±0.13) 12.81 (±0.14) 90.29 (±0.18) 91.58 (±0.22) 20 (±0.0) 15.0 (±0)
544 17.67 (±0.08) 16.50 (±0.22) 10.52 (±0.09) 9.57 (±0.13) 89.86 (±0.10) 91.33 (±0.24) 20.0 (±0.0) 15.0 (±0)
552 16.81 (±0.15) 16.51 (±0.12) 6.85 (±0.13) 6.51 (±0.07) 90.72 (±0.16) 91.38 (±0.12) 20.0 (±0.0) 17.5 (±2.6)
567 20.73 (±0.10) 20.18 (±0.14) 10.92 (±0.09) 10.19 (±0.08) 86.89 (±0.13) 88.14 (±0.16) 20.0 (±0.0) 17.5 (±2.6)
584 22.44 (±0.14) 21.29 (±0.33) 12.77 (±0.14) 11.34 (±0.18) 87.69 (±0.15) 89.71 (±0.32) 25.0 (±0.0) 25.0 (±0.0)
596 17.71 (±0.29) 16.89 (±0.24) 10.93 (±0.08) 10.09 (±0.15) 88.28 (±0.38) 89.53 (±0.30) 25.0 (±0.0) 20.0 (±0.0)
All 19.50 (±2.39) 18.63 (±2.22) 11.01 (±2.45) 10.08 (±2.10) 88.95 (±1.54) 90.28 (±1.37) 21.6 (±2.5) 18.3 (±3.7)

Table 2: Evaluation of RMSE, MAE, COD and delay (mean (± standard deviation)) with CGM-NN and EIM-NN on a 60 minutes PH.

Subj RMSE MAE COD delay
CGM-NN NN-EIM CGM-NN NN-EIM CGM-NN NN-EIM CGM-NN NN-EIM

540 40.34 (±0.82) 37.69 (±0.60) 26.46 (±0.51) 23.83 (±0.36) 66.61 (±1.36) 71.53 (±0.91) 45.0 (±0.0) 40.0 (±0)
544 31.21 (±0.31) 28.74 (±0.32) 19.57 (±0.30) 16.61 (±0.21) 68.55 (±0.64) 73.90 (±0.60) 44.5 (±1.5) 27.0 (±2.58)
552 30.45 (±0.17) 29.56 (±0.23) 12.56 (±0.14) 11.89 (±0.18) 70.12 (±0.33) 72.93 (±0.43) 45.0 (±0.0) 40.0 (±0.0)
567 37.37 (±0.29) 36.28 (±0.40) 20.48 (±0.24) 18.65 (±0.12) 67.13 (±0.65) 62.70 (±0.83) 45.0 (±0.0) 41.0 (±2.1)
584 36.85 (±0.27) 33.84 (±0.26) 21.26 (±0.32) 18.37 (±0.18) 67.13 (±0.49) 74.52 (±0.40) 53.0 (±2.4) 46.0 (±2.1)
596 29.32 (±0.23) 27.51 (±0.57) 18.58 (±0.20) 16.74 (±0.25) 68.31 (±0.51) 72.53 (±1.15) 49.0 (±2.1) 42.5 (±2.6)
All 34.26 (±4.5) 32.27 (±4.25) 19.82 (±4.49) 17.69 (±3.87) 66.55 (±4.08) 71.35 (±4.36) 47.0 (±3.5) 39.4 (±6.4)

Table 3: Number of CGM samples available in the testing set of the
OhioT1DM Dataset 2020 and number of CGM samples predicted by
CGM-NN and NN-EIM.

Subj Available samples Predicted samples
PH=30 PH=60

540 2884 2610 2592
544 2704 2532 2514
552 2352 2061 2020
567 2377 2050 1996
584 2653 2206 2165
596 2731 2551 2521

of exogenous inputs and EIM results in a systematic improvement of
performances.

The RMSE of the NN-EIM ranges from 16.50 mg/dL up to 21.29
mg/dL with PH=30 for subject 544 and 584, respectively. This differ-
ence might be related to the occurrence of large oscillations in CGM
data which cannot be clearly explained by any input variable in the
dataset. Considering a PH = 30 min, the lowest improvement in terms
of RMSE is for subject 552 (16,81 mg/dL vs 16.51 mg/dL, CGM-NN
vs NN-EIM respectively). The largest one is for subject 540 (21.66
mg/dL vs 20.42 mg/dL, CGM-NN vs NN-EIM respectively). One of
the main reasons linked to this marginal improvement is the large
number of missing values in the testing set for some features (e.g.
acceleration and skin temperature).

Nevertheless, whenever the feature set is reliable — as for subject
544 in Figure 2 — the proposed algorithm (green line) reduces the
prediction delay as well as the error when CGM data show a positive
increment related to any external input (i.e. CHO ingested, in this
case). Furthermore, the use of lagged first order differences of past
CGM data provides a prediction which is more adherent to the target
CGM than the one obtained by CGM-NN. This is confirmed by an
enhanced COD for subject 552 (90,72% vs 91,38%, CGM-NN vs
NN-EIM and by the delay (20 min vs 17,5 min, CGM-NN vs NN-
EIM).

Same conclusions can be found by considering a PH = 60 min. As
before, the lowest improvement in terms of RMSE is for subject 552
(30,45 mg/dL vs 29,56 mg/dL, CGM-NN vs NN-EIM). The largest

is for subject 584 (36,85 mg/dL vs 33,84 mg/dL, CGM-NN vs NN-
EIM). The prediction capabilities of the proposed approach are also
confirmed by COD and delay, even when a marginal improvement
in terms of RMSE is found. In fact, for subject 552 we found the
COD for CGM only NN vs proposed algorithm is 70,12% vs 72,93%.
Delay is reduced at 40 minutes, by meaning that the prediction has a
useful time anticipation of 20 minutes.

(a) PH=30 minutes (b) PH=60 minutes

Figure 3: Boxplot and scatter plots of average RMSE obtained with
CGM-NN and EIM-NN on a 30 minutes (a) and 60 minutes (b) pre-
diction horizons.

6 CONCLUSIONS

In this work we presented a new approach for a real-time forecasting
of glucose levels based on a shallow neural network and an error im-
putation module (NN-EIM). Comparing the performance, at PH = 30
and PH = 60, of the novel algorithm vs CGM-NN, we demonstrated
that accurate feature manipulation and selection steps can effectively
improve the prediction accuracy and reduce the delay affecting the



predicted profile. However, the presence of many missing values in
some variables reduce the improvement brought by the proposed ap-
proach. Finally, a further development of this work is the investiga-
tion of patterns within the CGM time series and the inclusion of such
physiological priors into the proposed algorithm could results in im-
proved performance.

ACKNOWLEDGMENTS
This work was partially supported by MIUR, (Italian Minister
for Education, under the initiatives “Departments of Excellence”
(Law 232/2016) and “SIR: Scientific Independence of young Re-
searchers”, project RBSI14JYM2 “Learn4AP: Patient-Specific Mod-
els for an Adaptive, Fault-Tolerant Artificial Pancreas”.

CODE
A repository containing the code developed for this work is available
at: https://github.com/jp993/BGPC_2020

REFERENCES
[1] C. Cobelli, C. Dalla Man, G. Sparacino, L. Magni, G. De Nicolao,

and B. Kovatchev, ‘Diabetes: Models, signals and control’, IEEE Rev
Biomed, 2, 54–96, (2009).

[2] L.A DiMeglio, C. Evans-Molina, and R. Oram, ‘Type 1 diabetes’,
Lancet, 391, 2449–62, (2018).

[3] A. Gani, A.V. Gribok, S. Rajaraman, W.K. Ward, and J. Reifman, ‘Pre-
dicting subcutaneous glucose concentration in humans: data-driven glu-
cose modeling’, IEEE Trans Biomed Eng, 56, 246–54, (2009).

[4] E. Georga, V.C. Protopappas, D. Ardigo, M. Marina, I. Zavaroni,
D. Polyzos, and D.I. Fotiadis, ‘Multivariate prediction of subcutaneous
glucose concentration in type 1 diabetes patients based on support vec-
tor regression’, IEEE J Biomed Health Inform, 17, 71–81, (2013).

[5] E. Georga, V.C. Protopappas, D. Polyzos, and D. Fotiadis, ‘A predic-
tive model of subcutaneous glucose concentration in type 1 diabetes
based on random forest’, Proceedings of the 34th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2889–92, (2012).

[6] K. Li, J. Daniels, C. Liu, P. Herrero, and P. Georgiou, ‘Convolutional re-
current neural networks for glucose prediction’, IEEE J Biomed Health
Inform, 24, 603–613, (2019).

[7] C Marling and R. Burnescu, ‘The ohiot1dm dataset for blood glucose
level prediction: Update 2020’, (2019).

[8] J. Martinsson, A. Schliep, B. Eliasson, C. Meijner, S. Persson, and
O. Mogren, ‘Automatic blood glucose prediction with confidence using
recurrent neural networks’, Proceedings of the 3rd International Work-
shop on Knowledge Discovery in Healthcare Data, 64–68, (2018).

[9] S.M. Pappada, B.D. Cameron, and P.M. Rosman, ‘Development of a
neural network for prediction of glucose concentration in type 1 dia-
betes patients’, J Diabetes Sci Technol, 2, 792–801, (2008).

[10] C. Perez-Gandia, A. Facchinetti, G. Sparacino, C. Cobelli, E.J. Gḿez,
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Experiments in non-personalized future blood glucose
level prediction

Robert Bevan 1 and Frans Coenen 2

Abstract. In this study we investigate the need for training future
blood glucose level prediction models at the individual level (i.e. per
patient). Specifically, we train various model classes: linear models,
feed-forward neural networks, recurrent neural networks, and recur-
rent neural networks incorporating attention mechanisms, to predict
future blood glucose levels using varying time series history lengths
and data sources. We also compare methods of handling missing
time series data during training. We found that relatively short his-
tory lengths provided the best results: a 30 minute history length
proved optimal in our experiments. We observed long short-term
memory (LSTM) networks performed better than linear and feed-
forward neural networks, and that including an attention mechanism
in the LSTM model further improved performance, even when pro-
cessing sequences with relatively short length. We observed models
trained using all of the available data outperformed those trained at
the individual level. We also observed models trained using all of the
available data, except for the data contributed by a given patient, were
as effective at predicting the patient’s future blood glucose levels as
models trained using all of the available data. These models also sig-
nificantly outperformed models trained using the patient’s data only.
Finally, we found that including sequences with missing values dur-
ing training produced models that were more robust to missing val-
ues.

1 Introduction

Accurate future blood glucose level prediction systems could play
an important role in future type-I diabetes condition management
practices. Such a system could prove particularly useful in avoiding
hypo/hyper-glycemic events. Future blood glucose level prediction
is difficult - blood glucose levels are influenced by many variables,
including food consumption, physical activity, mental stress, and fa-
tigue. The Blood Glucose Level Prediction Challenge 2020 tasked
entrants with building systems to predict future blood glucose levels
at 30 minutes, and 60 minutes into the future. Challenge participants
were given access to the OhioT1DM dataset [8], which comprises
8 weeks worth of data collected for 12 type-I diabetes patients. The
data include periodic blood glucose level readings, administered in-
sulin information, various bio-metric data, and self-reported infor-
mation regarding meals and exercise.

In the previous iteration of the challenge, several researchers
demonstrated both that it is possible to predict future blood glucose
levels using previous blood glucose levels only [9], and that past
blood glucose levels are the most important features for future blood
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glucose level prediction [10]. In this study, we aimed to extend this
research into future glucose level prediction from historical glucose
levels only. Most previous work involved training personalized mod-
els designed to predict future blood glucose level data for a single
patient [9, 10, 2]. Others used schemes coupling pre-training using
adjacent patient’s data with a final training phase using the patient of
interest’s data only [3, 12].

In this work, we investigate the possibility of building a single
model that is able to predict future blood glucose levels for all 12
patients in the OhioT1DM data set, and the effectiveness of apply-
ing such a model to completely unseen data (i.e. blood glucose series
from an unseen patient). We also investigate the impact of history
length on future blood glucose level prediction. We experiment with
various model types: linear models, feed-forward neural networks,
and recurrent neural networks. Furthermore, inspired by advances in
leveraging long distance temporal patterns for time series prediction
[6], we attempt to build a long short-term memory (LSTM) model
that is able to use information from very far in the past (up to 24
hours) by incorporating an attention mechanism. Finally, we com-
pare the effectiveness of two methods for handling missing data dur-
ing training.

2 Method
2.1 Datasets
As stated above, one of our primary aims was to build a single model
that is able to predict future blood glucose levels for each patient in
the data set. To this end, we constructed a combined data set contain-
ing data provided by each of the patients. Specifically, we created a
data set composed of all of the data points contributed by the six pa-
tients included in the previous iteration of the challenge (both train-
ing and test sets), as well as the training data points provided by the
new cohort of patients. This combined data set was split into training
and validation sets: the final 20% of the data points provided by each
patient were chosen for the validation set. The test data sets for the
6 new patients were ignored during development to avoid bias in the
result. For experiments in building patient specific models, training
and validation sets were constructed using the patient in question’s
data only (again with an 80/20 split).

2.2 Data preprocessing
Prior to model training, the data were standardized according to:

x =
x� µtrain

�train

(1)



Model Hyper-parameters

Feed-forward # hidden units 2 {16, 32, 64, 128, 256, 512, 1024}
# layers* 2 {1, 2}
activation function 2 {ReLU}

Recurrent # hidden units 2 {16, 32, 64, 128, 256, 512, 1024}
recurrent cell* 2 {LSTM,GRU}
# layers* 2 {1, 2}
output dropout* 2 {0, 0.1, 0.2, 0.5}

LSTM + Attention # ↵t hidden units 2 {4, 8, 16, 32, 64, 128}

Table 1. Lists of hyper-parameters tuned when training feed-forward,
recurrent neural networks, and LSTM with attention networks. Note that not

all possible combinations were tried - parameters marked with an asterisk
were tuned after the optimal number of hidden units was chosen.

where µtrain, and �train, are the mean and standard deviation of the
training data, respectively. There is a non-negligible amount of data
missing from the training set, which needed to be considered when
preprocessing the data. We investigated two approaches to handling
missing data: discarding any training sequences with one or more
missing data points; and replacing missing values with zeros follow-
ing standardization. It was hypothesized that the second approach
may help the system learn to be robust to missing data.

2.3 Model training
We experimented with linear models, feed-forward neural networks,
and recurrent neural networks. Each model was trained to minimize
the root mean square error (RMSE):

RMSE =

vuut
nX

i=1

⇣
ŷi � yi

n

⌘2

(2)

where ŷi is the predicted value, yi is the true value, and n is
the total number of points in the evaluation set. Various hyper-
parameters were tuned when training the feed-forward and recur-
rent neural networks; Table 1 provides a summary. During devel-
opment, each model was trained for 50 epochs using the Adam op-
timizer (↵=0.001, �1=0.9, �2=0.999) [5] and a batch size of 256.
The final model was trained with early stopping using the same opti-
mizer settings, and a batch size of 32, for a maximum period of 500
epochs with early stopping and a patience value of 30. Each model
was trained 5 times in order to get an estimate of the influence of the
random initialization and stochastic training process on the result.

Model selection and hyper-parameter tuning were performed for
the 30 minute prediction horizon task. The best performing model
was then trained for 60 minute prediction. Experiments were re-
peated for blood glucose history lengths of 30 minutes, 1 hour, 2
hours, and 24 hours.

2.4 Improving long distance pattern learning with
Attention

It can be difficult for recurrent neural networks to learn long distance
patterns. The LSTM network was introduced to address this problem

RMSE MAE
Patient ID PH=30 PH=60 PH=30 PH=60

540 21.03 (0.07) 37.37 (0.09) 16.64 (0.1) 30.8 (0.13)

544 16.14 (0.12) 28.4 (0.14) 12.85 (0.11) 23.57 (0.16)

552 15.82 (0.06) 27.6 (0.15) 12.43 (0.12) 22.78 (0.16)

567 20.29 (0.08) 34.28 (0.18) 15.9 (0.12) 28.95 (0.13)

584 20.39 (0.07) 32.97 (0.09) 15.99 (0.03) 27.04 (0.07)

596 15.7 (0.03) 25.99 (0.12) 12.4 (0.04) 21.33 (0.13)

AVG 18.23 (2.36) 31.1 (4.05) 14.37 (1.83) 25.75 (3.43)

Table 2. Root mean square error and mean absolute error (mg/dl)
computed using the test points for each patient, at different prediction

horizons (30 minutes, and 60 minutes) for a single layer LSTM with 128
hidden units.

[4]. Even so, LSTM networks can struggle to learn very long range
patterns. Attention mechanisms - initially introduced in the context
of neural machine translation - have been shown to improve LSTM
networks’ capacity for learning very long range patterns [7, 1]. At-
tention mechanisms have also been applied to time series data, and
have proven to be effective in instances where the data exhibit long
range periodicity - for example, in electricity consumption prediction
[6]. We hypothesised that blood glucose level prediction using a very
long history, coupled with an attention mechanism, could lead to im-
proved performance, due to periodic human behaviours (e.g. eating
meals at similar times each day; walking to and from work e.t.c). In
order to test this hypothesis, we chose the best performing LSTM
configuration trained with a history length of 24 hours, without at-
tention, and added an attention mechanism as per [7]:

score(ht,hi) = hT
t Whi (3)

↵ti =
exp(score(ht,hi)

⌃t

j=1exp(score(ht,hj))
) (4)

ct =
X

i

↵tihi (5)

at = f(ct,ht) = tanh(Wc[ct;ht]) (6)

where score(ht,hi) is an alignment model, ct is the weighted con-
text vector, and at is the attention vector, which is fed into the clas-
sification layer (without an attention mechanism, the hidden state ht

is fed into the classification layer). The dimensionality of ↵t was
chosen using the validation set - see Table 1 for details. We also ex-
perimented with attention mechanisms in LSTM networks designed
to process shorter sequence lengths: we chose the optimal LSTM
model architecture for each history length (30 minutes, 60 minutes,
2 hours), added an attention mechanism, and re-trained the model
(again, the optimal ↵t dimensionality was chosen using the valida-
tion set).

2.5 Investigating the need for personal data during
training

In order to investigate the need for an individual’s data when training
a model to predict their future blood glucose levels, we trained 6
different models - each with one patient’s training data excluded from
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Patient ID Patient only All patients Patient excluded

540 21.68 (0.04) 21.03 (0.07) 21.16 (0.11)

544 17.28 (0.1) 16.14 (0.12) 16.22 (0.09)

552 16.87 (0.12) 15.82 (0.06) 15.87 (0.09)

567 21.15 (0.3) 20.29 (0.08) 20.5 (0.11)

584 22.11 (0.13) 20.39 (0.07) 20.46 (0.06)

596 16.16 (0.11) 15.7 (0.03) 15.71 (0.02)

AVG 19.21 (2.48) 18.23 (2.36) 18.32 (2.4)

Table 3. Root mean square error (mg/dl) computed using the test points for
each patient, with a prediction horizon of 30 minutes for a single layer

LSTM with 128 hidden units, trained using different data sets. Values listed
in the first column correspond to models trained using the individual patient
data only; values in the middle column correspond to models trained using

data from all patients; values in the final column correspond to models
trained using data from all patients except for the patient for which the

evaluation is performed.

the training set - using the optimal LSTM architecture determined
in previous experiments. The models were then evaluated using the
test data for the patient that was excluded from the training set. We
also trained 6 patient specific models, each trained using the patient’s
training data only. We again used the optimal architecture determined
in previous experiments, but tuned the number of hidden units using
the validation set in order to avoid over-fitting due to the significantly
reduced size of the training set (compared with the set with which the
optimal architecture was chosen). Each model was trained using the
early-stopping procedure outlined in 2.3.

3 Results and Discussion
Our evaluation showed that recurrent models performed significantly
better than both linear and feed-forward neural network models, for
each history length we experimented with (p=0.05, corrected paired
t-test [11]). We also found that feed-forward networks generally out-
performed linear models, likely due to their ability to model non-
linear relationships. The optimal feed-forward network contained
512 hidden units. We found no difference between LSTM and gated
recurrent unit (GRU) networks - remaining evaluations will be per-
formed for LSTM recurrent networks only for simplicity. Figure 1
compares the performance of the different model types as a func-
tion of history length. For each model class we observed that perfor-
mance decreased linearly with increasing history length. The LSTM
appeared better able to deal with longer history lengths - the perfor-
mance degradation was less severe than for the other model classes.
We found a history length of 30 minutes to be optimal for each model
class. The best performing LSTM model contained a single layer
with 128 hidden units, and was trained without dropout. The test set
results for this model are listed in Table 2.

Table 3 compares LSTM models (with the same architecture as
above) trained with the following data sources: the individual pa-
tient’s data only, data from all of the available patients, and data
from every other patient (excluding data contributed by the patient
in question). We observed that models trained using a large amount
of data, but excluding the patient’s data, outperformed models trained
using the patient’s data only (p=0.05). We also found no significant
difference in performance between models trained using all of the
available training data (i.e. including the patient’s data) and those tr-

Figure 1. Comparison of validation set scores for linear, feed-forward, and
LSTM neural networks as a function of history length.

ained excluding the patient’s data, highlighting the general nature of
the models. We found that including sequences with values in the
training set produced models that were more robust to missing data,
as evidenced by the improved RMSE scores listed in Table 4: RMSE
scores were significantly improved for each patient using this ap-
proach to training (p=0.05).

Incorporating an attention mechanism further improved perfor-
mance in most instances: we observed significant improvements for
history lengths of 30 minutes, 60 minutes, and 2 hours (p=0.05), but
not for history lengths of 24 hours. Figure 3 compares the regular
LSTM and LSTM with attention performance as a function of his-
tory length. Figure 2 shows partial auto-correlation plots for 4 differ-
ent patients. Interestingly, two of the patients’ blood glucose data -
patient 540, and patient 544 - don’t show any significant long term
correlation, whereas the other two - patient 552, and patient 567 -
both exhibit significant correlation at time lags of approximately 6
and 12 hours. We observed this behaviour in half of the patients. We

Patient ID Exclude missing data Include missing data

540 21.45 (0.06) 21.03 (0.07)
544 16.79 (0.06) 16.14 (0.12)
552 16.27 (0.13) 15.82 (0.06)
567 21.19 (0.1) 20.29 (0.08)
584 21.16 (0.06) 20.39 (0.07)
596 16.08 (0.07) 15.7 (0.03)

AVG 18.82 (2.45) 18.23 (2.36)

Table 4. Root mean square error (mg/dl) computed using the test points for
each patient, with a prediction horizon of 30 minutes for a single layer

LSTM with 128 hidden units, trained using different methods of handling
missing data. Values in the first column correspond to a model trained with
full sequences only (any sequences with missing values were discarded).

Values in the second column correspond to a model trained with sequences
including missing values - missing values were replaced with zeros

following standardization.
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Figure 2. Partial auto-correlation plots for 4 different patients. The patients in the top row exhibit short term patterns only, but those in the bottom row show
significant correlations at time lags of approximately 6 and 12 hours.

also observed correlations at even greater time lags, corresponding
to multiples of 6 hours. The difference in the patients’ partial auto-
correlation plots suggests it may be sub-optimal to train an attention
mechanism using each patient’s data at once, and that training at the
patient-level may enable the model to learn very long range patterns.
Furthermore, while we were able to train an LSTM model with a
history length of 30 minutes that generalized across all patients, it
may be the case that short range blood glucose patterns are quite ge-

Figure 3. Comparison of validation set RMSE scores (prediction horizon
= 30 minutes) for LSTMs and LSTMs incorporating an attention mechanism

as a function of history length.

neral, and long range patterns are more personalized, and tuning the
history length per patient could improve prediction performance. All
of the results presented in this section can be reproduced using pub-
licly available code 3.

4 Conclusion
In this study we showed that it is possible to train a single LSTM
model that is able to predict future blood glucose levels for each of
the different patients whose data are included in the OhioT1DM data
set. We also demonstrated that an individual patient’s data is not re-
quired during the training process in order for our model to effec-
tively predict the patient’s future blood glucose levels. Furthermore
we showed that incorporating an attention mechanism in the LSTM
improved performance, and that including sequences with missing
values during training produced models that were more robust to
missing data.

3 https://github.com/robert-bevan/bglp
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Deep Residual Time-Series Forecasting:
Application to Blood Glucose Prediction

Harry Rubin-Falcone1, Ian Fox1 , and Jenna Wiens1

Abstract. Improved forecasting of blood glucose could aid in the
management of diabetes. Recently proposed neural network architec-
tures that use stacked fully connected layers with residual backcast-
ing have achieved state-of-the-art performance on benchmark time-
series forecasting tasks. Though promising, previous work ignores
opportunities for additional supervision, and the use of fully con-
nected layers fails to account for the temporal nature of the signal.
Here, we propose a new architecture that builds on previous work
by learning to forecast gradually in stages or blocks. Our updates in-
clude replacing the fully connected block structure with a recurrent
neural network and adding additional losses to provide auxiliary su-
pervision. In addition, we leverage important context in the form of
additional input signals. Applied to the task of glucose forecasting,
we find that each of these modifications offers an improvement in
performance. On the task of predicting blood glucose values 30 min-
utes into the future, our proposed approach achieves a mean rMSE
of 18.2 mg/dL, versus 21.2 mg/dL achieved by the baseline. These
improvements get us closer to predictions that are reliable enough to
be used in CGMs or insulin pumps to manage diabetes.

1 Introduction
Accurate blood glucose forecasting would improve diabetes treat-
ment by enabling proactive treatment [11]. To this end, there has been
significant interest in developing time-series forecasting methods for
predicting blood glucose levels, using a large variety of statistical
and machine learning methods [9]. This has inspired the OhioT1DM
challenge [6], where participants are tasked with accurately forecast-
ing blood glucose values in individuals with type 1 diabetes. As our
entry to this competition, we build on recent work in time-series fore-
casting that focuses on iterative residual prediction, specifically Neu-
ral Basis Expansion for Interpretable Time-Series Forecasting, or N-
BEATS [8]. This work uses a neural network architecture consisting
of network blocks that output both a forecast and a backcast (i.e., a
reconstruction of the block’s input). The backcast is subtracted from
the block’s input forming a residual which then serves as input to
the following block. At the final layer, the forecasts from each block
are combined to form the final prediction. The iterative and residual
nature of this architecture aims to encourage gradual signal recon-
struction and forecasting. We build upon this idea in several ways
(Figure 1):

• We replace the fully connected architecture in each block with a
recurrent neural network (RNN) [12]. We hypothesize that this
will allow the model to more accurately capture important tempo-
ral relationships within the input/output.

1 University of Michigan, USA, email: hrf@umich.edu
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Figure 1. Our glucose forecasting architecture, shown with three blocks.
Each residual block contains a bidirectional LSTM with a single output layer
that produces the forecast and backcast simultaneously. Additional variables
are added as input channels to each block, but residuals are calculated only
for the glucose signal. Losses (described in section 2.2) are calculated after
each block. Here, L is the primary loss function (MSE) and ML is magnitude
loss, which is a penalization for small signals (the inverse of the norm).

• We include additional variables as input to the model (e.g., bolus
insulin data), which we hypothesize will provide valuable context.
However, due to the sparse nature of some of these variables, we
backcast only on our primary variable of interest: blood glucose.

• We include additional loss terms that act as auxiliary supervi-
sion. We hypothesize that these terms will further encourage the
model’s blocks to gradually learn accurate components of the sig-
nal (i.e., backcasts and forecasts) that sum to the correct signal.

Additionally, we study the effects of pre-training with related
datasets. Applied to the task of glucose forecasting, these modifi-
cations lead to notable improvements over baseline.

2 Methods
Given the strong performance of deep residual forecasting across a
range of tasks [8], we build on recent work in this area, tailoring the
approach to the task of forecasting blood glucose.

2.1 Problem Setting and Notation
We focus on the task of univariate time-series forecasting in which
we aim to predict future values of a single variable, but assume



we have access to additional inputs. Let X = [x(1), ...,x(d)] rep-
resent a multivariate time series where d is the number of vari-
ables. For each variable i: x(i) 2 RT is a sequence of length T .
For our problem, x(1) corresponds to glucose measurements and
X 0 = [x(2), ...,x(d)] represents other variables of interest (e.g., bo-
lus insulin). Given X , we aim to predict the next h glucose measure-
ments y = x(1)

T+1, x
(1)
T+2, ..., x

(1)
T+h

.

2.2 Proposed Approach
We build on a recent univariate time-series forecasting architecture,
N-BEATS [8], which consists of a series of n blocks, each composed
of a series of fully-connected layers. The ith block takes as input
some vector xi 2 RT, where for the first block, x1 is the original
input. Each block’s output �(xi) 2 Rh’ produces a forecast fi 2 Rh

and a backcast bi 2 RT. The backcast is subtracted from the
current block’s input before being input to the next block (i.e.,
xi+1 = xi � bi). The output of the network is the sum of forecasts
across all blocks: ŷ =

P
n

i=1 fi. The residual nature of the prediction
means that each block learns only what the previous block could
not. Thus, the model learns to gradually reconstruct the signal, while
predicting components of the forecast. We build on this idea by
identifying several opportunities for improvement. Our modification
are as follows:

Accounting for Temporal Structure. We account for the temporal
nature of the input sequence by using a bidirectional LSTM network
[3] within each block, in lieu of the fully connected layers. Although
using fully connected networks results in a faster training time,
we hypothesized that an LSTM would be better able to capture
block-level time-varying patterns by enforcing a sequential prior on
the signal. The final LSTM hidden state is used as input to an output
layer that produces a sequence of length T + h that is then split into
the backcast and forecast signal.

Including Additional Input Variables. We include auxiliary
variables as input at each block. This provides important context
when backcasting and forecasting the main signal of interest.
However, rather than simply augmenting the dimensionality of
the signal throughout, we backcast/forecast only the primary
signal, i.e., each block’s input is [x(1)

i�1 � bi�1, X
0] (Figure 1).

Backcasting/forecasting was not performed on additional variables
due to their sparse nature. We hypothesized that learning to back-
cast/forecast abrupt carbohydrate and bolus inputs would increase
the difficulty of the overall task and decrease performance on the
main task.

Auxiliary Tasks and Supervision. In addition to training based
on the loss of the final forecast prediction, MSE(y, ŷ) =
1
h

P
h

i=1(yi � ŷi)
2, we include additional losses with the goal of

improving the quality of intermediate representations. We add three
auxiliary tasks to our model (shown in Figure 1):

• Per-block reconstruction loss (Lr): We hypothesized that explic-
itly supervising the backcasts could improve their accuracy, and
supervising at the block level could improve the intermediate re-
constructions. To do this, we add an MSE loss, MSE(x(1)

i
,bi)

after each block’s output. Each block’s loss is weighted propor-
tional to its position in the network, encouraging the network to
gradually construct a backcast. The final loss Lr is scaled by the

sum of the weights of each block, and summed over n blocks:

Lr =

P
n

i=1 i ·MSE(x(1)
i

,bi)P
n

i=1 i

• Per-block forecast loss (Lf ): To encourage each block to con-
tribute towards an accurate forecast, we calculate the loss on the
running forecast after each block. We apply a similar per-block
scaling term as in the backcast, but increase the weight using cu-
bic values in order to emphasize the network’s later predictions.
Let f 0i denote the sum of all forecasts up to the ith block, ie
f 0i =

P
i

k=1 fk. The total forecast loss Lf is:

Lf =

P
n

i=1 i
3 ·MSE(f 0i ,y)P

n

i=1 i
3

• Per-block magnitude loss (Lm): Intuitively, deep residual fore-
casting aims to incrementally learn parts of a signal. To ensure
that each block contributes to the backcast, we penalize blocks by
the inverse of their output size (measured using an L1 norm) and
scale this penalty by the inverse of their position in the stack, so
earlier blocks are encouraged to output larger values. We apply
this loss to only the backcast. We do not penalize low-magnitude
forecasts because it is possible that a block could account for part
of the input signal that is associated with a zero-value forecast.
The complete magnitude loss is:

Lm =

P
n

i=1
1
i
· 1
|bi|P

n

i=1
1
i

Loss is calculated as a weighted sum of these three losses:

L = Lf + �Lr + �Lm,

where �, � 2 R+are hyperparameters. Note that the final forecast is
included as a part of Lf .

2.3 Ensembling
We ensemble models that use different input lengths. As others have
shown, this allows us to account for trends at different time scales
[8]. We train a model for each of 6 different input lengths. We use T
= 12, 18, 24, 30, 36, and 42 time steps. These values were selected
as multiples of the shortest input length, h = 6. Shorter backcast
windows (i.e., T < 12) were not found to be beneficial. When en-
sembling the predictions, we output the median.

3 Experimental Set Up
Datasets. We evaluate the proposed approach using the 2020
OhioT1DM dataset [6]. This dataset consists of CGM, insulin pump,
and other variables (i.e., sleep data, activity levels) for six individ-
uals. We explored using all variables in the dataset, but found only
glucose (CGM and finger stick), bolus dose, carbohydrate input, and
time of day to be helpful. Each individual has approximately 10,000
samples for training and 2,500 for testing, recorded at 5-minute
intervals, where the test data temporally follow the training data.
We use the first 80% of each individual’s specified training set
for training and the remaining 20% for early-stopping validation,
holding out the test data. Beyond the 2020 OhioT1DM dataset,
we had access to Tidepool data, a large repository of CGM and
insulin pump data for approximately 100 participants with a total 15
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million time steps [7]. We used these data and data from the 2018
OhioT1DM challenge [6] during pre-training and model selection.

Preprocessing. Bolus dose and carbohydrate input are less fre-
quently recorded compared to CGM. Thus, to be used as input to
the model, we align and resample these additional data to length
T . In addition, we encode time using sine and cosine embeddings
over 24-hour periods. Approximately 15% of all time-steps were
missing for CGM. We replace missing values with a value of zero
and include an additional variable that indicates missingness. In
this way, the model can learn to handle missing values differently
[5]. This results in a model input of X 2 RT⇥7 (CGM, finger
stick glucose, bolus values, carbohydrate inputs, sine and cosine of
time, and missingness indicators for CGM values). Time steps with
missing glucose values are ignored during all loss calculations and
forecast evaluations.

Baseline Architecture Implementation. Our baseline is based on
N-BEATS and uses hyperparameters similar to those reported by
Oreshkin et al.: 10 blocks with 4 layers each, with 512 hidden units
output by each layer, with a ReLU activation function between each
layer [8]. Though Oreshkin et al. originally used 30 blocks, we
found 10 blocks worked better and thus report performance against
this stronger baseline.

Proposed Architecture Implementation. To learn the model
parameters of our proposed approach, we use Adam [4] with a
learning rate of 0.0002 (selected to maximize learning speed while
maintaining reasonable convergence behavior), and a batchsize of
512. We run the optimization algorithm for up to 300 epochs, or
until validation performance does not improve for 20 iterations.

To reduce the chance of overfitting to the 2020 data, we tune all
hyperparameters, excluding � and �, on the six subjects from the pre-
vious competition. We performed a grid search to select the number
of blocks (range: 5-10, best: 7) and number of hidden LSTM units
(range: 50-300, best: 300), optimizing for rMSE of the final time
step of the prediction on the held out data. Including more hidden
units could perhaps have further improved performance, but we were
limited by memory constraints.

During tuning, we measured the added value of including each
auxiliary variable (e.g., sleep data), including only those variables
that improved performance for the final evaluation. We tuned the
block-weighting terms for our auxiliary loss functions, considering
inverse, constant, and linear relationships for Lr , and powers of 2
and 3 for Lf . We tuned the auxiliary loss function weights �, and �
using the validation data for the new subjects. We performed a grid
search over [.1, .15, .25, .3, .5, 1, 2, 4] for � and 10e5 times those
values for �, selecting � = .3 and � = 10e4. Grid search analyses
were tuned with a subset of backcast lengths (3f and 6f ) across all
patients, for efficiency.

For both the 30 and 60 minute prediction horizons, we train using
loss for the full window (i.e., h = 6 for the 30 minute analyses and
h = 12 for the hour prediction), but report results using the last time
step only (as dictated by the competition).

Pre-training. As mentioned above, we pre-train on the 2018
OhioT1DM and Tidepool data. Pooling these datasets together,
we train a single model. The weights of this model are used to
initialize the weights of a ‘global’ model trained on the 2020
OhioT1DM training set. This ‘global’ model is then fine-tuned to
each participant from the 2020 OhioT1DM dataset, resulting in six

Figure 2. Cumulative effect of each proposed modification on 30-minute
horizon forecast performance. Each modification includes the modifications
to the left as well. BL = baseline, LSTM = updated block structure, +AV =
added variables, +LOSSES = additional task losses added, +PT = used large
pooled dataset for pre-training. Each box plot shows the distribution across
the six subjects, with blue and orange lines indicating the mean and median
across subjects, respectively.

participant-specific models. Baseline analyses do not use the large
pooled dataset for pre-training, but start from a single global model
(trained from random initialization) and then fine-tune.

Code. All of our experiments were implemented in Python/PyTorch
[10]. The final initialization models and all code used in our analyses
is publicly available 2.

3.1 Evaluation
We report results for models trained to predict 12 time steps (one
hour horizon) and six time steps (30 minute horizon), reporting out-
comes on only the final time step. We evaluate using the square root
of the mean squared error (rMSE), and mean absolute error (MAE),
defined as MAE(y, y’) = |y�y0|

n
for n samples. Metrics are applied

directly to the raw CGM values with no preprocessing.
To examine the effect of each architecture modification, we per-

form an ablation study where we add each modification to the archi-
tecture incrementally (i.e., first RNN blocks only, then RNN blocks
with added variables, then RNN blocks with added variables and ad-
ditional loss terms, then the full architecture with pre-training). We
also experiment with each modification made in isolation.

Finally, beyond the evaluation dictated by the competition, we
also calculate outcomes for the most crucial forecasting windows:
those that represent the beginning of a hyper- or hypoglycemic event.
These correspond to predictions for which the most recent time step
is in the euglycemic range (blood glucose from 70-180 mg/dL),
but the participant becomes hypoglycemic (< 70 mg/dL) or hyper-
glycemic (> 180 mg/dL) within the prediction horizon. We also
examine the distribution of predictions vs. actual measurements in
terms of the corresponding would-be treatment recommendations
with a Clarke Error Grid Analysis [2].

4 Results and Discussion
Overall, the proposed approach leads to average rMSEs of 18.2 and
31.7 on the 30 and 60 minute horizons, respectively, and average

2 https://gitlab.eecs.umich.edu/mld3/deep-residual-time-series-forecasting
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MAEs of 12.8 and 23.6 for those horizons (Table 1). These values
are comparable to the results achieved in the 2018 challenge (i.e.,
18.9 to 21.7 for 30 minute rMSE) [1, 13].

Based on our ablation study, each of our modifications improves
performance over baseline, although to varying degrees (Figure 2).
For the 30 minute horizon, mean rMSE across participants is 21.2 for
the baseline model (BL). Adding the RNN block structure (bidirec-
tional LSTM) and additional variables (+AV) improves performance
to 20.1 and then 18.94, respectively. Adding the additional loss func-
tions (+LOSSES) results in a slightly improved mean performance
of 18.87, and pre-training on the Tidepool and 2018 OhioT1DM
datasets (+PT) further improves performance to 18.2. We observed
similar trends for the 60 minute horizon, and for MAE.

Table 1. Participant-level results for 30 and 60 minute horizons on the held-
out test data from the 2020 competition.

Prediction Horizon
30 Minutes 60 Minutes

Participant ID rMSE MAE rMSE MAE
567 20.70 13.78 35.99 25.84
544 15.97 11.20 26.01 19.01
552 15.74 11.51 29.17 22.78
596 16.24 11.26 27.11 19.73
540 20.10 14.77 38.43 29.51
584 20.57 14.47 33.26 24.72
Mean 18.22 12.83 31.66 23.60

While all of our modifications reduce rMSE, one of the largest
improvements in performance comes from replacing the fully con-
nected layers of N-BEATS with recurrent layers (improves perfor-
mance from 21.2 to 20.1). These recurrent layers directly model each
time step as a function of the previous, allowing for more accurate
temporal representations. Compared to the baseline, the proposed
approach leads to more faithful predictions and fewer extreme fail-
ures (Figure 3). Even without pre-training, the modified architecture
eliminates the extreme failures observed in the baseline case (high-
lighted in Figure 3).

Additional variables are significantly more impactful when added
to the RNN-based block structure (a 30 minute rMSE improvement
from 20.1 to 18.9), when compared to adding them in isolation (an
improvement from 21.2 to 21.0). Despite the poor performance when
used in the original baseline architecture, we chose to include these
variables in our updated RNN-based model. The RNN block struc-
ture has multiple input channels, which allows for the direct use of
the variables. In contrast, the fully connected layers require a flat in-
put, which removes much of the timing information. This illustrates
the importance of the ordering of decision making in model architec-
ture development. Although such decisions are easy when an exhaus-
tive search of combinations is performed, this is not always feasible,
so these decisions often must be made sequentially. If we had se-
lected additional variables based on the performance of the baseline
model alone, we may not have opted to use them, and would have
lost the large benefit that they provide when used in tandem with the
RNN block structure.

To test our hypothesis regarding the efficacy of backcasting on
blood glucose values only (and not additional variables), we ran a
post-hoc analysis with a model using residual backcasting for all in-
put variables. As expected, we found that this decreased performance
(30 minute rMSE = 19.2 vs. 18.9).

In contrast to the other modifications, the additional loss terms
offer only slight improvements over the baseline. During model se-

Figure 3. A full day of 30-minute predictions on two participants, compar-
ing the baseline and our proposed approach. Qualitatively, our modifications
result in fewer sudden extreme failures. In general, our predictions appear
more accurate, compared to the baseline. (a) Best performance individual -
552 (rMSE = 15.7). (b) Worst performance individual - 567 (rMSE = 20.7).

lection, this modification offered substantially more improvement on
the OhioT1DM 2018 dataset (decreasing rMSE of the RNN + added
variables model from 19.6 to 18.9). Yet even with additional tuning,
this modification is only minimally helpful on the 2020 dataset, sug-
gesting that the method may not be universally beneficial. In an abla-
tion analysis, a model using only (Lf ) performs best (rMSE = 18.82)
on the 2020 data. However, in contrast, the added variables seem to
help more for the 2020 data than for the 2018 data. This suggests
that perhaps the losses serve a regularizing effect when insufficient
information is present in the additional variables, as we observed in
the 2018 validation data.

Pre-training improves the performance of both the modified and
baseline architectures, although it offers the most improvement for
the baseline (improving performance from 21.2 to 19.8 when ap-
plied alone). This suggests that pre-training becomes less crucial
once other improvements are made. Running an analysis using our
proposed architecture and no pretraining over 4 random seeds results
in similar performance across seeds (30-minute rMSEs were 18.87,
18.82, 18.95, and 18.89), indicating fairly robust performance over
different random initializations. Further, pre-training improves per-
formance significantly over all random initialization, demonstrating
the benefit of pre-training beyond chance.

In our event-specific evaluation (includes only prediction windows
where a hyperglycemic or hypoglycemic event occur), the mean
rMSE is significantly higher compared to the holistic evaluation (for
our proposed approach 30 minute horizon: 27.9 vs. 18.2). This is ex-
pected, since such events are difficult to anticipate. Specifically, the
proposed approach achieves a higher rMSE for hyperglycemic events
(30.5) than hypoglycemic (23.8). Interestingly, while our model per-
forms better than the baseline for all events on average (our model:
27.9 vs baseline: 31.0) and for hyperglycemic events (30.5 vs 34.2),
the two models perform comparably in the hypoglycemic range (23.8
vs 23.6). This could be due to the relative rarity of hypoglycemic
events (for example, there were 322 in the test data, vs 868 hyper-
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Figure 4. (a) A Clarke Error Grid depicting which treatment options would
be recommended based on our proposed approach’s predictions vs what treat-
ments should be given based on the actual value. 99% of predictions fall
within regions A and B, which indicate appropriate treatment recommenda-
tions. (b) Proportion of predictions in each region of the grid for our proposed
approach and the baseline model.

glycemic events), or it could be a reflection of the MSE loss function
over-emphasizing large values, which is unaccounted for in our ap-
proach.

In our Clarke Error Grid Analysis [2], we find that 99% of pre-
dictions fall in regions A and B (regions that would not lead to in-
appropriate treatment; i.e. an unnecessary bolus or rescue carbohy-
drates), with 90% in region A (predictions within 20% of the actual
value) and 9% in region B (predictions that are more than 20% from
the actual value but that would not lead to inappropriate treatment),
indicating generally strong performance (Figure 4). The proportion
of points in regions A and B is slightly lower (97%) for our base-
line model. Only 3 points (0.02%) fall into region C (points that
would lead to unnecessary treatment, specifically predicting high
CGM when it would actually be lower, which could lead to an inap-
propriate bolus and hypoglycemia), and 1% fall into region D (points
that miss hyperglycemia or hypoglycemia). Reassuringly, no points
fall into region E (regions that would treat hyperglycemia as hypo-
glycemia or vice versa).

5 Conclusion
We find deep residual forecasting to be effective when applied to the
task of predicting blood glucose values. Augmenting a previously
proposed architecture with RNNs in place of fully connected stacks,
additional variables, and self-supervising loss functions all lead to
improvements when applied to the task of blood glucose forecasting.
Beyond blood glucose forecasting, we hypothesize that many of the
proposed changes could be beneficial when applied to other forecast-
ing tasks.
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Personalised Glucose Prediction via
Deep Multitask Networks

John Daniels and Pau Herrero and Pantelis Georgiou1

Abstract. Glucose control is an essential requirement in primary
therapy for diabetes management. Digital approaches to maintaining
tight glycaemic control, such as clinical decision support systems and
artificial pancreas systems rely on continuous glucose monitoring de-
vices and self-reported data, which is usually improved through glu-
cose forecasting. In this work, we develop a multitask approach us-
ing convolutional recurrent neural networks (MTCRNN) to provide
short-term forecasts using the OhioT1DM dataset which comprises
12 participants. We obtain the following results - 30 min: 19.79±0.06
mg/dL (RMSE); 13.62±0.05 mg/dL (MAE) and 60 min: 33.73±0.24
mg/dL (RMSE); 24.54±0.15 mg/dL (MAE). Multitask learning fa-
cilitates an approach that allows for learning with the data from all
available subjects, thereby overcoming the common challenge of in-
sufficient individual datasets while learning appropriate individual
models for each participant.

1 INTRODUCTION

In recent years, the proliferation of biosensors and wearable devices
has facilitated the ability to perform continuous monitoring of phys-
iological signals. In diabetes management, this has come with the
increasing use of continuous glucose monitoring (CGM) devices for
helping with glucose control. The current literature on clinical impact
of CGM devices shows that continuously monitoring blood glucose
concentration levels has benefit in maintaining tight glycaemic con-
trol [5, 2]. As a next step, glucose prediction offers an opportunity
to further improve glucose control by taking actions to avert adverse
glycaemic events, such as suspension of insulin delivery in closed-
loop systems to avert hypoglycaemia.

The general work in this area has typically involved collecting data
covering physiological variables such as glucose concentration lev-
els, heart rate, and self-reported data covering exercise,sleep, stress,
illness, insulin, and meals. However, public datasets covering ambu-
latory monitoring of T1DM population are not widely available.

Deep learning [6] facilitates learning the optimal features and has
been shown to perform better than other methods involving hand
crafted features that have been employed in recent times for predict-
ing glucose concentration levels. However, typically these models re-
quire relatively large amounts of data to converge on an appropriate
model.

In this work, we employ a multitask learning [1] approach in order
to improve the performance of the glucose forecasting in a neural net-
work, where each individual is viewed as a task, using shared layers
to enable learning form other individuals.

1 Imperial College London, United Kingdom, email: jsd111@imperial.ac.uk,
p.herrero-vinias@imperial.ac.uk, pantelis@imperial.ac.uk

2 RELATED WORK
Glucose prediction has been a long-standing area of focus in the dia-
betes community. As a result, many approaches have existed in order
to provide near-time glucose concentration level forecasts.

Early work in this area have focused on physiological models and
traditional machine learning methods in predicting glucose concen-
tration levels [12, 3]. Recent work as seen in the 2018 Blood Glucose
Predictive Challenge has seen a move towards deep learning methods
with more impressive results [11, 9, 14, 8]. These have used convolu-
tional architectures, recurrent architectures, or a combination of both
to model the task of glucose prediction.

3 DATASET AND DATA PREPROCESSING
In this section, we detail the transformations that are performed on
the data prior to training and testing the model for each T1DM par-
ticipant.

3.1 OhioT1DM Dataset 2020
The OhioT1DM dataset 2020 [10] is a dataset comprising 12 unique
participants that cover eight weeks of daily living. The participants
are given IDs as the data is anonymised. This data comprises physio-
logical data gathered using a continuous glucose monitor (blood glu-
cose concentration levels) and wristband device (heart rate, skin con-
ductance, skin temperature), activity data (acceleration, step count),
and self-reported data (meal intake, insulin, exercise, work, sleep,
and stressors).

3.2 Dealing with Missing Values
A non-trivial aspect of the datasets used for developing glucose pre-
diction models is the aspect of missingness. This is evident in the
Ohio T1DM dataset with missingness present in both physiological
variables and self-reported data [4].

Linear Interpolation: The blood glucose values that are miss-
ing in this dataset are typically missing at random. This could be
attributed to issues around replacing glucose sensors and/or transmit-
ters, or dealing with faulty communication. As a result, we employ
linear interpolation in the training set to handle imputation of missing
blood glucose concentration levels in the dataset over a period of one
hour. In the samples where more than an hour of CGM data is miss-
ing the sample is discarded from the training set. This is illustrated
with an example sequence in (C) of Fig.1

On the other hand, features which comprise self-reported data the
assumption is made that any missing values represent an absence of



Figure 1. A visualisation of the imputation methods employed in this work. In (A) the input sequence has at least 30 minutes of recent values missing (eg.
linear extrapolation). (B) shows the imputation scheme during testing for longer than 30 minutes of recent values missing (zero-order hold). Finally (C) shows

the imputation scheme when the missing values of the input sequence are located between real values (linear interpolation).

said feature. Therefore all missing values in insulin, meal intake and
reported exercise are imputed with zero.

The missingness in features from the self-reported data in the test-
ing set is tackled similarly as in the training set. However, this is
not the case for blood glucose concentration levels as interpolation
when a current value at a given timestep is missing would lead to an
inaccurate evaluation of model performance.

Extrapolation: In order to accurately evaluate the performance of
the model we cannot always rely on interpolation at test time as this
may require, in a real-time setting, an unknown future value to per-
form interpolation. Consequently, we need to rely on other methods
of extrapolation to impute the missing glucose concentration levels.
In this scenario (A), for gaps of data less than 30 minutes, we im-
pute missing values with predicted values from the trained model.
For missing recent values longer than 30 minutes as in (B), we pad
the remaining values with the last computed value. In cases where, a
gap larger than 30 minutes is evident in historical data and a current
value is present at the given timestep, linear interpolation was then
employed instead to provide a more accurate imputation.

3.3 Standardisation
To enable training the proposed model effectively, we perform trans-
formation of the relevant input features (blood glucose concentration,
insulin bolus, meal(carbohydrate) intake, and reported exercise). The
blood glucose concentration levels are scaled down by a factor of
120. Similarly, the insulin bolus is scaled by 100 and meal intake
values are scaled by 200 in the same range between features. The ex-
ercise values are transformed to a simple binary representation of the
presence or absence of exercise, from the recorded exercise intensity
on a range from 1-10.

4 METHODS
In this section we detail the machine learning technique that is used
to provide the means of learning personalised models with the entire
dataset. We detail the approach to develop the deep multitask net-
work for personalisation. We provide a summary of the hyperparam-
eters used in training as well and setting up the input for personalised
multitask learning.

4.1 Multitask Learning
Multitask learning is an approach in machine learning that can be
broadly described as a method of learning multiple tasks simultane-

ously with the aim of improving generalisation [1].
Multitask learning for personalisation has been used mainly in af-

fective computing [13] with early work in diabetes management fo-
cusing on using multitask learning for developing prediction models
for clustered groups of Type 1, Type 2, an non-diabetic participants
[7] rather than leveraging similarities within groups such as gender,
for personalised glucose predictions.

As seen Figure 2, the output from the shared layers are now fed
into the individual(task)-specific fully connected layers of each user.

In a multitask setting of this kind, a multiplicative gating approach
is used to ensure that the input corresponding to the particular user
trains on just that user in the individual-specific layers. In that sense,
at each iteration a batch that consists of data from a particular indi-
vidual is used to train the shared layers and the layers specific to the
individual.

4.2 CRNN Model
The deep learning model trained in the multitask learning setting is
a convolutional recurrent neural network (CRNN) proposed by Li et.
al [8] to perform short-term glucose prediction. This forms the basis
of the single-task (STL) model. The convolutional recurrent model
consists initially of a 3 temporal convolutional layers that perform
a 1-D convolution with a Gaussian kernel over the sequence of in-
put to extract features of various rates of appearance, followed by
a max pooling layer after each convolution operation. The input is
a 4-dimensional sequence that takes a 2-hour window of historical
data.

The output from the convolutional layers performs feature extrac-
tion and feeds into a recurrent long short-term memory (LSTM) layer
that is able to better model the temporal nature of the task.

The output from the shared layers feed into the fully connected
layers of each user and to then provide the change in glucose value
over the prediction horizon. This is then added to the current glucose
value to provide the forecast glucose concentration level.

4.3 Loss Function
The loss function used for converging to the appropriate model for
the glucose forecasting is the mean absolute error. This is expressed
below as:

L(y, ŷ) =
1

Nbatch

NX

k=1

|y � ŷ| (1)



Figure 2. A detailed look at the formulation of convolutional recurrent networks in a multitask setting. In this setting, each user is represented as a task. In
addition, the initial layers (convolutional and recurrent layers) are shared between each user, the next two (dense) layers are shared based on gender, and the last

(dense) layer is specific to each user.

where ŷ denotes the predicted results given the historical data and y
denotes the reference change in glucose concentration over the rele-
vant glucose prediction, and Nbatch refers to the batch size.

4.4 Hyperparameters
The following table details provides the details of the hyperparame-
ters used for the model architecture at each layer.

Table 1. A table detailing the size and dimensions of layers in the
multitask CRNN model (MTCRNN)

Layer Description Output Dimensions No. of
(layer) Parameters

Shared Convolutional Layers (Batch⇥Steps⇥Channels)
(1) 1⇥4 conv 128(1)⇥ 24⇥ 8 104

max pooling, size 2 128(1)⇥ 12⇥ 8 �
(2) 1⇥4 conv 128(1)⇥ 12⇥ 16 528

max pooling, size 2 128(1)⇥ 6⇥ 16 �
(3) 1⇥4 conv 128(1)⇥ 6⇥ 32 2080
max pooling 128(1)⇥ 3⇥ 32 �

Shared Recurrent Layer (Batch⇥Cells)
(4) lstm 128(1)⇥ 64 24832

Sub-cluster Dense Layers (Batch⇥Units)
(5) dense 128(1)⇥ 256 16640
(6) dense 128(1)⇥ 32 8224

Individual-Specific Dense Layers (Batch⇥Units)
(7) dense 128(1)⇥ 1 33

The optimiser used for this work is Adam. The learning rate is
0.0053. The model is trained for 200 epochs. This value was obtained
through grid search optimisation.

The model is developed on Keras 2.2.2, with a Tensorflow 1.5
backend. The training is performed on an NVIDIA GTX 1050 GPU.

The repository for the code accompanying the paper can be found at:
https://github.com/jsmdaniels/ecai-bglp-challenge

5 RESULTS
5.1 Evaluation Metrics
The model is tested on data from six participant IDs: 540, 544, 552,
567, 584, 596.

The evaluation of the model is based on two metrics: root mean
square error (RMSE) and the mean absolute error (MAE). The ex-
trapolated points are not considered in calculating these metrics. The
formulation of these metrics are provided below:

RMSE =

vuut 1
N

NX

k=1

(y � ŷ)2, (2)

MAE =
1
N

NX

k=1

|y � ŷ|. (3)

where ŷ denotes the predicted results given the historical data and
y denotes the reference glucose measurement, and N refers to the
data size.

In order to undertake a comprehensive evaluation of the model
performance, the subsequent criteria for assessment are followed:

• Performance evaluation over 30-minute and 60-minute pre-
diction horizon (PH): The RMSE and MAE for each participant
is analysed for a the same length of values for both prediction
horizons.

• Comparison of training setting: The performance of the multi-
task learning (MTL) approach is evaluated in the context of com-
parison with the performance of a single task learning (STL) ap-
proach which uses only patient specific data.



• Multiple runs for each participant ID: The multitask CRNN
(MTCRNN) model uses randomly initialised weights at the start
of training. Given the variable nature of this training procedure,
the results reported are the average of 5 model runs.

The unit for results reported below is mg/dL. The best perfor-
mance is in bold.

Table 2. A table showing prediction performance for 30 minutes the
RMSE and MAE results of the six participants over 5 runs (CRNN)

MTL STL
ID RMSE MAE RMSE MAE
540 21.19±0.07 15.17±0.06 22.45±0.39 16.21±0.34
544 16.82±0.09 11.72±0.06 18.63±1.59 12.57±0.23
552 16.30±0.12 11.92±0.03 17.11±0.24 12.68±0.49
567 24.12±0.17 15.55±0.03 24.73±0.45 16.01±0.71
584 23.66±0.20 15.77±0.08 24.30±0.48 16.20±0.23
596 16.63±0.15 11.59±0.09 16.78±0.20 12.00±1.77

Average 19.79±0.06 13.62±0.05 20.67±0.32 14.28±0.19

Table 3. A table showing the prediction performance for 60 minutes
RMSE and MAE results of the six participants over 5 runs (CRNN)

MTL STL
ID RMSE MAE RMSE MAE
540 38.29±0.29 28.60±0.17 41.06±0.24 30.33±0.69
544 28.97±0.24 20.77±0.20 29.60±0.37 20.52±0.17
552 29.35±0.27 22.07±0.13 30.32±0.10 22.53±0.13
567 40.19±0.79 28.77±0.13 40.09±0.64 27.71±0.13
584 37.82±0.78 26.88±0.37 37.22±0.34 26.64±0.41
596 27.74±0.11 20.12±0.14 28.13±0.48 20.30±0.41

Average 33.73±0.24 24.54±0.08 34.40±0.14 24.67±0.14

6 DISCUSSION
As seen in Table 3, the results shown provide a comprehensive eval-
uation of the model predictive performance.

Figure 3. A graph showing the predictive performance of the model on
participant ID:596 at a 30 minute predictive horizon.

Evidently, the model performance at PH = 30 minutes is better
than the model performance at PH = 60 minutes, given that prediction
at 60 minutes is a more complex task than prediction at 30 minutes.

Figure 4. A graph showing the predictive performance of the model on
participant ID:596 at a 60 minute predictive horizon.

Figures 3 and 4 exhibit the differences in performance as seen in the
specific window for participant 596. The increased lag and reduced
predictive performance can also be attributed to the higher chance of
external activities (insulin, meals, exercise) that influence the blood
glucose trajectory occurring over the prediction horizon.

The best predictive performances were achieved by the model
with IDs 544, 552, 596 whereas, IDs 540, 567, and 584 exhibited
worse performances over both 30 and 60 minute prediction horizons.
An investigation of the glycaemic variability, using the coefficient
of variation (CV) [2], of the training set of the former set of par-
ticipants are stable (CV36%) whereas the latter group are labile
(CV>36%). The multitask learning approach definitively performs
better over the single task approach over a 30-minute prediction hori-
zon. However, the performance improvement of the MTL approach
over a 60-minute prediction is not consistent across each participant
and metric.

One potential issue with multitask learning is the issue of negative
transfer. This can be described as a scenario in which one or more
of the tasks (individuals) or sampled batches during training are not
strongly correlated, degrading the learning in the shared layers, and
subsequently the performance at test time.

7 CONCLUSION

In this work, we have presented a multitask convolutional recurrent
neural network that is capable of performing short-term personalised
predictions - 19.79±0.06mg/dL (RMSE) and 13.62±0.05mg/dL
(MAE) at 30 minutes, as well as 33.73±0.24mg/dL (RMSE) and
24.54±0.15mg/dL (MAE) at 60 minutes. We work towards lever-
aging population data while still learning a personalised model. In
the future, we hope to address further challenges such as negative
transfer during learning that could improve the accuracy of individ-
ual models. This approach would enable more accurate models to be
deployed in the face of limited personal data.
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Prediction of Blood Glucose Levels for People with Type 1
Diabetes using Latent-Variable-based Model
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Abstract. Regulation of blood glucose concentrations (BGCs) is a
tough burden for people living with type 1 diabetes mellitus (T1DM).
People with T1DM must administer exogenous insulin to maintain
their BGC within an euglycemic range. Hyperglycemia (high BGC)
and hypoglycemia (low BGC) can occur because of poor BGC man-
agement. Using recursively identified models to predict the future
BGC values opens novel possibilities for improving the BGC regu-
lation performance by adjusting the dose of insulin infusion, taking
rescue carbohydrates, or both. The BGC prediction model can also
benefit the development of artificial pancreas systems. In this paper,
a latent variable (LV) based multivariable statistical modeling ap-
proach is applied to model BGC dynamics and forecast future BGCs.
The LV-based model is a powerful linear method to build an empir-
ical model by using the collected data. The model is evaluated with
the Ohio T1DM dataset that contains BGCs from continuous glu-
cose monitoring (CGM) sensors, basal and bolus insulin information
from insulin pump, and additional information from wristbands or
reported by the subject. The results indicate that the LV-based model
can predict future BGC values with high accuracy for prediction hori-
zons of 30 and 60 minutes.

1 Introduction

People with type 1 diabetes mellitus (T1DM), an immune disorder
where the pancreas does not produce insulin, must administer ex-
ogenous insulin either by injections several times every day or in-
fusion with an insulin pump to maintain their blood glucose con-
centrations (BGCs) within a safe range (70-180 mg/dL) [23]. With-
out effective regulation, people with T1DM may suffer from several
long-term complications caused by hyperglycemia (high BGC), such
as kidney failure, blindness, and the deterioration of cardiovascular
health. They can also have low BGC (hypoglycemia), which may
cause dizziness, diabetes coma, or even death because of the lack of
energy for the brain [4].

Artificial pancreas (AP) systems are proposed to provide more re-
liable BGC management by automatically calculating the dose of in-
sulin to infuse by using a closed-loop controller incorporating BGCs
measured by continuous glucose monitoring (CGM) sensors, histori-
cal infused insulin data, and other available information, such as meal
carbohydrates (CHOs) and exercise information [15, 9, 16, 18, 2, 10].
The closed-loop controller is the critical component in developing an
AP system. Model-based controllers have become the preferred op-
tion in recent in silico and clinical studies where the future BGCs
predicted by a model, historical CGM measurements, administered
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insulin, and constraint conditions are taken into account when com-
puting the future insulin doses to be infused. The data-driven model-
ing techniques have been evaluated in many studies because of their
computational tractability and identification efficiency.

The empirical modeling technologies for T1DM include linear
and nonlinear methods. For nonlinear models, artificial neural net-
works (ANN) [1], convolutional neural networks (CNN) [26], recur-
rent neural networks (RNN) [13, 3], and other machine learning and
deep learning techniques [17, 11] have been used to model the glu-
cose dynamics. However, the nonlinear models can only be trained
with a large data set, and it can be difficult to develop personalized
models or to update the model parameters or structure. For the lin-
ear modeling methods, autoregressive model with exogenous inputs
(ARX), and autoregressive moving average model with exogenous
inputs (ARMAX) [7, 19, 25] are used to build personalized glucose
prediction models with recursively updated model parameters where
the future BGC values are modeled as a linear combination of his-
torical measurements from sensors, administered insulin, and other
information such as meal CHOs and exercise. Statistical methods
based on latent variables (LVs) are demonstrated to have powerful
abilities for various data analysis tasks, modeling, and process mon-
itoring [20, 21], and has been proven as a good alternative linear
model for type 1 diabetes [24].

In this paper, a novel multivariate statistical method proposed by
Nelson and MacGregor [14, 8] where the score vector is estimated
using missing data imputation technique is applied to model the glu-
cose dynamics based on LVs derived from principal component anal-
ysis (PCA). There are three key steps in developing a BGC predic-
tion model based on the LVs technique. First, a PCA is performed
on the gathered data to decompose the data into a linear combina-
tion of scores and loadings. Then, the unobserved variables are esti-
mated as conditional mean values computed from the gathered data
and new measurements. Finally, the score of new observed data is
estimated using incomplete observations and the future BGC values
are predicted. The rest of this paper is organized as follows: Section 2
summarizes the pre-processing of the data set. The LV-based method
is described and a glucose prediction model is developed in Section
3. The Ohio T1DM data set [12] is used to assess the performance
of the model and the results are given and discussed in Section 4.
Finally, some concluding remarks are provided in Section 5.

2 Data Pre-processing
2.1 Data
The Ohio T1DM dataset provided by the Blood Glucose Level Pre-
diction (BGLP) challenge records eight weeks of data collected from



six T1DM patients with subject ID: 540, 544, 552, 567, 584, and 596.
The data set contains BGC values measured by CGM sensors with
a sampling time of 5 minutes, basal and bolus insulin information
from the insulin pump, information collected from wristbands, and
events (i.e., meal, exercise, work, illness, etc.) recorded by the sub-
jects themselves (see [12] for details). However, there is no evidence
on the accuracy of the subject-reported information, which may de-
grade the reliability of glucose prediction model and the wristband
did not work continuously for a long period of time due to its lim-
ited battery power, which causes lots of missed data. Thus, only data
collected from CGM sensors and insulin pumps is used in this study.

The insulin infused with an insulin pump includes basal insulin,
given continuously since the defined start times, and bolus insulin,
which is usually given to mitigate the effects of the rapid raise of
BGC around meal times. Basal insulin is recorded as “basal” which
is the basal insulin infusion rate and “temp basal” which defines the
basal insulin infusion rate in specific time intervals to achieve better
regulation of BGCs. There are three types of bolus insulin defined in
the dataset: normal, normal dual and square dual. For “normal” bolus
insulin, a certain dose of insulin is infused immediately to the patient,
while for “normal dual” bolus insulin, a certain percentage of bolus
is given to the subject up front and the remaining insulin amount is
given gradually over a longer time duration. In this study, half of
the dose is supposed to be given to the patient immediately and the
remaining half is infused over the following 30 minutes. For “square
dual” bolus insulin, the bolus insulin is administered continuously
in the given time interval. The bolus and basal insulin values are
converted to U/min and aligned to match the CGM sampling time.

The insulin on board (IOB), which represents the insulin that
remains active within the body, is calculated from a physiological
model [22] and is found useful in some previous works [1, 6]. The
physiological model is represented as

dC1 (t)

dt
= u (t)�KdiaC1 (t) (1)

dC2 (t)

dt
= Kdia (C1 (t)� C2 (t)) (2)

IOB (t) = C1 (t) + C2 (t) (3)

where C1 and C2 define two insulin compartments, u (t) is the in-
sulin infusion, and Kdia is a constant related to the duration of in-
sulin action, set as 0.0182.

The dataset contains missing CGM measurements for in both the
training and testing sets that cause discontinuous CGM curves. The
gaps that are not greater than 3 samples in the training dataset are
interpolated using first-order linear model. For the cases where more
than 3 samples are missed, a single variable statistical model similar
to the one used to modeling glucose dynamics is used. In the testing
data set, with the intent of on-line implementation, only the historical
CGM measurements are used to fill the missing gaps until new the
CGM observations become available. Fig. 1 shows an example of the
filled gap in the training dataset (Subject ID 540).

2.2 Batch Generation
The pre-processed CGM readings (y) and calculated IOB (IOB)
are arranged as time series and a sliding window of 2 hours length is
chosen to generate batch segments from the training data as

Xtrain =
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Figure 1. Illustration of the filled gap in training data
(Subject ID: 540, 18 CGM measurements are missed)

where each row can be considered as an observation and each column
is the values of a single variable.

3 Methods
A multivariable statistical technique based on LVs [14, 8] is devel-
oped to predict the future BGC values, where a LV model is devel-
oped using the PCA algorithm. Then, the conditional mean values are
estimated from the same distribution, and future BGCs are predicted
with LVs and incomplete observations.

3.1 Latent Variable Model
Consider a data matrix X (N ⇥M) that contains N observations
(rows) and M variables (columns), then a linear combination of an
observation x in dataset X can be written as t = p1x1+. . .+pMxM ,
where t is a new vector in the same space as x. The fundamental
idea behind PCA is to find the loading vector p that maximizes the
variation of t, thus the first LV of PCA model can be calculated by
solving the following problem:

argmax
kpk=1

�
tT t

�
= argmax

kpk=1

�
pTXTXp

�
(4)

where p is the vector of regression coefficients. Accordingly, the
dataset X can be expressed as X = tpT + E with E denoting the
residual matrix. We can get more components by solving the follow-
ing problem:

argmax
kpk=1

��X � tpT
��2

(5)

Traditionally, the successive progress is evaluated by

kXk2 � kEk2

kXk2
100% (6)

which is referred to as the percentage of explained variation of t and
it is fixed as 95% in this study. If the first A (A is much smaller than
the rank of X) significant components can summarize sufficiently
well the dataset X , then a LV model developed using PCA algorithm
can be expressed as

X = t1p
T

1 + t2p
T

2 + ...+ tAp
T

A + E = T1:AP
T

1:A + E (7)



where T1:A = [t1, . . . , tA] (N ⇥A) and P1:A =
[p1, . . . , pA] (M ⇥A) are now matrices containing A score
vectors and A loading vectors, respectively.

3.2 Conditional Mean Replacement Method

For a new test observation z that was not used in the model develop-
ment but is drawn from the same distribution as observations in X ,
the scores ⌧ of the first A significant components of the new obser-
vation can then be calculated as

⌧1:A = PT

1:Az (8)

Consider a situation where only part of the object z is observed, it
is nature to assume the first R variables are measured and the remain-
ing (M �R) variables are unobserved, then without loss of gener-
ality, we have

z =


z#

z⇤

�

where z# is the observed variables and z⇤ represents the missing
measurements. This induces the following partition in X:

X =
⇥

X# X⇤ ⇤

where X# contains the first R columns of X and X⇤ is made up
of the remaining (M �R) columns. Correspondingly, the loading
matrix P can be partitioned as

P =


P#

P ⇤

�

where P# is the submatrix comprising the first R rows of P and the
remaining (M �R) rows are defined as matrix P ⇤. Then, the score
vector ⌧1:A of the new observation z can be rewrite as

⌧̂1:A = P#T

1:A z# + P ⇤T
1:Az

⇤ (9)

For a given data matrix X and a new observation z with z# de-
noting the measured variables that follow the same distribution as
observations in X , the missing variables z⇤ of z can be estimated as
the expected values from the conditional normal distribution:

ẑ⇤ = E
⇥
z⇤

��z#, S
⇤

(10)

Substituting the expression into the estimator of score vector of
the new observation yields:

⌧̂1:A = ⇥1:AP
#T

1:A

�
S##

��
z# (11)

where S = X
T
X

N�1 =


S## S#⇤

S⇤# S⇤⇤

�
is the covariance matrix of

X and ⇥ is the square diagonal matrix consisted of the eigenvalues
� = [�1, . . . ,�H ] in descending order and H is the rank of X .

Finally, the unmeasured variables z⇤ in z can then be calculated
from the estimated score vector along with the loading matrix:

ẑ⇤ = P ⇤
1:A⌧̂1:A (12)

which yields the future predictions given the past observed glucose
values.

3.3 Glucose prediction based on LV model
An accurate glucose prediction model could benefit diabetes man-
agement and significantly reduce the risk of hypoglycemia. To pre-
dict the future 60 minutes glucose values, the preceding one hour of
data is assumed available and marked as z#. Then, the glucose pre-
diction model can be developed and the subsequent future hour of
BGC values can be predicted online as follows:

1. The batch data set Xtrain is generated for each subject using the
training dataset.

2. While a new observation z# is available:

(a) Calculate the similarities between the new object z# and ob-
servations in submatrix X#, select the most similar N obser-
vations from Xtrain to form a new data matrix X .

(b) Develop PCA model using data matrix X as stated in (7).

(c) Estimate the score vector ⌧ of the new observation z# as stated
in (11).

(d) Predict the next 1 hour’s glucose values as stated in (12).

The above process was implemented in MATLAB 2019b and
the future one hour’s BGC values (12 samples) can be forecasted
by feeding the testing data to the model. The codes are available:
https://github.com/xiaoyu1115/BGLP_2020.git.

4 Results
In the clinical study, the training data from Ohio T1DM dataset with
subject ID: 540, 544, 552, 567, 584, and 596 were first divided into
two parts: the first 90% of data were used to develop PCA model and
the model is tested with the remaining 10% of data to determine the
number of observations that should be used in building the LV-based
glucose prediction models. Using this approach, the computational
burden in the modeling progress can be reduced significantly. Feed-
ing both the processed training and testing data into the modeling
process described in Section 3, the future glucose concentrations can
be predicted with prediction horizons of up to 60 minutes. The root
mean square errors (RMSEs) and mean absolute errors (MAEs) of
the 6 subjects are summarized in Table 1. The prediction results are
also analysed using Clark Error Grid (CEG) [5] and the percentages
of data distributed in Zone A to Zone D are summarized in Table 1
as well.

RMSE =

vuut 1
N

NX

i=1

(y (i)� ŷ (i))2 (13)

MAE =
1
N

NX

i=1

|y (i)� ŷ (i)| (14)

where y is the BGC values measured by CGM sensors, ŷ is the pre-
dicted BGCs, and N is the total data points in the testing dataset for
each subject.

In Table 1, the RMSE varies from 16.66 to 22.76 mg/dL for the
prediction horizon of 30 minutes with an average value of 19.37
mg/dL. The RMSE varies from 26.81 to 38.99 mg/dL for the pre-
diction horizon of 60 minutes with an average value of 32.59 mg/dL.
It is reasonable to see this increase in RMSE because the unknown
disturbances including meals and exercise that will influence the glu-
cose dynamics significantly. The relationships between the predic-
tion horizon and RMSE or MAE in Figure 2 also indicate that the
prediction accuracy decreases with increasing prediction horizon. An



Table 1. RMSE (mg/dL), MAE (mg/dL) and CEG (%) results of the LV-based model (STD: standard deviation)

PH=30 minutes PH=60 minutes

Subject RMSE MAE Zone A Zone B Zone C Zone D RMSE MAE Zone A Zone B Zone C Zone D

540 20.76 15.23 84.92 12.55 0.03 2.50 38.99 29.75 57.84 35.58 0.24 6.35
544 16.70 11.65 93.23 6.29 0 0.48 26.81 19.77 78.77 19.67 0.07 1.48
552 16.66 12.36 88.05 10.88 0 1.06 29.41 23.08 64.97 31.63 0.09 3.32
567 22.76 15.30 86.03 12.28 0.04 1.60 37.95 28.13 57.93 34.54 0.34 7.15
584 22.22 15.86 85.11 13.87 0 1.02 34.81 26.57 67.66 30.08 0.15 2.11
596 17.12 12.15 90.11 8.31 0 1.57 27.57 20.53 72.06 25.23 0.04 2.67

Mean 19.37 13.76 87.91 10.70 0.01 1.30 32.59 24.64 66.54 29.46 0.15 3.85
STD 2.87 1.89 3.27 2.87 0.02 0.68 5.35 4.12 8.17 6.03 0.12 2.34
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Figure 2. Relationship between prediction horizon and prediction accuracy
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Figure 3. BGC prediction for Subject 544 using LV-based model

average of 87.91% data lie in zone A of CEG which indicates the
high clinical accuracy of the model with prediction horizon of 30
minutes. The percentage of data in zone B increase dramatically as
the prediction horizon increases to 60 minutes.

The forecasting performance of the model is better for subjects
544, 552, and 596 than subjects 540, 552, and 567. One of the rea-
son is there are less noise and sensor failures contained in the dataset
provided by subjects 544, 552, and 596. A filter might improve pre-
diction performance for this case. And many gaps are observed in
CGM measurements, which also deteriorate the prediction accuracy
of the model in which the interpolated CGM data were used to pre-
dict the further BGC values.

The predicted BGC values for subject 544 with prediction horizon
of 30 minutes and 60 minutes are shown in Figure 3. For the pre-
diction horizon of 30 minutes, the LV-based model can predict the
future BGC values with a comparable high accuracy, and most of the
hyperglycemia and hypoglycemia events can be forecasted on time.
When the prediction horizon is increased to 60 minutes, the predic-
tion accuracy decreases, but is still acceptable. The prediction values
can still provide an insight on the variation of BGC which can be
used to tune the insulin infusion rate as a reference.

5 Conclusion
In this paper, an online recursively identified LV-based modeling ap-
proach is developed to predict the future BGC values with predic-
tion horizons of 30 and 60 minutes. With the pre-processed dataset,
the LV-based model is developed to calculate the LVs using a small
submatrix of the training dataset when a new observation is avail-
able. The future blood glucose values are predicted as a linear com-
bination of estimated scores and loadings. The proposed model is
evaluated with the Ohio T1DM dataset and the results demonstrate
the effectiveness of the model. Although the measurement noise is
weight-averaged in the LV-based model, it still has a significant in-
fluence on modeling and prediction progress. Online denoising tech-
niques would be one of the future study directions that might improve
the prediction accuracy. Further, integrating other data fields with the
personalized physiological models is a potential approach to improve
the prediction performance in the future work.
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Data Fusion of Activity and CGM for Predicting Blood 
Glucose Levels* 

Hoda Nemat1 and Heydar Khadem1 and Jackie Elliott2 and Mohammed Benaissa1 
 
Abstract.2 This work suggests two methods—both relying on 
stacked regression and data fusion of CGM and activity—to predict 
the blood glucose level of patients with type 1 diabetes. Method 1 
uses histories of CGM data appended with the average of activity 
data in the same histories to train three base regressions: a multilayer 
perceptron, a long short- term memory, and a partial least squares 
regression. In Method 2, histories of CGM and activity data are used 
separately to train the same base regressions. In both methods, the 
predictions from the base regressions are used as features to create a 
combined model. This model is then used to make the final 
predictions. The results obtained show the effectiveness of both 
methods. Method 1 provides slightly better results. 

1 INTRODUCTION 
The literature emphasises the importance of the management of type 
1 diabetes mellitus (T1DM) in reducing complications associated 
with the disease [1], [2]. The key role in T1DM management is to 
control blood glucose level (BGL) to remain in a normal range [3], 
[4]. 

The prediction of BGL from current and past information can be 
a useful contributor [5]. BGL prediction could provide early 
warnings concerning inadequate glycaemic control to prevent the 
occurrence of an adverse glycemic status [6], [7]. 

BGL prediction models could be classified into three main 
groups: physiological models, data-driven models, and hybrid 
models. Data-driven models explain the relationship between the 
present and past information to BGL prediction. In this regard, 
machine learning and time series approaches have been widely used 
[5]. 

Many studies have proposed data-driven BGL prediction 
methodologies. Mirshekarian et al. [8], Bertachi et al. [9], 
Martinsson et al.  [10], Zhu et al. [11] and Xie et al. [12] in separate 
studies, developed prediction models to forecast BGL with a 
prediction horizon of up to 60 minutes. 

Mirshekarian’s model was based on a recursive neural network 
(RNN), which utilised long short- term memory (LSTM) units. 
CGM, insulin, meal, and activity information were inputs of their 
model. Bertachi used physiological models of insulin, carbohydrate, 
and activity on board to train an artificial neural network (ANN). 
Martinsson proposed an RNN model trained on historical blood 
glucose information to predict BGL in two horizons of 30 and 60 
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minutes. Zhu generated a dilated deep convolutional neural network 
fed by CGM, insulin, and carbohydrate intake as inputs. Xie applied 
an autoregression with exogenous inputs approach to predict BGL 
by exploiting current and past information of CGM data. 

Physical activity is a critical factor in diabetes management. 
Therefore, investigation of the activity data in BGL prediction 
models is encouraged [13]. However, developing models with high 
accuracy using activity and CGM data is challenging, and limited 
studies have been done in this area. Data fusion of activity and CGM 
data normally result in models with a performance not comparable 
with those using CGM alone. 

This paper proposes two novel CGM and activity data fusion 
methods to generate BGL prediction models with performance 
comparable with those using CGM data alone. 

2 DATASET 
To develop BGL prediction algorithms, we used the OhioT1DM 
dataset [14]. The dataset contains eight weeks’ worth data of 12 
people with T1DM. The data of six patients was released in 2018 for 
the first BGL prediction challenge [15] and data for additional six 
patients  (referred by ID 540, 544, 552, 567, 584, and 596) was 
released for the second BGL prediction challenge in 2020 [14]. In 
this work, we used the data of the latter six patients. 

The dataset includes data of CGM sensor, physical activity band, 
physiological sensor, and self-reported life-event. Among the 
different collected data, we explored CGM and activity data which 
were collected every 5 and 1 minutes, respectively. Detailed 
information about the sensors and devices as well as characteristics 
of the patients has been published [14], [15].  

In the dataset, there are three types of activity data consisting of 
galvanic skin response, skin temperature, and magnitude of 
acceleration. In this work, we only used the data of the magnitude of 
acceleration. Hereafter, for simplicity, ‘magnitude of acceleration’ 
is referred to as ‘activity’. 

3 METHODOLOGY 
This section presents the information about data preprocessing and 
the methodologies developed for the prediction of BGL. 



 

 

3.1 Preprocessing 
Missing data in the training set is imputed using linear interpolation. 
For the testing set, on the other hand, linear extrapolation is used. 
This is to assure that future data is not seen by the model, and that 
the model can be used for a real-time application. Thus, we convert 
CGM and activity data to regular time series without any missing 
data in 5-minute and 1-minute intervals, respectively. 

The next step was to unify the resolution of CGM and activity 
data. To do so, we downsampled the activity time series data to 5-
minute intervals by capturing the nearest activity data to each CGM 
data and discarding the rest. 

There were a considerable number of unavailable activity data at 
the beginning and/or end of training and/or test set. This was due to 
the difference in wear time of CGM and activity sensors. For these 
points average of activity data in the training set is used rather than 
linear interpolation or extrapolation. Table 1 shows the number of 
unavailable activity data for each patient ID. 

 
Table 1. The number of non-existent activity data points in training and 

testing sets per data contributor. 
Patient ID testing set training set 

540 547 31 
544 0 125 
552 622 505 
567 0 108 
584 3 123 
596 80 18 

 
Another data preprocessing step was to reframe a time series 

problem to a supervised learning task. To this end, time series data 
were transformed into samples with lag observations as input and 
future observations as output. We use a rolling window with a 
history length of 6 or 12 data points for the input, which has the 
information of 30- or 60- minute history, respectively. Also, the 
output of each sample is a vector with 6 or 12 data points 
corresponding to prediction horizons of 30- and 60- minute, 
respectively. 

3.2 Regression tools 
Three base regressions and a stacked regression technique are used 
as tools to develop the final prediction models. 

3.2.1 Base regressions 

x Multilayer perceptron (MLP) 
MLP [16] is an ANN that can be used for time series forecasting. In 
this work, a single-hidden-layer MLP model was used. The model 
comprised a dense layer of 100 nodes with an activation function of 
rectified linear unit (ReLU) followed by an output layer. Adam and 
mean absolute error were used as an optimiser and a loss function, 
respectively. The learning rate was 0.01, and the model was fitted 
with 100 epochs. 
x Long short-term memory (LSTM) 
RNN is also an artificial neural network suitable for working with 
sequential data. We used a vanilla LSTM recurrent network [17] 
with vector output which is used for multi-step ahead forecast. The 
model was composed of a hidden layer with 200 units followed by a 
fully-connected layer with 100 nodes and an output layer. Both 

hidden layers used ReLU as the activation function. Mean squared 
error was the loss function, Adam was the optimiser. The model 
trained with 100 epochs with a learning rate of 0.01. 
x Partial least squares regression (PLSR) 
PLSR carries considerable popularity in different applications, such 
as glucose sensing [18]. In this work, PLSR was applied as a 
regression tool. Different values were considered for the number of 
components—ranging from one to the length of the input window. 
Each time, the predicted residual sum of squares (𝑃𝑅𝐸𝑆𝑆) was 
calculated as follows. 

𝑃𝑅𝐸𝑆𝑆 ൌ  ෍ሺ𝑦 െ 𝑦ො௜ሻଶ
ே

௜ୀ1

 (1) 

Where, N is the size of the evaluation set, and 𝑦௜ is the reference 
value, and 𝑦ො௜ is the predicted value. 

The number of components (𝐴) resulting in the minimum value 
for 𝑃𝑅𝐸𝑆𝑆/ሺ𝑁 െ 𝐴 െ 1ሻ is then selected [19]. 

3.2.2 Stacked regression 

Stacked regression is applied to enhance the performance of BGL 
prediction [20]. This technique uses predictions from a number of 
models—first-level models—as features to train a new model—
second-level model. In this work, a stacked regression structure was 
employed where the three base regressions mentioned in 2.3.1 were 
set as its first-level models and a PLSR as the second-level model 
(Figure 1). 

3.3 Prediction methods 
We developed two different methods using the stacked regression 
structure mentioned above to fuse CGM and activity data. Using 
these methods, models were then created to predict BGL of each 
patient for both horizons of 30 and 60 minutes. For each prediction 
horizon, two histories of 30 and 60 minutes were tried for training 
purposes. 

3.3.1 Method 1 

This method used the average value of activity data added to the 
window of CGM data to train the first-level models.  

3.3.2 Method 2  

In this method, the first-level models were trained twice. Once using 
a history of CGM data, and once using a history of activity data, thus 
producing six first-level models rather than three.  

MLP 
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PLSR 

𝑌෠1 

𝑌෠ଶ 
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PLSR Stacking of 
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First-level models 
Second-level model 

Figure 1. Diagram of the developed stacked regression. 



 

 

Table 3. Evaluation results of the first-level models of Method 1 using a history of 30 minutes. 

Patient ID Model PH: 30 min PH: 60 min 
RMSE MAE RMSE MAE 

540 
PLSR 22.13 16.60 41.09 31.74 
MLP 21.96 ± 0.29 16.46 ± 0.21 40.53 ± 0.38 30.95 ± 0.33 

LSTM 21.22 ± 0.12 15.82 ± 0.08 39.65 ± 0.28 30.38 ± 0.28 

544 
PLSR 18.08 13.33 31.80 24.71 
MLP 17.95 ± 0.07 12.87 ± 0.13 31.61 ± 0.32 24.27 ± 0.71 

LSTM 17.62 ± 0.20 12.60 ± 0.32 30.79 ± 0.29 23.02 ± 0.67 

552 
PLSR 16.76 12.77 30.23 23.67 
MLP 16.96 ± 0.19 12.69 ± 0.21 30.38 ± 0.36 23.42 ± 0.61 

LSTM 16.44 ± 0.17 12.18 ± 0.22 29.89 ± 0.47 22.53 ± 0.40 

567 
PLSR 20.97 15.04 37.41 28.15 
MLP 21.44 ± 0.63 15.60 ± 0.76 37.96 ± 1.45 29.01 ± 1.35 

LSTM 20.61 ± 0.20 14.64 ± 0.32 36.36 ± 0.31 27.08 ± 0.43 

584 
PLSR 22.07 16.21 36.85 27.85 
MLP 21.60 ± 0.12 15.61 ± 0.14 36.54 ± 0.74 27.27 ± 0.89 

LSTM 21.55 ± 0.26 15.58 ± 0.27 36.75 ± 1.69 27.62 ± 2.08 

596 
PLSR 17.79 12.76 29.63 22.05 
MLP 18.01 ± 0.16 12.99 ± 0.17 29.75 ± 0.69 21.93 ± 0.38 

LSTM 17.23 ± 0.17 12.25 ± 0.29 29.17 ± 0.22 21.29 ± 0.32 

Average 
PLSR 19.63 14.45 34.50 26.36 
MLP 19.65 ± 0.24 14.37 ± 0.27 34.46 ± 0.66 26.14 ± 0.71 

LSTM 19.11 ± 0.19 13.85 ± 0.25 33.77 ± 0.54 25.32 ± 0.70 

3.4 Evaluation 
In the Ohio dataset, the last 10 days’ worth of data for each 
contributor was allocated as the testing set and the rest as training 
[14]. To train and evaluation purposes, we used the training and 
testing sets, respectively. Extrapolated data and, the first 60 minutes 
of the test set was excluded when calculating the evaluation metrics. 
The latter is because the testing set starts immediately after the 
training set, and they are chronologically close to each other. 
Summarised statistics of the testing set for each patient is given in 
Table 2. 

Table 2. The statistics of the patients’ testing set. 

Patient ID 
Original 

data point 
Imputed 

data point 
Evaluation 
data point 

540 2896 3066 2884 
544 2716 3136 2704 
552 2364 3950 2352 
567 2389 2871 2377 
584 2665 2995 2653 
596 2743 3003 2731 

 
Root mean square error (RMSE) and mean absolute error (MAE) 

were calculated as follows and considered as evaluation metrics. 

𝑅𝑀𝑆𝐸 ൌ ඨ∑ ሺ𝑦௜ െ 𝑦ො௜ሻଶே
௜ୀ1

𝑁  (2) 

𝑀𝐴𝐸 ൌ
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Where 𝑦௜,  𝑦ො௜, and N have the same meaning as in (1). 

4 RESULTS AND DISCUSSION 
In this section, the results of RMSE and MAE for prediction 

models are provided for both prediction horizons of 30 and 60 
minutes. Models with a performance dependent on random 
initialisation ran five times, and the mean and standard deviation of 
results are reported. We have used the acronym PH for the prediction 
horizon in the tables. 

4.1 Method 1 
Table 3 displays the evaluation results of the first-level models of 

Method 1 when a history of 30 minutes is used for training. Based 
on the RMSE and MAE values, in both prediction horizons, LSTM 
had the best prediction performance for all patients except 584. For 
this patient, MLP had the best result. PLSR, as a simple linear 
regressor, produced results comparable to the non-linear neural 
network models. 

 
Table 4. Evaluation results of the second-level model of Method 1 using a 

history of 30 minutes. 

Patient ID PH: 30 min PH: 60 min 
RMSE MAE RMSE MAE 

540 21.19 ± 0.07 15.73 ± 0.09 39.41 ± 0.09 30.04 ± 0.15 
544 17.40 ± 0.08 12.45 ± 0.08 30.48 ± 0.07 22.90 ± 0.08 
552 16.25 ± 0.07 12.02 ± 0.05 29.32 ± 0.09 22.21 ± 0.02 
567 20.40 ± 0.07 14.44 ± 0.07 36.12 ± 0.02 27.12 ± 0.07 
584 21.54 ± 0.06 15.62 ± 0.06 36.27 ± 0.15 27.17 ± 0.16 
596 17.17 ± 0.10 12.13 ± 0.09 28.77 ± 0.26 20.80 ± 0.17 

Average 18.99 ± 0.08 13.73 ± 0.07 33.39 ± 0.12 25.04 ± 0.11 

 



 

 

Table 5. Evaluation results of the first-level models of Method 1 using a history of 60 minutes. 

Patient ID Model PH: 30 min PH: 60 min 
RMSE MAE RMSE MAE 

540 
PLSR 22.10 16.58 41.10 31.76 
MLP 21.58 ± 0.28 16.12 ± 0.22 40.53 ± 1.23 31.12 ± 0.91 

LSTM 21.11 ± 0.18 15.56 ± 0.11 39.18 ± 0.37 30.00 ± 0.33 

544 
PLSR 18.09 13.33 31.83 24.71 
MLP 18.09 ± 0.03 13.05 ± 0.08 32.34 ± 1.00 24.80 ± 1.76 

LSTM 18.04 ± 0.35 13.06 ± 0.48 30.79 ± 0.39 23.15 ± 0.68 

552 
PLSR 16.79 12.78 30.25 23.67 
MLP 17.58 ± 0.46 13.39 ± 0.70 30.16 ± 0.43 22.89 ± 0.14 

LSTM 16.97 ± 0.78 12.59 ± 0.55 30.69 ± 0.70 23.19 ± 0.55 

567 
PLSR 20.99 15.03 37.51 28.21 
MLP 21.71 ± 0.92 15.80 ± 1.06 37.34 ± 0.78 28.02 ± 0.76 

LSTM 20.74 ± 0.50 14.75 ± 0.59 36.67 ± 0.98 27.52 ± 1.06 

584 
PLSR 22.04 16.19 37.04 27.97 
MLP 22.10 ± 0.25 15.98 ± 0.23 37.13 ± 0.74 27.68 ± 0.89 

LSTM 21.66 ± 0.10 15.63 ± 0.12 36.76 ± 0.46 27.18 ± 0.44 

596 
PLSR 17.62 12.66 29.48 21.97 
MLP 18.05 ± 0.29 12.71 ± 0.27 29.71 ± 0.35 21.83 ± 0.21 

LSTM 17.58 ± 0.19 12.55 ± 0.34 29.55 ± 0.52 21.63 ± 0.34 

Average 
PLSR 19.60 14.43 34.53 26.38 
MLP 19.85 ± 0.37 14.51 ± 0.43 34.54 ± 0.75 26.06 ± 0.78 

LSTM 19.35 ± 0.35 14.02 ± 0.36 33.94 ± 0.57 25.44 ± 0.57 
 

Table 4 shows the evaluation results of the second-level model of 
Method 1 when a history of 30 minutes was used for training. 
Comparing these results with those in Table 3, the second-level 
model resulted in better prediction performance than all the first-
level models for all patients and both prediction horizons. This 
means that the stacked regression technique helped improve 
prediction performance. 

Table 5 displays the evaluation results of the first-level models of 
Method 1, when a history of 60 minutes was used for training. As 
results show, for both prediction horizons, LSTM had the best 
performance for a majority of the patients. In overall, PLSR 
provided the second-best results. 

The evaluation results of the second-level model of Method 1 
using 60-minute history are shown in Table 6. In comparison with 
Table 5, it can be observed that the stacked regression technique 
advanced the prediction performance for all patients for this history, 
too. Also, in comparison with Table 4, Method 1 had a better overall 
performance when it used a history of 30 minutes than a history of 
60 minutes. 

 
Table 6. Evaluation results of the second-level model of Method 1 using a 

history of 60 minutes. 

Patient ID PH: 30 min PH: 60 min 
RMSE MAE RMSE MAE 

540 20.98 ± 0.13 15.50 ± 0.14 39.05 ± 0.17 29.68 ± 0.18 
544 17.66 ± 0.09 12.66 ± 0.08 30.42 ± 0.36 22.82 ± 0.42 
552 16.30 ± 0.09 12.04 ± 0.06 29.38 ± 0.24 22.26 ± 0.21 
567 20.52 ± 0.17 14.54 ± 0.10 36.52 ± 0.10 27.31 ± 0.14 
584 21.62 ± 0.17 15.63 ± 0.08 37.01 ± 0.28 27.64 ± 0.20 
596 17.45 ± 0.08 12.27 ± 0.09 28.92 ± 0.27 20.92 ± 0.19 

Average 19.09 ± 0.12 13.77 ± 0.09 33.55 ± 0.24 25.11 ± 0.23 

4.2 Method 2 
In this section, the evaluation result of Method 2 is presented. To 

be concise, the results of the second-level model only are reported, 
which are the final predictions of the method. 

Table 7 shows the evaluation results of Method 2 using a 30-
minute history. Comparing these results with those in Table 4, the 
prediction performance of Method 2 was comparable with that of 
Method 1 for all patients, except patient 552. This may be due to the 
existence of a large number of missing activity data points in this 
patient’s data (as can be seen in Table 1). 

 
Table 7. Evaluation results of Method 2 using a history of 30 minutes. 

Patient ID PH: 30 min PH: 60 min 
RMSE MAE RMSE MAE 

540 21.26 ± 0.09 15.89 ± 0.07 39.48 ± 0.16 30.26 ± 0.19 
544 17.59 ± 0.11 12.62 ± 0.12 30.68 ± 0.15 23.14 ± 0.20 
552 19.85 ± 4.51 12.65 ± 0.46 35.70 ± 3.32 23.76 ± 0.40 
567 20.52 ± 0.12 14.49 ± 0.12 36.39 ± 0.20 27.14 ± 0.19 
584 21.72 ± 0.17 15.78 ± 0.10 36.53 ± 0.13 27.45 ± 0.08 
596 17.24 ± 0.11 12.19 ± 0.07 28.83 ± 0.11 21.03 ± 0.13 

Average 19.70 ± 0.85 13.94 ± 0.16 34.60 ± 0.68 25.46 ± 0.20 
 
Table 8 lists the evaluation result of Method 2 using a history of 

60 minutes. Comparing these results with those in Table 6, the 
evaluation results for both methods were close to each other. Also, 
comparing these results with those in Table 7, Method 2 made better 
predictions using a history of 60 minutes than a history of 30 
minutes. 

 
 
 
 
 



 

 

Table 8. Evaluation results of Method 2 using a history of 60 minutes. 

Patient ID PH: 30 min PH: 60 min 
RMSE MAE RMSE MAE 

540 20.89 ± 0.05 15.49 ± 0.11 39.30 ± 0.35 29.80 ± 0.21 
544 17.70 ± 0.14 12.68 ± 0.13 30.71 ± 0.22 23.25 ± 0.29 
552 16.73 ± 0.51 12.33 ± 0.18 34.67 ± 3.51 23.47 ± 0.58 
567 20.57 ± 0.14 14.63 ± 0.11 36.70 ± 0.30 27.48 ± 0.18 
584 21.72 ± 0.06 15.71 ± 0.05 36.85 ± 0.09 27.69 ± 0.13 
596 17.53 ± 0.21 12.26 ± 0.18 28.88 ± 0.21 21.02 ± 0.17 

Average 19.19 ± 0.18 13.85 ± 0.13 34.52 ± 0.78 25.45 ± 0.26 

5 SUMMARY AND CONCLUSION 
This work contributes to the prediction of BGL by proposing two 
methodologies for data fusion of CGM and activity using stacked 
regression. 

In the first method, the average value of activity data added to a 
window of CGM data was used as input to train prediction models. 
Initially, three base regression models consist of MLP, LSTM, and 
PLSR were trained. Subsequently, predictions from these base 
models were used as features to train a new PLSR model which then 
made final predictions. 

In the second method, the same base regressions were trained 
once using windows of activity data and once using CGM data. The 
predictions of all trained base models were then fed as features to a 
new PLSR model for its training process. The new PLSR was used 
to make refined predictions. 

The results obtained show that Method 1 (average value of 
activity data added to the window of CGM data) had a slightly better 
performance than Method 2 (first-level models trained twice, once 
with a history of CGM data, once using a history of activity data). In 
overall, Method 1 using a history of 30 minutes had the best results 
by providing a RMSE of 18.99 and 33.39 for the prediction horizon 
of 30 minutes and 60 minutes, respectively. 

6 SOFTWARE AND CODE 
To implement the models, we used Python 3.6, TensorFlow 1.15.0 
and Keras 2.2.5. Also, Pandas, NumPy and Sklearn packages of 
python were used. The codes were run on a commodity laptop. The 
codes of our implementation are available at: 
https://gitlab.com/Hoda-Nemat/data-fusion-
stacking.git 
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Abstract. The management of blood glucose levels is critical in
the care of Type 1 diabetes subjects. In extremes, high or low lev-
els of blood glucose are fatal. To avoid such adverse events, there is
the development and adoption of wearable technologies that continu-
ously monitor blood glucose and administer insulin. This technology
allows subjects to easily track their blood glucose levels with early
intervention, preventing the need for hospital visits. The data col-
lected from these sensors is an excellent candidate for the application
of machine learning algorithms to learn patterns and predict future
values of blood glucose levels. In this study, we developed artificial
neural network algorithms based on the OhioT1DM training dataset
that contains data on 12 subjects. The dataset contains features such
as subject identifiers, continuous glucose monitoring data obtained
in 5 minutes intervals, insulin infusion rate, etc. We developed in-
dividual models, including LSTM, BiLSTM, Convolutional LSTMs,
TCN, and sequence-to-sequence models. We also developed transfer
learning models based on the most important features of the data, as
identified by a gradient boosting algorithm. These models were eval-
uated on the OhioT1DM test dataset that contains 6 unique subject’s
data. The model with the lowest RMSE values for the 30- and 60-
minutes was selected as the best performing model. Our result shows
that sequence-to-sequence BiLSTM performed better than the other
models. This work demonstrates the potential of artificial neural net-
works algorithms in the management of Type 1 diabetes.

Keywords. Blood glucose prediction, Time-series model, Wear-
able devices, Transfer learning

1 INTRODUCTION
Diabetes Mellitus is a chronic disease characterized by high blood
glucose levels. According to the 2020 CDC National Diabetes Statis-
tics Report, about 34.2 million people or 10.2 percent of Americans
have diabetes [3]. Diabetes is classified as Type 1, Type 2 and Ges-
tational Diabetes. Insulin is an enzyme produced in the pancreas
that helps in blood glucose absorption into cells. In Type 1 diabetes
(T1DM), the pancreas produces little or no insulin. In contrast, in
Type 2 diabetes (T2DM), the pancreas produces a small amount of
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insulin, or the body is resistant to the effect of insulin. This absence
or resistance to insulin leads to an increase in blood glucose levels,
known as hyperglycemia. Symptoms of hyperglycemia include ex-
cessive thirst, excessive urination, sweating, etc. Diabetic ketoacido-
sis is a serious complication of uncontrolled hyperglycemia that can
lead to death. On the other hand, elevated insulin levels in the body
can cause low levels of blood glucose, a condition known as hypo-
glycemia. Dizziness, weakness, coma, or eventually, death can occur
in uncontrolled hypoglycemia. Insulin and glucose control are criti-
cal to the management of diabetes, and hence titration of the admin-
istered insulin doses is critical in management of diabetes patients.

Glucose levels vary according to the patient’s diet, and activities
throughout the day. Sensors have been developed to estimate blood
glucose levels at various time intervals. These sensors are useful in
diabetes management because they provide longitudinal data about
subjects’ blood glucose and show the distinctive patterns throughout
the day. These sensors are frequently coupled with the use of in-
sulin pumps to deliver short-acting insulin continuously (basal rate)
and specific insulin quantity after a meal for appropriate glycemic
control. Although the sensors and insulin pumps have helped to im-
prove patient care, patients are typically unaware of an impending
adverse event of severe hyperglycemia or hypoglycemia. These ad-
verse effects commonly occur when patients are asleep. There is an
opportunity for the development of accurate prediction models using
previously collected sensor data to estimate future values of blood
glucose levels to prevent the occurrence of adverse events.

In this study, we utilize the OhioT1DM dataset, which contains
blood glucose values of twelve T1DM subjects collected at inter-
vals over a total time span of eight weeks [13]. These individuals
had an insulin pump with continuous glucose monitoring (CGM),
wearing a physical activity band and self-reporting life events us-
ing a smartphone application. CGM blood glucose data were ob-
tained at 5-minute intervals [12]. We developed multiple models for
predicting glucose values at 30 and 60 minutes in the future, us-
ing the CGM values, and mean Root Mean Square Error (RMSE)
as an evaluation metric. The code for this study can be found at
https://github.com/iupui-soic/bglp2

2 RELATED WORK

Models like LSTM and RNN have been used for forecasting in [10]
which has been improved since then. The paper explores short-term
load forecasting for individual electric customers and proposes an
LSTM based framework to tackle the issue. Machine Learning mod-
els such as XGBoost have been used to predict glycemia in type-
1 diabetic patients in [14]. This paper experiments primarily with



XGBoost algorithm to predict the blood glucose levels at a 30-
minute horizon in the OhioT1DM dataset. Features from pre-trained
TimeNets have been used for clinical predictions in [7]. This pa-
per uses pre-training a network for some supervised or unsupervised
tasks on datasets, and then fine-tuning via transfer learning for a re-
lated end-task to leverage the resources of labeled data in making
predictions. This paper points out that training deep learning models
such as RNNs and LSTMs requires large labeled data and is compu-
tationally expensive.

Deep learning models like Recurrent Neural Network (RNN) have
been used on the OhioTIDM dataset to predict future blood glucose
values [16], including the BGLP Challenge at KDH@IJCAI-ECAI
2018 (http://ceur-ws.org/Vol-2148/). In some cases,
these data-driven models use only the CGM values or use physiolog-
ical data such as the insulin concentration, amount of carbohydrate in
meals and physical activities. Chen et al. created a data-driven 3-layer
dilated recurrent neural network model with a mean RMSE of 18.9,
with a range of 15.2995 and 22.7104 [4]. They concluded that the
missing data and the continuous fluctuations in the data influenced
the model’s performance. Their model bettered the Convolutional
Neural Network (CNN) that gave an average RMSE of 21.726 for
six subjects [21]. Bertachi et al. predicted blood glucose levels using
Artificial Neural Networks with the inclusion of physiological data
[1]. Their results were not significantly dissimilar to those obtained
in the data-driven models. All the previous studies demonstrate that
a lower RMSE is obtained at the 30-minute prediction when com-
pared to the 60-minutes values. We postulate that a hybrid approach
of combining both the data-driven and physiological models could
improve on the performance of the individual models and incorpo-
rate this in our approach.

3 METHODS
3.1 Dataset Description
A detailed description of the dataset has been previously published in
the OhioT1DM dataset paper [12]. We used the data provided on 12
subjects for training, and 6 test subjects. Furthermore, the parameters
basal and temp basal were merged into a single parameter.

We converted both the training and testing datasets from XML to
CSV, preserving the time intervals. We did not use interpolation on
the datasets as rules of the competition have prohibited interpolation.
We tried using the forward and backward filling to fill the null values
in the datasets, but they are creating additional time intervals which
becomes a problem in testing datasets. So, no re-sampling technique
was used in this paper to preserve the time intervals of the samples.
The data pre-processing is performed on only 6 patients (test and
train datasets) whose results are to be predicted. Subject-548 has the
highest number of training records (12150) and Subject-552 has the
lowest no. of records(9080). The no.of features varied from subject to
subject which causes unevenness while training time series models.
So, we have added features to subjects as required to ease the process
of training and predicting. Missing data is handled in all columns by
inputting the null values with zeros(0). We did not disturb the glucose
value column as required by the competition.

3.2 Description of ML models
We used the following deep learning models to predict the blood
glucose levels of each subject. The data pre-processing and model
development are summarized in figure 1.

3.2.1 Long Short-Term Memory (LSTM) Networks

LSTMs were originally introduced by Hochreiter and Schmidhuber
[8] and later refined and popularized [17] [20]. LSTMs are a spe-
cial kind of RNNs, capable of learning long-term dependencies. This
quality of LSTMs helps memorize useful parts of the sequence and
the model learns parameters more efficiently, making it useful for
time series models.

We trained two models using LSTMs, one with 5-min interval data
and another with 30-min interval data. In each model, we used all the
available features at time t to predict the glucose value at time t+1.
Before fitting the dataset, we scaled the dataset using MinMaxScaler
from scikit-learn [15].

The LSTM model was built using the Keras [6] platform. We used
128 LSTM units, followed by a dense layer (150 units), dropout layer
(0.20), dense layer (100 units), dropout layer (0.15), dense layer (50
units), dense layer (20 units) and a final layer with one unit (for pre-
diction). We used ReLU as the activation function with Adam op-
timizer. The loss was calculated in mean squared error (MSE) and
later converted into Root Mean Squared Error (RMSE). The model
was trained for 200 epochs with a batch size of 32. The results of the
model for each subject are provided in the results table.

3.2.2 Bi-directional Long Short-Term Memory (BiLSTM)
Networks

As our input text data is static, and the entire sequence is available
at the same time, we implemented a BiLSTM model to observe how
processing the sequence from either direction affected the accuracy.
The architecture of the BiLSTM model is similar to the LSTM model
and is thus useful for time series prediction.

The data processing and model parameters for BiLSTM and
LSTM model were similar with an exception in the model’s first
layer, where the scaled data was inputted into the Bidirectional
LSTM with 128 units. The model was trained for 200 epochs with
a batch size of 32. The results of the model for each subject are pro-
vided in the results table.

3.2.3 Temporal Convolutional Networks (TCN)

TCNs were originally introduced by Lea and Videl [11] in 2016.
TCNs are extremely useful in capturing the high-level temporal rela-
tionships in sequential networks. The TCN architecture allows cap-
turing long-range spatio-temporal relationships. TCN’s help cap-
ture the blood glucose level of subjects who usually have routine
lifestyles, as TCNs can capture hierarchical relationships at low, in-
termediate, and high time scales.

The data processing steps are similar to the LSTM model. The
TCN model was built using the Keras platform, but the depth of
the model is relatively simpler compared to the LSTM and BiLSTM
model. The scaled data was inputted into a TCN layer and then con-
nected to a dense layer with one unit for the output. The model used
Adam optimizer and MSE for calculating loss which was later con-
verted to RMSE. The model was trained for 10 epochs and the ob-
tained results are provided in the results table.

3.2.4 Convolutional LSTM

Convolutional LSTMs (ConvLSTM) were introduced by Xingjian
Shi et al. [18] in 2015. ConvLSTMs are created by extending the fully
connected LSTM to have convolutional structure in both the input-
to-state and state-to-state transitions. ConvLSTM network captures



Figure 1. Process Architecture

spatio-temporal correlations better and usually outperform Fully
Connected LSTM networks.

The scaled data was reshaped and inputted to a convolution layer
with 32 filters of kernel size 1, followed by LSTM layer with 128
units, Dense layer with 150 units, Dropout layer with 0.2 dropout
rate, Dense layer with 100 units, Dropout layer with 0.15 rate, Dense
layer with 50 units, Dense layer with 16 units and finally a Dense
layer with 1 unit for prediction. ReLU activation function was used
in all layers. The model used Adam optimizer and the MSE loss was
further converted to RMSE for model comparison. The model was
trained for 200 epochs with a batch size of 32. The obtained results
are provided in the results table.

3.2.5 Description of Sequence-to-Sequence Models

Sequence to sequence models were first introduced by Google in
2014 [19]. These models map fixed-length input with fixed-length
output where length of input and output differ. Sequence-to-sequence
models consist of three parts:

• Encoder: Encoder consists of stacks of several recurrent (LSTM)
units where each unit takes a single element of the input sequence,
extracts information from it and propagates it to the next unit.

• Encoded Vector: This is the intermediate step and the final hid-
den layer of the encoder. It also acts as the first hidden layer for
the decoder to make predictions. This vector encapsulates all in-
formation from all input samples and provides this information to
the decoder.

• Decoder: This consists of stacks of recurrent unit where each unit
predicts output at time step t. Each unit accepts a hidden layer as
input and produces output as well as its own hidden state.

The main advantage of this architecture is that it can map se-
quences of different lengths to each other. We applied 3 variants
of sequence to sequence models viz., sequence-to-sequence LSTM,
sequence-to-sequence Bi-LSTM, and sequence-to-sequence CNN-
LSTM.

For training of sequence-to-sequence models, we split the data into
windows of 60 minutes. This approach is intuitive and helpful as
BGLP values can be predicted 1-hour ahead. It is also helpful while
modelling as the model can be used to predict blood glucose values at

specific time periods, let’s say (after 10 minutes) or a whole sequence
of blood glucose values.

To evaluate these sequence-to-sequence models we used walk for-
ward validation. Here the model predicts the next one hour and then
the actual data for one hour is given to make prediction for next one
hour. See below table 1 for more illustration:

Table 1. Description of Sequence-to-Sequence input and prediction values

Input Prediction
1st 60 minutes data 2nd 60 minutes data
[1st + 2nd] 60 minutes data 3rd 60 minutes data
[1st + 2nd + 3rd] 60 minutes data 4th 60 minutes data

For our training, we kept our input size (number of prior observa-
tions required to make next predictions) as 30 minutes data to predict
next 60 minutes data. Each sequence-to-sequence model used in our
work is described below:

1. Sequence-to-Sequence LSTM
In this model, we used 200 LSTM cells for the encoder and
decoder. This layer was followed with 2 dense layers containing
150 and 1 units wrapped in a TimeDistributed layer. The model
was trained for 80 epochs with batch size of 40. We used Adam
optimizer [9] with learning rate of 0.01 and loss function as MSE.

2. Sequence-to-Sequence Bi-LSTM
In this model, we used 100 Bi-LSTM cells (LSTM cells wrapped
in Bidirectional wrapper) for the encoder and decoder. This layer
was followed with 2 dense layers containing 150 and 1 units
wrapped in a TimeDistributed layer. The model was trained for
80 epochs with batch size of 40. Similar to sequence-to-sequence
LSTM, Adam optimizer was used with 0.01 learning rate and
“mean squared error” as the loss function.

3. Sequence-to-Sequence CNN-LSTM In this model, we used 2
1D Convolutional layer with filter size of 128 and 64 respectively.
Convolutional layers were followed with MaxPooling 1D layer
and flatten layer for the encoder. 200 LSTM cells are used for
the decoder. This layer was followed with 2 dense layers con-
taining 100 and 1 units wrapped in a TimeDistributed layer. The
model was trained for 80 epochs with batch size of 40. Similar to



above models, Adam optimizer was used with 0.01 learning rate
and “mean squared error” as the loss function.

3.2.6 Transfer Learning

For transfer learning, we first found the most relevant and common
features among all 12 subjects. The importance of features was found
using a Gradient Boosting algorithm. We set the cumulative fre-
quency to 0.99 for feature selection and the 5 most important and
common features are as follows: ’finger stick value’, ’basal rate
value’, ’galvanic skin response value’, ’skin temperature value’, ’bo-
lus dose value’

Using the above-identified important features only, we trained our
model on a randomly selected subject (567) and subsequently, fine-
tuned each sequence-to-sequence model on each subject. The final
model was used for prediction on the test data. The configurations
of each model was similar to the sequence-to-sequence model as de-
scribed above.

4 RESULTS

Figures 2 and 3 shows the comparison between the actual and the pre-
dicted values obtained from our best performing model i.e. sequence-
to-sequence BiLSTM model. From the figures, it is clear that our
model closely predicts the values of the test data by following simi-
lar peaks and troughs.

Table 2. RMSE and MAE results of Sequence-to-Sequence BiLSTM model

RMSE MAE

Subjects 30 Mins 60 Mins 30 Mins 60 Mins
584 29.7 42.6 18.1 30.0
567 20.7 35.1 14.4 24.9
596 18.6 28.3 12.7 19.3
552 18.2 30.0 13.3 22.2
544 19.8 32.9 13.7 23.1
540 24.3 41.4 17.8 31.0
Mean 21.8 35.0 15.0 25.0
SD 4.0 5.4 2.1 4.2

The RMSE of the 30 minutes horizon predictions of the models
are presented in tables 3, 4 and 5. From the tables, the sequence-
to-sequence (Seq2Seq) models performed better than all the other
models with an average RMSE of 23.5 for Seq-2-Seq LSTM, 21.8
for Seq-2-Seq BiLSTM, and 23.0 for Seq-2-Seq CNN-LSTM. Ta-
ble 2 describes the RMSE and MAE values for the sequence-to-
sequence BiLSTM model which performed better than the individual
and transfer learning models.

From Table 2, the value for the RMSE varies from 18.2 in subject
552 to 29.7 in subject 584 at 30 minutes, and between 28.3 in sub-
ject 596 to 42.6 in subject 584 at 60 minutes. The MAE values lies
between 12.7 to 18.1 at 30 minutes and between 19.3 and 31.0 at 60
minutes.

Subject 584 in figure 3 shows more fluctuations, has a higher peak
and lower troughs than subject 552 in figure 2. The effect of these
variations are reflected in our results as patient 584 has the highest
RMSE value while subject 552 has the lowest RMSE values. It is evi-
dent that the levels of variations in the individual subjects contributes
significantly to the differences in RMSE values of the individual sub-
jects in our model.

Table 3. RMSE values for individual models at 30 minutes Horizon

Subjects LSTM BiLSTM TCN ConvLSTM
584 27.97 29.06 26.55 26.57
567 25.65 27.04 25.71 26.04
596 19.47 20.30 18.95 21.08
552 20.62 20.30 17.14 17.73
544 21.34 22.06 80.67 20.94
540 30.21 31.72 25.94 27.35
Mean 25.0 24.4 34.7 23.2
SD 3.99 4.98 21.13 3.43

Table 4. RMSE values for sequence-to-sequence models at 30 Minutes
horizon

Seq-2-Seq Seq-2-Seq Seq-2-Seq

Subjects LSTM BiLSTM CNN-LSTM
567 29.2 20.7 29.0
540 25.0 24.3 23.1
544 18.5 19.8 19.2
596 18.6 18.6 19.0
584 30.7 29.7 31.0
552 19.2 18.1 17.2
Mean 23.5 21.8 23.0
SD 5.0 4.0 5.2

Table 5. RMSE values for sequence to Sequence transfer learning model at
30 Minutes horizon

Seq-2-Seq Seq-2-Seq Seq-2-Seq

Subjects LSTM BiLSTM CNN-LSTM
567 33.5 30.8 32.6
540 39.7 32.7 44.2
544 23.1 31.5 21.8
596 19.2 18.0 17.9
584 36.8 37.3 38.1
552 21.8 14.3 17.7
Mean 29.0 27.4 28.7
SD 7.9 8.3 10.2



Figure 2. Actual and Predicted values of subject 552 at 30 minutes horizons

Figure 3. Actual and Predicted values of subject 584 at 30 minutes horizons

5 CONCLUSION AND FUTURE SCOPE

In this paper, we present results of application of deep learning mod-
els to make predictions of blood glucose values. Potential benefits
such as the prevention of adverse events associated extreme glu-
cose values serve as a source of motivation for these efforts. Over-
all, sequence-to-sequence models especially Bi-LSTM have the best
performance as these models are best at mapping sequences irrespec-
tive of their lengths. Our performance is affected by fluctuations in
glucose values and also with missing data as described in previous
experiments. Given the overall success of transfer learning, we also
evaluated the potential of single model prediction via transfer learn-
ing approach. The transfer learning approach was inferior to the se-
quence to sequence models.

Compared to the previous paper for BGLP Challenege, we ob-
served that two papers [2] and [5] have better results than our pro-

posed results. But [5] have used interpolation as a part of data pro-
cessing which is against the rules of the competition and [2] did not
mention details about data processing. Our future work will be to
improve the transfer learning model as we are provided with more
common features among all subjects, so that we can create a generic
model for predicting blood glucose levels. However, the development
of a generic model can be challenging because of confounding fac-
tors such as variations in sensor types, lifestyles, physiology and ge-
netics. It is therefore pertinent that these factors are considered in
future endeavors.
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A Deep Learning Approach for Blood Glucose Prediction
of Type 1 Diabetes

Jonas Freiburghaus and Aı̈cha Rizzotti-Kaddouri and Fabrizio Albertetti 1

Abstract. An essential part of this work is to provide a data-driven
model for predicting blood glucose levels that will help to warn
the person with type 1 diabetes about a potential hypo- or hyper-
glycemic event in an easy-to-manage and discreet way. In this work,
we apply a convolutional recurrent neural network on a real dataset
of 6 contributors, provided by the University of Ohio [5]. Our model
is capable of predicting glucose levels with high precision with a 30-
minute horizon (RMSE = 17.45 [mg/dL] and MAE = 11.22 [mg/dL]),
and RMSE = 33.67 [mg/dL] and MAE = 23.25 [mg/dL] for the 60-
minute horizon. We believe this precision can greatly impact the
long-term health condition as well as the daily management of people
with type 1 diabetes.

1 INTRODUCTION
Type 1 diabetes is a disease in which the cells responsible for insulin
production are destroyed. Because insulin is the hormone that trig-
gers absorption of glucose within the cells, people with diabetes need
to monitor their glucose concentration in the blood and readjust it by
frequent insulin injections, following a well-defined medical proto-
col (e.g., once during the day and once before each meal, to keep
blood sugar levels within the normal range). The main challenge in
handling diabetes is the optimization of insulin injections in order
to avoid hypoglycemia and hyperglycemia. This is complicated by
the fact that besides insulin intake and diet, glucose levels are also
affected by several other factors such as physical activity, lifestyle,
mental state, stress, etc. Despite the various accomplishments made
in continuous diabetes monitoring (a.k.a. continuous glucose moni-
toring, CGM), such methods remain invasive. Furthermore, they are
only able to provide the glycemic state at a given time, when the
insulin level may already be unacceptable (too high or too low). A
proactive detection could therefore dramatically improve the daily
handling of diabetes by the patients themselves.

This work presents an approach based on deep learning algorithms
for predicting glucose levels in the future (30-minute and 60-minute
horizons). Our work is based on the architecture of a recurrent neu-
ral network (CRNN) from [3] and proposes certain variants, such as
multi-step predictions, regression model using blood glucose level
data for each person every 5 minutes, and the inclusion of other data
such as basal insulin, bolus insulin, and meal values.

The goal of using a CRNN architecture is twofold. (1) Convolu-
tional layers act as filters and automatically learn to detect the fea-
tures of interest for prediction. They are also particularly convenient
for analyzing time series with little signal processing required. And
(2), recurrent neural network are well-known for the capacity to learn

1 HES-SO University of Applied Sciences and Arts of Western Switzerland,
email: aicha.rizzotti@he-arc.ch

long-term relationships between the different values. For instance, it
is necessary for the network to be able to capture a correlation be-
tween the ingestion of carbohydrates now and a change in the blood
glucose level in a near future.

This paper is organized as follows: Section 2 presents related work
for glucose prediction, Section 3 formulates the problem of glucose
prediction and our contribution, Section 4 details our methodology
and discuss experimental results. Finally, in Section 5 we summarize
the importance of our contribution and suggest some future work.

2 RELATED WORK

Predicting blood glucose levels for diabetes (type 1 or type 2) us-
ing machine learning has gained a lot of attention and has resulted
in several methods and applications being proposed recently. They
are however either based on solely measuring the glucose levels or
the resulting prediction accuracy is not yet high enough to be consid-
ered as a reliable predictor of a potential critical glycemic condition.
Several types of regression algorithms can be used, including SVR,
classic statistical methods such as ARIMA, deep learning neural net-
works, or even a naive persistence algorithm, to name a few.

Gu et al. [2] propose a personalized smartphone-based non-
invasive blood glucose monitoring system that detects abnormal
blood glucose levels events by jointly tracking meal, drug and in-
sulin intake, as well as physical activity and sleep quality. It automati-
cally collects daily exercise and sleep quality, and predicts the current
blood glucose level of users, together with manual records of food,
drug and insulin intake. It needs re-calibration using CGM devices
once every three weeks and is based on multi-division deep dynamic
recurrent neural network framework. Plis et al. [6] propose a solution
that uses a generic physiological model of blood glucose dynamics
to generate features for a SVR model that is trained on contributor
specific data. It is shown that, the model could be used to anticipate
almost a quarter of hypoglycemic events 30 minutes in advance, how-
ever the demonstrated corresponding precision is 42%. Contreras et
al. [1] present an alternative approach to glucose levels prediction,
based on previous studies that incorporated medical knowledge into a
grammar aimed to build expression for glucose that considered previ-
ous glucose values, carbohydrate intake, and insulin administration.
They extend the previous research to investigate a novel and com-
plementary approach that uses symbolic regression through gram-
mar evolution to determine an approximate glucose levels and fluc-
tuations using personalized blood glucose predictive models. In the
same order of topic, we note the work in [4]. It also contains a com-
parison with a prediction using latent variable with exogenous input
(LVX [9]) model, in this model bolus insulin and meal are included
in the predictor matrix X but in this work only meal information is



added . We can see that the RMSE for a prediction horizon of 60 min
for clinical data, varies from 37.02 to 35.96 [mg/dL]. In [3], they use
a deep learning architecture for predicting 30-minute and 60-minute
horizons on both real and simulated patients. For real patients and
a 30-minute horizon, they report an RMSE of 21.07 [mg/dL]. How-
ever, only a few approaches have used deep learning algorithms for
CGM on clinical data and more specifically for this dataset provided
by the University of Ohio [5].

3 Glucose Prediction
The aim of this work is to predict glucose levels in advance in or-
der to avoid situations of hyperglycemia or hypoglycemia, as well
as others negative effects on the health. For instance, chronic hyper-
glycemia may induce fatigue and vision problems among others. For
that purpose, we created a model capable of predicting the glycemia
of type 1 diabetes, where values must be as accurate as possible. In
this context, the metrics are the RMSE and the MAE. The smaller
these values, the more reliable the model. The real gain for a pa-
tient is to be able to make decisions at any given time considering
the prediction of future values, and possibly avoid glycemia-related
discomforts while minimizing intrusive methods.

4 METHODOLOGY
4.1 Approach
Our approach can be summarized by the following steps:

1. Data importation
2. Data preprocessing
3. Implementation of the CRNN prediction model with multi-step

forecasting
4. Training, testing and tuning on selected features
5. Delivery of the forecasted blood glucose levels

Data importation involves loading, merging, and aligning values
from multiple sources under the same time scale. The selected fea-
tures are basal/bolus insulin, carbohydrates, and blood glucose levels.

In the preprocessing step, all variables must have measurements
carried over at the same time. This requires the use of subsampling
or oversampling methods and, corollary, defining imputing methods.
Linear interpolation is used for the glucose level on the training set
to resample the time series at a frequency of 5 minutes. The others
features may be imputed with null values when required, as their na-
ture is sparse. We can also use domain-specific functions, such as an
equation describing the absorption rate over time for carbohydrates.
The preprocessing steps are summarized by :

1. Save all the blood glucose timestamps
2. Resample the features to a time delta of 1 second
3. Forward fill the missing values by using the last available values
4. Fill the left missing values with 0
5. Resample the features to a time delta of 5 minutes
6. Smooth each feature with a 1D Gaussian filter over a window con-

taining the past 2 hours of data

We use the saved timestamps at preprocessing step 1 to generate
the results at the same timestamps as the measured values.

Linear interpolation is used during the training process to impute
the missing values. This allows to have more data points for the
model to be trained on. However, we should note that linear inter-
polation is not ideal for big gaps of missing values. The interpolation

is not used at test time as it could lead to a data peek. Meaning the
predictions would be contaminated by future values.

The CRNN model target values are based on the following equa-
tion:

yt+L = bgt+L � bgt, for L = 1, 2, . . . , 12 (1)

where bgt is the blood glucose value at time t, L is the lag value in
timesteps for the horizon, and y the label to predict, that is the

differentiated value of the blood glucose level.

For instance, if the blood glucose level is 80 mg/dL at the cur-
rent time and 60 mg/dL 30 minutes later, the label for a prediction
horizon of 30 minutes at the current time would be �20 mg/dL.

Respectively, as the model does not predict directly the blood glu-
cose level but only the difference from the last known value. The
predicted blood glucose level is obtained with the following equa-
tion:

bbg
t+L

= bgt + ŷt+L, for L = 1, 2, . . . , 12 (2)

where bgt is the blood glucose value at time t, bbg
t+L

is the
predicted blood glucose level at time t+ L, ŷt+L is the predicted

blood glucose level difference at time t with lag L, L is the lag
value in timesteps for the horizon, and y the label to predict.

It is important to note that the CRNN only outputs the values ŷt+L.
The model is capable of giving a prediction for each 5 minutes

prediction horizon up to 60 minutes that is 5, 10, ..., 60 minutes. This
feature may give valuable information to a user and thereby improve
their blood glucose level control. An example of such a prediction is
given in Fig. 5.

The overall architecture of the CRNN is based on [3] and de-
scribed in Fig. 1. The input signals time series are fed into a CNN
for extracting relevant features. The purpose of the pooling layers
is to gradually reduce the spatial dimension while keeping only the
highest values included in the pooling window. Then, these features
are fed into an RNN layer to model the relationships over time. Fi-
nally, a dense neural network is used as a last layer for regressing the
desired target.

Figure 1. A multi-layer CRNN composed of convolutional layers, pooling
layers, an RNN network, and a dense neural network

The training of a model is done on a contributor-basis, that is one
model is trained per contributor. The reason is that each glucose re-
sponse is individual, and a one-population model does not seem rea-
sonable for CGM.



4.2 Experimental Results
4.2.1 Dataset

Our results reported in this work are based on the OhioT1DM dataset
[5]. For each contributor a train set as well as test set are provided.
One model only is pretrained on the data from the 6 contributors of
2018. Then for each 6 data contributor of 2020 transfer learning is
applied, resulting in one trained model per contributor.

The reported results are based on the following signals: glucose
level, basal insulin, bolus insulin, and meal for 6 data contributors
(540, 544, 552, 567, 584, and 596). While more signals were avail-
able, we decided to use only these signals. Indeed, we performed
several tests with the complete dataset and the preliminary results
indicated better results with a limited set of features.

The use of a sliding window consisting of the last 2 hour data,
resulting in 24 data points is based on [3]. Cross- and/or auto-
correlation may provide a good starting point to find a reasonable
sliding window size. Of course, the computing complexity must be
taken into consideration depending on the targeted deployment hard-
ware.

4.2.2 Architecture and learning process

The detailed architecture of the CRNN is presented in Table1.

Layer description Output dimension
Convolution 1D (Batch size, 24, 8)
Max pooling 1D (Batch size, 12, 8)
Convolution 1D (Batch size, 12, 16)
Max pooling 1D (Batch size, 6, 16)
Convolution 1D (Batch size, 6, 32)
Max pooling 1D (Batch size, 3, 32)
LSTM (Batch size, 64)
Dense (Batch size, 256)
Dense (Batch size, 32)
Dense (Batch size, 12)

Table 1. Neural network layers and output shapes

The model is pretrained on batches of size 1024 over 1000 epochs,
with an RMSProp optimizer. The learning rate is initially set to 0.001
and is reduced with a factor of 0.1 when the model does not progress
after 3 epochs. Early stopping is used similarly with a patience of
50 epochs in order to regularize the model. The last model’s weights
with the lowest validation loss are then restored.

For each data contributor of 2020 the pretrained model is loaded
and trained similarly as the pretraining stage. With the only differ-
ence that the learning rate is reduced with a patience of 15 epochs
and that one model is saved for each contributor.

4.2.3 Results

The RMSE and the MAE are calculated for the six contributors using
the following equations.

RMSE =

vuut 1
n

nX

i=1

(ŷi � yi)2 (3)

where ŷi is the predicted value, yi the truth value and n the number
of observation.

MAE =
1
n

nX

i=1

|ŷi � yi| (4)

The first observation is the errors systematically increase for each
contributor over time. It is not surprising that the larger the prediction
window, the larger the error in general grown up.

A comparison between contributors was also performed (Fig. 2
and Fig. 3). As we can see, for example with the contributor 596,
the prediction curve for 30 minutes and 60 minutes follows the real
curve with an RMSE = 13.34 and MAE = 9.08 [mg/dL], and RMSE
= 27.74 and MAE = 19.13 [mg/dL]. These specific curves are also
detailed in Fig. 4.

Figure 2. RMSE-30 vs RMSE-60 horizons for the 6 contributors of 2020

Figure 3. MAE-30 vs MAE-60 horizons for the 6 contributors of 2020



Figure 4. Example of prediction results of contributor 540, for 30 and 60
minutes

The evaluation of the prediction from the contributor-side can be
performed by a multi-step prediction (as illustrated in Fig. 5). Predic-
tion is made through one forward pass of a horizon of the last 2 hours
data and outputs the horizon for the next hour represented by the or-
ange curve. In the given example, the model seems to have predicted
well the tendencies.

Figure 5. Multi-step prediction of one forward pass

A comparison of our approach with other algorithms is summa-
rized in Table 2. We notice that the RMSE of our work at horizon 30
is smallest and at 60 minutes similar to [3]. Let us highlight that in
(1) the database is different. The persistent algorithm is the baseline

model. It forecasts the blood glucose level by using the last know
value.

ŷt+L = bgt�1, for L = 1, 2, . . . , 12 (5)

Prediction horizon Metrics
(mg/dL)

(1) Li’s CRNN (2) BASELINE (3) CRNN
Overall

30 MAE NA 18.13± 0.00 11.22
RMSE 21.0.7± 2.35 25.76± 0.00 17.45

60 MAE NA 30.70± 0.00 23.25
RMSE 33.27± 4.79 42.00± 0.00 33.67

Table 2. Comparison of different algorithms: (1) Li’s CRNN from [3], (2)
baseline with persistence forecast (where the previous value is predicted),
and (3) the proposed CRNN. Let us note that (1) uses different data (not

publicly available) than from (2) and (3).

With the hypothesis of a hypo-glycemia starting below 70mg/dL
and a hyper-glycemia starting above 150mg/dL, we believe that our
model delivers relevant and actionable results for real patients. In our
opinion, a RMSE of 17.45mg/dL for a 30-minute horizon indicates
that data-driven decisions could be made in regard to avoiding hypo
or hyper-glycemic related events.

5 CONCLUSION
In this paper we described a model for predicting future blood sugar
levels of people with type 1 diabetes. A CRNN approach was pro-
posed with the advantages of using only 4 different signals and very
little signal processing. The evaluation was performed using RMSE
and MAE metrics, with different horizons and on multiple contribu-
tors. The results were compared with different algorithms.The results
report low error rates given the problematic of glucose prediction,
and in our opinion could be considered for real-world implementa-
tion. Yet, several research tracks remain to be explored. For instance,
testing additional features that can influence blood sugar levels such
as stress or illness. We can also think of extracting manual features
from the given signals with signal processing methods, and defining
domain-specific imputation methods, such as for the absorption of
carbohydrates over time. It would be also interesting to further per-
sonalize predictions as suggested in [7]. Another direction could be
to use reinforcement learning approaches for the insulin recommen-
dation, such as in [8].Those self-learning approaches are adaptable
and personalize the daily insulin values to ensure glucose control,
despite inter and intra-patient variability.

ERRATUM
During the making of the camera ready version, we found an error in
the preprocessing stage thanks to the great reviews. The missing val-
ues were treated using a linear interpolation during the testing of the
model. Thereby the predictions were contaminated by future values.
This error was corrected by removing the interpolation and dealing
with missing values as explained in this paper version.

Code source
It is available at https://github.com/JonasFreibur/BLGP-HES-SO
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Multi-Scale Long Short-Term Memory Network with
Multi-Lag Structure for Blood Glucose Prediction

Tao Yang and Ruikun Wu and Rui Tao and Shuang Wen and Ning Ma
and Yuhang Zhao and Xia Yu and Hongru Li1

Abstract. Accurate blood glucose (BG) prediction is necessary for
daily glucose management of diabetes therapy. As glucose dynam-
ics are often affected by various factors, such as diet, physical ex-
ercise, and insulin injection, it is difficult to consider all the rele-
vant information and make a balance between the high-dimensional
inputs and learning efficiency for a deep learning network. In this
work, a novel multivariate predictor with a multi-scale long short-
term memory (MS-LSTM) network was developed to automatically
characterize the high-dimensional temporal dynamics and extract the
features of blood glucose fluctuation and temporal trends sufficiently.
Meanwhile, a multi-lag structure is designed for multiple variables,
which can extract the dependence between different variables and
blood glucose fluctuations more effectively. Furthermore, long-term
sparse information was encoded and compressed to improve the
learning efficiency of this deep learning network. The predictive ca-
pability of the proposed method was illustrated through 30-min and
60-min ahead glucose prediction in the OhioT1DM-2 Dataset. The
root means square error (RMSE) values of 30-min and 60-min ahead
predictions were 19.048 and 32.029, respectively, and the mean ab-
solute error (MAE) values of 30-min and 60-min ahead predictions
were 13.503 and 23.833. The results demonstrate the efficiency and
prediction accuracy of the offline deep learning network, especially
in the case of high-dimensional variables availability.

1 INTRODUCTION
Diabetes is a chronic disease characterized by the inability to main-
tain glucose homeostasis. Healthy pancreas controls the release of
glucagon and insulin through ↵-cells and �-cells, respectively, to
maintain normal blood glucose levels [7]. Type 1 diabetics can-
not produce insulin normally because the �-cells are compromised,
which leads to hyperglycemia and hypoglycemia [5], [17]. In recent
years, advances in continuous glucose monitoring (CGM) and con-
tinuous subcutaneous insulin infusion (CSII) technologies have con-
tributed to the closed-loop treatment of diabetes [1], [2], and [4]. The
subcutaneous glucose concentration prediction algorithm has the po-
tential to improve further the closed-loop treatment system for dia-
betes [8], [14], [15], and [18]. However, it is difficult to establish a
multivariate physiological model to predict blood glucose precisely
due to the influence of daily behaviors such as diet, physical exercise,
and insulin injection [6]. Recently, some multivariate data-driven
models are used to predict blood glucose levels and achieve satis-
factory results. A successful case is the multivariable LSTM network
proposed in paper [12], which has obtained better prediction results
than the support vector regression model and diabetes experts.
1 Northeastern University, China, email: lihongru@ise.neu.edu.cn

Nevertheless, different behaviors have different temporal effects
on glucose fluctuation [3]. Using a unified lag for all variables may
not be able to extract information about different characteristics suf-
ficiently. Therefore, using multiple lags for each variable has posi-
tive implications for blood glucose prediction. An end-to-end recur-
rent neural network framework is proposed in paper [13], which is
equipped with an adaptive input selection mechanism to improve the
prediction performance of the multivariate time series. Based on this
work, we develop a multi-scale LSTM (MS-LSTM) network that can
capture the high-dimensional temporal dynamics and extract the fea-
tures of blood glucose fluctuation and temporal trends sufficiently.
Meanwhile, the multi-lag structure in the network can more effec-
tively extract the dependence between different variables and blood
glucose fluctuations. Compared with the traditional single-lag struc-
ture, using the multi-lag structure can extract more comprehensive
features. Furthermore, long-term sparse information is encoded and
compressed to accelerate the learning of deep networks. The MS-
LSTM model was tested independently several times on the testing
dataset, and the prediction results show that the model is excellent
and robust.

This paper is organized as follows: section 2 explains the data
preprocessing used; section 3 describes the architecture of the MS-
LSTM network; section 4 illustrates model-free prediction methods
in case of missing data; section 5 analyses the experimental results;
section 6 summarizes the main contents from this study.

2 DATA PREPROCESSING

The variables selected for prediction included BG value, basal in-
sulin dosage, bolus insulin dosage, carbohydrate intake, and times-
tamp [11]. Other variables provided were not selected for prediction,
such as galvanic skin response, skin temperature, and acceleration.
We used some data preprocessing methods, including aligning the
original data, filling in the missing data, detecting and reconciling
BG outliers, and normalizing the data. These data processing tech-
niques will be illustrated in detail in the following sections.

2.1 Data alignment

The data in OhioT1DM-2 Dataset was collected by multiple devices,
and some of the data was manually recorded by the patient, which
caused the raw data to be asynchronous [16]. Therefore, the data
needs to be aligned before feeding to the prediction model. Firstly,
a time grid with a 5-minute sample period was derived based on the
continuous glucose monitoring (CGM) data, and the missing data



was filled with zeros. Secondly, the timestamps of some insulin injec-
tions and carbohydrate intakes information cannot precisely match
the timestamps of CGM data. They were reset to the timestamps of
CGM data with the smallest time difference to keep the temporal
correlation between the variables as much as possible [3].

2.2 CGM outlier detection and reconciliation
CGM measurements contain noise because of physical interference.
Therefore, outlier detection and reconciliation are necessary to re-
move potential noise. Firstly, a gaussian process regression (GPR)
model was trained to detect outliers of CGM measurements. The
training dataset of the GPR model was the first 288 points of the
training dataset. The input of the GPR model was CGM measure-
ments from time t� 30 to t� 5, 6 points in total, and its output was
mean (µ(t)) and variance (�2(t)) of the CGM prediction at the time
t. Then µ(t) and �2(t) was used to reconcile CGM outlier at the time
t as equation(1).

g(t) =

8
><

>:

µ(t)� 4.5�2(t) , g(t) < µ(t)� 4.5�2(t)

µ(t) + 4.5�2(t) , g(t) > µ(t) + 4.5�2(t)

g(t) ,others

(1)

where g(t) is the BG level at time t.

2.3 Missing data filling
In the OhioT1DM-2 Dataset, basal insulin dosage and CGM mea-
surements have missing data in some situations. As the basal insulin
dosage has daily periodicity, it can be filled by the previous day’s
data. Although many methods are applied for missing CGM value
filling, the accumulative error will inevitably increase as the number
of filling increasing. Therefore, to degrade the accumulative error
caused by data filling, the first-order Taylor series extrapolation and
historical averages were weighted and summed to fill in the missing
CGM values as the number of continuous missing items was less than
12. The respective methods for the missing numbers greater than or
equal to 12 will be explained in detail later. It should be noted that
the missing CGM values in the training dataset will not be filled to
avoid additional noise.

2.4 Data normalization
Data normalization can accelerate deep network training and im-
prove the accuracy of the model to a certain extent. We used three
methods to normalize the data, and the results show that the model
with coefficient normalization had the best performance. Coefficient
normalization refers to only scale the amplitude of data to maintain
the distribution of the raw data as much as possible [10]. The scaling
of different variables was shown in Table 1.

Table 1. Scaling of different variables.

Variable Glucose level Timestamp Basal Bolus Meal
Scaling 1/100 1/100 1/12 1 1/10

3 MS-LSTM MODEL
In this section, we will introduce the architecture of the MS-LSTM
model and explain how the model is trained and tested.

3.1 Model architecture
As shown in Figure 1, the MS-LSTM model has a multi-scale hier-
archy structure, which can learn the short-term and long-term depen-
dence of blood glucose sequence. Meanwhile, the multi-lag structure
can extract features on time-windows of different sizes, the features
extracted on a large time-window are more abundant, and the features
extracted on a small time-window are more time-sensitive. There-
fore, compared with single-lag, the multi-lag structure can extract
more comprehensive features and more effectively extract the de-
pendence between different variables and blood glucose fluctuations.
Theoretically, the more lags used, the more comprehensive features
extracted, but correspondingly, the training time of the model will
increase. Therefore, three lags were used for all variables to balance
the training time and adaptability, as shown in Table 2, where PH
represents the prediction horizon.

Table 2. Scale levels or lags of different variables.

PH=30 PH=60

Variable Scale level or lag Scale level or lag
Blood glucose 1×7,2×7,3×7 1×9,2×9,3×9
Basal and timestamp 8,16,24 12,24,36
Bolus and timestamp 8,16,24 12,24,36
Meal and timestamp 8,16,24 10,20,30

Specifically, for predicting blood glucose after 30 minutes, the
three scales adopted for the blood glucose variable were 1×7, 2×7,
and 3×7, which means that all scale levels are 7, and the dilated sam-
pling rate is 1, 2 and 3, respectively. Three lags of the basal vari-
able were 8, 16, and 24, respectively. To ensure the unity of the out-
put dimensions, in the multi-scale hierarchical and multi-lag struc-
ture, the number of LSTM states was equal to the minimum scale of
blood glucose variable. As shown in Table 3, to sufficiently extract
the useful information of various variables, the number of LSTM
states in the feature fusion layer was 256. The number of nodes in
the fully connected layer later was 256, 64, and 1, respectively, and
some dropout layers are added between the fully connected layers to
avoid the network overfitting problem.

Table 3. Detailed information of the MS-LSTM network.

PH=30 PH=60

Structure Layer name Parameter Parameter
LSTM 7 Unit 9 UnitMulti-scale

hierarchical LSTM 7 Unit 9 Unit
LSTM 7 Unit 9 UnitMulti-lag LSTM 7 Unit 9 Unit
LSTM 256 Unit 256 Unit

FC 256 Unit 256 Unit
Dropout 0.2 0.2

FC 64 Unit 64 Unit
Dropout 0.1 0.1

LSTM and Fully
Connected (FC)
layer

FC 1 Unit 1 Unit

3.2 Training and testing
The training data was divided into a training set and a verification set
at a ratio of 9:1. The last 10% of the training dataset is closest to the
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Figure 1. Block diagram representation of the MS-LSTM network

testing dataset in time, and its distribution is most similar to the test-
ing dataset, so it was set apart as the verification set. When training
the model, each iteration was evaluated on the verification set. When
the model had not obtained better results after 300 consecutive evalu-
ations, the training would be stopped, and the model which performs
best on the verification set before would be saved. The training stop
strategy that can effectively avoid the problem of overfitting the net-
work is called early stopping. Because the 13th point on the test set
needs to be predicted, some training data was added at the beginning
of the test set to ensure that the number of prediction points meets
the requirements. Besides, for several CGM data after a noticeable
amount of continuously missing data, the model was not used for
prediction. Instead, two model-free prediction algorithms with adap-
tive weight prediction and remain prediction were used to predict,
respectively. Finally, the predictions were limited in the range of 40
to 400. The flow diagram is shown in Figure 2.
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MS-LSTM 
model

test data
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prediction 
results
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Figure 2. Flow diagram of blood glucose prediction

Training batch size: The experiment used mini-batch for weight
adjustment, and the batch size of each update weight will affect the
accuracy of the model. In the experiment, it was found that the larger
batch size could improve the accuracy and accelerate the training
process of the model, so the batch size was set to 1024.

Loss function: The experiment compared the negative log-
likelihood (NLL) loss function, "-insensitive loss function, mean
absolute error (MAE) loss function, and root mean square error
(RMSE) loss function. The results displayed that the model trained
with the RMSE loss function had the best performance.

Optimizer: This experiment tested the root mean square prop (RM-
SProp) optimizer and adaptive moment estimation (Adam) optimizer
[9]. The results showed that the performances of RMSProp and
Adam were similar, but Adam had a significant advantage in the
convergence speed. Therefore, Adam optimizer was used to update
model weights, and the learning rate was set to 0.0001. In summary,
the hyperparameters are shown in Table 4.

Table 4. Summary of the hyperparameters.

Hyperparameter Value
Training batch size 1024
Optimizer Adam optimizer
Learning rate 0.0001
Training stop strategy early stopping
Loss function RMSE

The experimental environment is Win10 Professional 64-bit oper-
ating system, the hardware platform is Intel Core i7 9750H proces-
sor, NVIDIA GeForce GTX 1660 Ti graphics processing unit, 16G
memory notebook computer, and the development tool is Python 3.6,
Keras 2.2.4, TensorFlow-GPU 1.12.0. The code used in the experi-
ment is available on Github. In this hardware and software environ-
ment, the average training time for the MS-LSTM model was about
10 minutes.



4 MODEL-FREE PREDICTION
When the number of the missing CGM data is more than 11, the
predictions of the MS-LSTM model for the following several values
will cause a significant deviation. Therefore, for these CGM data,
adaptive weight prediction and remain prediction are used instead of
the model. The adaptive weight prediction algorithm uses short-term
maintainability and long-term periodicity of blood glucose levels to
make predictions. Specifically, when fewer CGM data are missing,
the prediction is close to the last CGM value before the missing data,
that is, depending on the short-term maintainability of blood glucose
levels. On the contrary, when there are more missing data, the pre-
diction is close to the CGM value at the same time of the previous
day, that is, depending on the long-term periodicity of blood glucose
levels. The process of adaptive weight prediction can be described by
equation (2)-(4).

f = nmiss/(nmiss + c) (2)

gav(t) =
1

2n+1

288+nX

288�n

g(t� T ⇥ nback) (3)

Paw = (1� f)glast(t) + f ⇥ gav(t)) (4)

where nmiss is the number of missing data between the current pre-
diction and the last CGM measurement before the missing data. c
is a constant not less than 0, and the value in this experiment is
set to 68. f is the adaptive weight factor, depend on nmiss and
c. T is the blood glucose measurement period, the value in the
OhioT1DM-2 Dataset is 5 minutes. n is a positive integer con-
stant not less than 0, and the value in this experiment is set to 1.
nback 2 {288� n, 288� n+ 1, ..., 288 + n}. g(t) is the BG level
at time t. gav(t) is the average value of the CGM data of 2n + 1
points at the same time on the previous day, which represents the
long-term periodicity of BG levels. glast(t) is the last CGM value
before the missing data, which represents the short-term maintain-
ability of BG levels. Finally, Paw is the adaptive weight prediction
value. As shown in Figure 3, the black points in the period from time
D to F are the predictions produced by adaptive weight prediction
algorithm.

Figure 3. Prediction results of the three algorithms

When the first CGM data appears after the missing data, the value
would be directly used as the predicted value of the required predic-
tion horizon. So this algorithm is called remain prediction. As shown
in the sky blue point in Figure 3, the blood glucose value at time D
was the prediction value at time G.

Then, when two CGM values appeared after the missing data, as
shown about the BG values at time D and E in Figure 3. Based on

these two points, the reverse first-order Taylor series extrapolation
was performed. Then the extrapolated data and the average historical
data before the missing data were weighted and summed to ensure
the smoothness of the filled data. The green points in Figure 3 were
the extrapolated backward data, which were used by the MS-LSTM
model to predict BG level after time G.

5 RESULTS AND ANALYSIS
The performance of the model was evaluated by the root mean square
error (RMSE) and mean absolute error (MAE) between the predic-
tions and the original test data.

RMSE =

vuut 1
N

NX

i=1

(ŷi � yi)
2 (5)

MAE =
1
N

NX

i=1

|ŷi � yi| (6)

where ŷi is the predicted BG value, yi is the target value and N repre-
sents the size of the testing dataset. To be noted that, the extrapolated
values of BG were removed when evaluating the performance of the
model, which guarantees the predictions had the same number as the
test data.

According to the preceding steps, the results of four independent
experiments are summarized in Table 5, where SD represents the
standard deviation. All subjects used the same experimental param-
eters, but the RMSE of each patient varied from 15 to 22. Among
them, the smallest RMSE is 15.871 for patient 596, and the largest
RMSE is 21.934 for patient 567. The prediction results are shown
in Figure 4-5. It is worth noting that the average RMSE variance of
the MS-LSTM model is only 0.061 in 30 minutes prediction horizon,
which reflects the excellent robustness of the model.

Figure 4. Blood glucose prediction results of subject 596 produced by the
MS-LSTM model

Figure 5. Blood glucose prediction results of subject 567 produced by the
MS-LSTM model

The subject 567 has many consecutive spikes, which is the primary
source for the prediction error. Besides, another source of prediction



Table 5. RMSE and MAE values of the MS-LSTM model for 6 subjects.

PH=30 PH=60

Subject Test point Average
RMSE ± SD

Average
MAE ± SD

Average
RMSE ± SD

Average
MAE ± SD

540 2884 20.996 ± 0.062 15.244 ± 0.051 38.219 ± 0.029 28.675 ± 0.017
544 2704 16.687 ± 0.025 11.679 ± 0.014 27.424 ± 0.100 19.522 ± 0.030
552 2352 16.918 ± 0.064 12.726 ± 0.058 30.109 ± 0.185 23.340 ± 0.320
567 2377 21.934 ± 0.039 14.698 ± 0.027 37.155 ± 0.369 27.324 ± 0.377
584 2653 21.881 ± 0.142 15.417 ± 0.127 33.913 ± 0.026 25.362 ± 0.091
596 2731 15.871 ± 0.035 11.258 ± 0.041 25.358 ± 0.227 18.777 ± 0.137
Mean 19.048 ± 0.061 13.503 ± 0.053 32.029 ± 0.156 23.833 ± 0.162

error is the missing data, as shown in the predictions after the missing
data in Figure 6. Finally, a slight time delay is observed in the pre-
diction curve, and it is also a problem for most prediction methods.

The CGM measurements contain noise because of physical inter-
ference. We used the GPR model to detect and reconcile CGM out-
liers to the greatest extent. However, only some severe outliers were
detected and reconciled because there was no judgment standard for
outliers. There are still many outliers in the raw CGM data, which
is very unfavorable for the prediction model learning. Therefore, de-
noising CGM and obtaining high-quality data is very important to
improve the performance of the prediction model.

Figure 6. Prediction performance in case of missing data

6 CONCLUSION
In this paper, the MS-LSTM network is developed to adaptively char-
acterize high-dimensional temporal dynamics and extract the long-
term and short-term features of glucose fluctuation. Meanwhile, a
multi-lag structure is designed for multiple variables, which can ex-
tract the dependence between different variables and blood glucose
fluctuations more effectively. The long-term sparse temporal data is
encoded and compressed to suitable for efficient learning with the
model. The mean value of the RMSE for 6 subjects is 19.048, with
standard deviation equals to 0.061 in 30-minute PH. Missing data
and rapid fluctuations in blood glucose levels are the two main fac-
tors that affect the prediction performances of the model.
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Abstract. In this paper we present results for the Blood Glucose
Level Prediction Challenge for the Ohio2020 dataset. We have used
four variants of genetic programming to build white-box models for
predicting 30 minutes and 60 minutes ahead. The results are com-
pared to classical methods including multi-variate linear regression,
random forests, as well as two types of ARIMA models. Notably,
we have included future values of bolus and basal into some of the
models because we assume that these values can be controlled. Addi-
tionally, we have used a convolution filter to smooth the information
in the bolus volume feature. We find that overall tree-based GP per-
forms well and better than multi-variate linear regression and random
forest, while ARIMA models performed worst on the here analyzed
data.

1 INTRODUCTION

This paper describes our contribution to the Blood Glucose Level
Prediction Challenge (BGLPC) for the Ohio2020 dataset described
in [15]. We present a comparison among different algorithmic tech-
niques related to linear regression applied to this glucose prediction
problem, where we highlight four of them, based on tree-based Ge-
netic Programming (GP) [14]: GP, GP with offspring selection [1]
(GP-OS); and a single-objective as well as a multi-objective vari-
ant of Grammatical Evolution[16] denoted as GE and MOGE. In ad-
dition, we present three approaches based on classical methods. In
particular, we consider Random Forest [2], denoted as RF, a multi-
variate linear regression, denoted as LR, and two ARIMA models
[18], denoted as A-0 and A-1. All the methods will be briefly de-
scribed in the following section, as well as the pre-processing of data
we have performed. In data pre-processing several features where de-
rived from exising data and added to the dataset. The experimental
results will be analyzed in Section 3. We use root mean squared er-
ror (RMSE) and mean absolute error (MAE) as metrics to measure
the accuracy of our results. Finally, the conclusions will be drawn in
Section 4.
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2 ALGORITHMIC PROPOSAL

2.1 Data pre-processing

Data pre-processing proved to be challenging in this competition as
the exact rules of the competition were rather opaque especially re-
garding usage of future information and the difference between the
online and the offline case. The main pitfalls were: (i) the set of fea-
tures is different for the six data contributors, (ii) different sampling
rates for features, (iii) variance in the duration between sampling val-
ues (e.g. blood glucose values are usually sampled every five minutes
but not always), (iv) some missing values are encoded as zeros (e.g.
zero values for skin temperature).

In the ARIMA model we only used the glucose level. For all the
other models we used the following data pre-processing steps. We
prepared a Python script that we used for pre-processing training as
well as testing data. We used only the set features which are available
for all data contributors even though we built six individual models.
Correspondingly, we only used the following features: glucose level,
basal, bolus type, bolus dose, galvanic skin response (gsr), and skin
temperature. We used numerical encoding to encode the categorical
variable bolus type. For the skin temperature we removed all zeros
values. For the basal value we replaced all missing values with zeros.

We incorporated lagged variables for our models (e.g. the glucose
level five minutes ago). For this, we extended our dataset with lagged
features, whereby we used a maximum lag of two hours. So, for each
feature we produced 24 (120 min / 5 min) additional features. Hence,
we require values at multiples of five minutes. This is not the case
in the provided datasets. Therefore, we first prepared a intermediate
larger dataset with one row for every minute (equidistant sampling).
In this dataset, we had to fill missing values for glucose level, gal-
vanic skin response, and skin temperature. For the training data we
used linear interpolation to fill these gaps, for the test data we used
the last known value, since future values should not be used to predict
the glucose value. Using the sub-sampled and interpolated dataset
we prepared the lagged features and finally we reduced the number
of rows again by keeping only rows where we have a target glucose
value (either 30 or 60 minutes ahead).

In our modelling efforts for GP and GP-OS, we assume that the
basal value as well as the bolus type and dose can be controlled ex-
ternally. This assumes an application of the model as part of a model-
predictive controller for an insulin pump, whereby the goal is to op-
timize the automatic administration of insulin. Therefore, we have
included “future information” for the blood glucose prediction. The
variables that we assume to be controlled and known are: basal, bolus
type, and bolus dose. For these variables we included forward look-



ing features up to the prediction horizon (6 features for 30 minutes
and 12 features for 60 minutes).

Finally, we added features for smoothed bolus dose values using
a convolution process. Even though the bolus dose is administered
almost instantaneously, the effect is not immediate. Instead, the un-
derlying dynamic uptake process has a longer-lasting diminishing ef-
fect. We used a convolution function (Bateman function) to produce
smoothed features for the bolus dose. For this smoothed bolus dose
we also prepared lagged features (backwards and forwards) using the
same scheme as described above.

2.2 Algorithms

After pre-processing the data as described above, we used machine
learning methods to find models that describe future values of glu-
cose after 30 minutes, ĝt+30 and after 60 minutes, ĝt+60, as a func-
tion of basal value (bv), bolus dose (bd), basis GSR value (gsr), basis
skin temperature (sk), bolus type (bt) and glucose level (gl):

ĝt+30/t+60 = f(bv(t� 60...t), bd(t� 60...t), ...) (1)

We used seven different algorithms to model the function de-
scribed in Equation (1). Linear Regression (LR) and Random For-
est (RF) are well known methods that are used as benchmarks for
our models. Additionally, we used two GP, two GE algorithms, and
two ARIMA models to predict the glucose value. Next, we detail our
proposals5.

2.2.1 Genetic Programming

Symbolic regression (SR) is a specific method of regression anal-
ysis, where the model is represented as a closed-form mathematical
expression [14]. A unique characteristic of SR is that the model struc-
ture does not have to be pre-specified. Instead, a SR solver (i.e. GP)
automatically constructs mathematical expressions from the set of
input variables (with their respective allowed time offsets) as well as
mathematical operators and functions.

We use genetic programming (GP), an evolutionary technique that
iteratively produces solutions for a given optimization problem. GP
is specifically designed to find programs that solve given tasks; when
applied to SR, these programs are formulas that are based on of
mathematical operators, variables, and constants. Being an evolu-
tionary algorithm, GP initially creates a randomly set of formulas
and then, over many generations, produces new formulas by means
of crossover and mutation operators. The improvement of these for-
mulas is reached by selection operators: in each generation the par-
ents for the new solution candidates are selected, and new individuals
can be inserted into the next generation either automatically or only
if they are selected by some kind of offspring selection. We used
the GP implementation in HeuristicLab 6 and created models with
a maximum size of 100 nodes and ten levels. We used GP in two
different variants:

• Standard GP (GP): 1000 individuals, tournament selection as par-
ent selection mechanism, elitism, termination criterion: 1000 gen-
erations.

5 Source files are available under request at absys@ucm.es
https://drive.google.com/drive/folders/
1TOGvl55iR10aqRFO8GoD2v6TQD4djiCE?usp=sharing

6 https://dev.heuristiclab.com

• Offspring selection GP (OSGP): 1000 individuals, random par-
ents selection, strict offspring selection (i.e., individuals are sent
to the next generation if they are better than their parents [1]),
elitism, termination criterion: maximum selection pressure 200
(i.e., as soon as the number of individuals that have to be cre-
ated so that 1000 successful ones are found in one generation has
reached 200000).

2.2.2 Grammatical Evolution

Grammatical Evolution (GE) [16] is a variant of GP which uses chro-
mosomes to encode the information of the individuals (trees). In GE,
a grammar is applied to perform the decoding process that generates
the trees which, in this case, will be the mathematical expressions
that represent prediction models of glucose values. Given that this
method uses chromosomes, it allows the application of classical ge-
netic operators such as crossover or mutation directly at the chromo-
some level, instead of the tree level, as happens in GP. We evaluate
two GE proposals:

• Standard GE: we follow the same implementation and grammars
of [12].The GE approach only considers one objective function,
which will be either RSME or MAE. We present here only the
results with RMSE, since they are significantly better with the pa-
rameters used.

• Multi-Objective GE (MOGE): we propose a multi-objective im-
plementation of GE where the underlying algorithm is the well-
known NSGA-II [9]. The MOGE approach considers RSME as
one of the objective functions and a custom objective function
called FCLARKE as the second objective. FCLARKE is based
on the Clarke Error Grid (CEG) metric, and was defined as shown
in Equation (2). In the expression, |E| represents the number of
points that belong to zone E of CEG, which is the most dangerous
one for the patient, |D| corresponds to the second most dangerous
zone, D, and |C| corresponds to zone C. Zone B was not included
in the formula because it represents a not very dangerous zone,
and A corresponds to the safe zone. A more detailed explanation
of FCLARKE can be found in [7].

. FCLARKE = 100 · |E|+ 10 · |D|+ |C| (2)

Prediction models with GE use information of the previous 60
minutes while MOGE models can use data from the previous two
hours. Additional configurations will be explored and presented at
the workshop. In all the experiments, both GE and MOGE, we per-
form 10 runs with 400 individuals over 1000 generations, random
initialization of the population (half-ramped) allowing a maximum
number of 5 wrappings using a crossover probability of 0.7 and a
mutation probability of 0.1. Executions were run on our Pancreas
Model Tool described in [13]. Unlike the GP description above, with
the two GE variants we only use information of the past and present.
We did not use all the generated features, but only those of every
15 minutes before. So, we use historical data from 120, 105, 90, 75,
60, 45, 30 and 15 minutes ago for MOGE and 60, 45, 30 and 15
for GE. We only consider the glucose level, basal, bolus type, bo-
lus dose, galvanic skin response, and skin temperature variables. We
would like to highlight that recent papers that combines GE with
other techniques, such as, data augmentation [17], random GE and
bagging [11] or clustering [8] achieved better results than the GE
configurations studied in this paper. We limit GE in order to follow
the instructions of the Challenge.
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2.2.3 ARIMA model

In addition to the GP and GE models, we have also fitted two auto-
regressive integrated moving average, ARIMA(p, d, q) models to es-
timate glucose values. Equation (3) presents the expression of an
ARIMA(p, d, q) model where gs is the actual value of the glucose
and ✏s is the random error at sample s, respectively, while p, q, and d
integers called the orders of the model. All our models only include
glucose values and do not use exogenous variables such as insulin
doses or carbohydrates.
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We evaluate both off-line and on-line models. The off-line mod-
els are created using the training data for each patient. We define
192 models by sweeping the three ARIMA parameters as follows.
The auto-regressive order ranges in p 2 [2, 10], the moving average
q 2 [2, 10], and the integrative part uses the values d 2 [0, 1], so
that 9⇥ 9⇥ 2 = 192. The basics behind the election of these ranges
is that the model takes into account glucose values up to 10 samples
(50 minutes) previous to the current time. The model’s coefficients
–up to p + q + d coefficients per model– are estimated using max-
imum likelihood given the univariate glucose time series, gs, on the
complete training dataset for each patient. Once the 192 models have
been estimated, we select two models per patient: the model with
the lowest RMSE at 30-minutes horizon and the one with the lowest
RMSE at 60 minutes.

Regarding on-line models, with each new glucose value in the test-
ing dataset, the procedure defines a 4-hour time window using the last
48 samples –including the last one–, and it estimates the 192 ARIMA
models over the time window using maximum likelihood. Again, the
192 models are created by sweeping the three ARIMA parameters, as
stated above. Next, we select the best model. Unlike off-line models,
now we cannot use future glucose values to select the model that will
provide the lowest RMSE in the future. Hence, we select the current
best model based on the history of the best models up to the cur-
rent sample. We have evaluated four different criteria to choose the
best model for 30-minutes predictions and six criteria for 60-minute
predictions.

• We select the values of (p, q, d) of the model with the lowest ab-
solute error 30 minutes ago to create the current model for 30-
minutes and 60-minutes predictions. Note that given the current
glucose value, we know the model with the lowest error 30 min-
utes ago.

• We select the values of (p, q, d) of the model with the lowest ab-
solute error 60 minutes ago in the prediction of the current glucose
to create the current model for a 60-minutes prediction.

• We select the values of (p, q, d) of the off-line model for 30-
minutes and 60-minutes predictions.

• We define an “ensemble” ARIMA averaging the value of p and q
for the six best models 30, 35, 40, . . . , and 55 minutes ago. We
use the rounded averaged values of p and q to create the current
model for 30-minutes and 60-minutes predictions.

• Similar approach than the previous item, but we average the pa-
rameters of the six best models 60, 65, . . ., and 85 minutes ago.
We use the rounded averaged values of p and q to create the cur-
rent model for a 60-minutes prediction.

• We select the model with the lowest Akaike Information Criterion
(AIC) value to estimate both, 30-minutes and 60-minutes predic-
tions. AIC is a criteria to compare models with different number

of parameters and select the models with better trade-off between
goodness-of-fit and the number of parameters of the model, a.k.a
parsimony.

In some cases, the procedure cannot bring the best model because
the parameters that provided the best estimation either 30 minutes or
60 minutes ago cannot produce a stable ARIMA model in the current
time. Due to this fact, the overall best-performing criteria is to choose
the current ARIMA model using the Akaike Information Criterion.

3 EXPERIMENTAL RESULTS

Table 1 presents the experimental results in terms of RMSE and
MAE for all the algorithms and for both 30 and 60 minutes pre-
diction horizons. For GP, GP-OS, and GE, predictions are obtained
with the models that obtained the lowest RMSE value in the train-
ing phase after 10 runs. The remaining 9 models were not evaluated
nor reported. For the MOGE, also 10 run were made in the training
phase, and from all the solutions of the 10 Pareto fronts, we also se-
lected the model with RMSE value, independently of the value of
the FCLARKE . Results represent the values for the predictions of
this selection. GE and MOGE were run just with the configuration
explained on section 2.2.2 and no parameters optimization was per-
formed.

Regarding GP and GP-OS results on table 1 may differ from those
reported in the submitted files. After analyzing the results we no-
ticed that at the beginning and the end of the data our results are
fluctuating. A few high and low predicted glucose values influence
the quality of the results a lot. We decided to remove those unnatural
values by more likely results (lower boundary: 40, upper boundary:
400). This procedure is only included in the results of this paper, not
in the submitted files.

#P RF GP GP-OS LR GE MOGE A-0 A-1
60 minutes - RMSE

540 44,06 37,13 39,97 38,87 41.16 40.94 47,26 57,40
544 28,08 28,45 28,77 28,40 33.46 29.64 35,61 45,63
552 27,24 26,08 25,91 28,90 31.04 29.85 27,18 34,39
567 37,76 35,99 35,82 36,19 39.68 37.82 47,53 51,16
584 38,11 37,84 34,63 37,12 38.17 37.84 41,05 48,03
596 29,58 27,56 27,12 27,77 30.31 28.65 33,33 42,36
Avg. 34,14 32,18 32,04 32,88 35.64 34.12 38,66 46,49

60 minutes - MAE
#P RF GP GP-OS LR GE MOGE A-0 A-1
540 31,62 27,83 30,33 29,65 32.01 31.76 31,71 39,35
544 20,37 20,13 20,35 21,17 26.77 22.50 23,38 29,96
552 20,47 19,78 19,51 22,42 23.56 23.08 15,28 19,56
567 27,65 26,06 25,87 27,14 30.26 28.50 30,60 35,11
584 29,18 27,45 26,09 27,74 29.08 28.82 26,24 32,83
596 21,70 20,26 20,07 20,89 22.82 21.27 21,44 21,44
Avg. 25,17 23,58 23,70 24,83 27.42 25.99 24,77 29,71

30 minutes - RMSE
#P RF GP GP-OS LR GE MOGE A-0 A-1
540 27,00 21,67 22,26 22,00 23.10 22.04 31,09 41,39
544 17,96 17,83 17,46 17,54 19.20 17.62 21,49 31,82
552 17,45 17,50 20,84 19,42 17.29 16.61 16,59 22,66
567 25,61 22,16 23,03 23,56 23.31 22.17 29,66 35,59
584 25,69 24,83 25,81 27,08 22.87 22.21 27,01 36,96
596 19,90 16,76 16,85 17,68 18.58 16.96 21,23 21,23
Avg. 22,27 20,13 21,04 21,22 20.73 19.60 24,51 31,61

30 minutes - MAE
#P RF GP GP-OS LR GE MOGE A-0 A-1
540 19,19 15,82 15,89 16,22 16.26 16.36 20,17 26,88
544 12,60 12,10 12,06 12,44 13.80 12.97 13,92 19,51
552 13,30 13,13 15,38 14,55 12.33 12.44 9,41 12,30
567 17,12 14,69 15,80 16,18 16.41 14.97 18,87 23,17
584 17,71 16,63 17,72 17,54 17.00 16.64 17,06 23,28
596 14,23 11,91 12,03 12,84 13.36 12.10 13,57 13,57
Avg. 15,69 14,05 14,81 14,96 14.86 14.25 15,50 19,79

Table 1. Quality of the models created for 30 / 60 minutes predictions. For
each modeling method we give error metrics (RSME, MAE) for 30 / 60

minutes predictions.
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Table 2 shows the percentage of predictions on zones of the Clarke
Error Grid [6] for both time horizons. Results are ordered by higher
%A, then higher %B, lower %E, lower %D and lower %C. The first
thing that can be said is that, in terms of CEG, 30 minutes is not
very hard to predict. Most of the algorithms achieved excellent re-
sults with less than 3% of the predictions in the dangerous zones.
For a prediction horizon of 60 minutes, all the machine learning tech-
niques obtained less than 5% of dangerous predictions, and GP ap-
proaches seems to be the best option. However, a deeper analysis
for statistical significance in required. First, we depict in figure 1 a

Algorithm %A %B %C %D %E
30 minutes

GP 88.03 10.43 0.25 1.45 0.02
GP-OS 86.40 11.97 0.17 1.54 0.02
LR 86.03 12.23 0.25 1.65 0.02
RF 85.25 12.57 0.45 2.10 0.00
MOGE 87.52 11.29 0.00 1.19 0.00
GE 86.46 12.69 0.03 0.82 0.00
A-0 84,93 13,90 0,33 0,83 0.07
A-1 77.91 19.66 1.60 0.64 0.20

60 minutes
GP 69.90 26.56 0.26 3.32 0.03
GP-OS 69.90 26.73 0.21 3.13 0.05
LR 67.35 28.76 0.35 3.60 0.03
RF 67.57 28.73 0.30 3.61 0.00
MOGE 64.27 31.15 0.29 4.31 0.00
GE 60.82 34.66 0.29 4.24 0.00
A-0 62.25 36.08 1.66 1.66 0.36
A-1 54.37 39.53 4.50 0.97 0.63

Table 2. Average percentage of predictions on zones of the Clarke Error
Grid [6] for both time horizons. Results are ordered by higher %A, then

higher %B, lower %E, lower %D and lower %C.

graphical ranking (in terms of RMSE) of all the algorithms for each
patient and for 30 a 60 minutes prediction horizons. Each algorithm
is represented by its acronym and a different color, the closer the po-
sition to the name of id of the patient, the better, i.e the lower RMSE
on test files. GP is the best for all the patients in 30 minutes and for
4 out of 6 in 60 minutes. Looking for statistical significance, the first

Figure 1. A graphical view of the ranking of each algorithm for each
patient dataset. Clearly GP approach is the best as a general rule in terms of

RMSE.

plots we created are density plots, using a kernel density estimation
(KDE) of the distribution of the samples to visualize it. The objec-
tive is to visualize if the data meets the conditions for a parametric
test, which is not the case. Figure 2 shows that the data is not dis-
tributed according to a Gaussian distribution and, nor the variance
is the same for all the algorithms. Data distribution is multi-modal
and a non-parametric test is necessary. All the plots were obtained
with [4]. We use the graphical representation of the Nemenyi test
[10], that compares all the algorithms pairwise. This non parametric
test is based on the absolute difference of the average rankings of
the predictors. For a significance level ↵ = 0.05 the test determines
the critical difference (CD) and if the difference between the average
ranking of two algorithms is grater than CD, then the null hypothe-

Figure 2. Density plots of the distribution of the RMSE results for all the
algorithms for 30 minutes (left). The distribution are clearly multi-modal and

a non parametric test is recommended. Similar plots were obtained for 60
minutes (right) and for MAE.

sis that the algorithms have the same performance is rejected. Fig-
ure 3 shows the graphical comparison where statistical differences
are demonstrated to be significant. Finally we follow the Bayesian

Figure 3. Nemenyi test for all the algorithms and RMSE (30 min, left, 60
min right) using the graphical representation of [10].

model of [3, 5] based on the Plackett-Luce distribution over rankings
to analyse multiple algorithms in multiple problems. Figure 4 shows
that GP and MOGE have the highest probability of being the best for
30 minutes, however there is not clear evidence for 60 minutes.

Figure 4. Bayesian model of [5] to analyse the algorithms in the set of
patients and RMSE. Figure represents the probability of being the best and

its standard deviation.(30 min, left, 60 min right)

4 CONCLUSION

The competition proved to be a very good test-bed for the mod-
elling approaches as it is concerned with real-world data. The large
amount of data for training proved to be challenging. For instance the
ARIMA training process took several days to complete.

The decision made by the organizers of the competition to disal-
low usage of all future data is in our point of view not ideal. If we
want to use prediction models for optimal blood glucose control it
is necessary to assume that we can control the bolus and basal for

4



the forecasting horizon. Of course, a large amount of uncertainty re-
mains because of unknown events in the forecasting horizon such as
meals and higher activity or stress levels.

It would be interesting to try to improve the models by using all
the available data for each data contributor. We only used the inter-
section of features available in all data sets which however limits the
potential for specialization of models to individuals.
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Multi-lag Stacking for Blood Glucose Level Prediction
Heydar Khadem1 and Hoda Nemat1 and Jackie Elliott2 and Mohammed Benaissa1

Abstract. This work investigates blood glucose level prediction
for type 1 diabetes in two horizons of 30 and 60 minutes. Initially,
three conventional regression tools—partial least square regression
(PLSR), multilayer perceptron, and long short-term memory—are
deployed to create predictive models. They are trained once on 30
minutes and once on 60 minutes of historical data resulting in six ba-
sic models for each prediction horizon. A collection of these models
are then set as base-learners to develop three stacking systems; two
uni-lag and one multi-lag. One of the uni-lag systems uses the three
basic models trained on 30 minutes of lag data; the other uses those
trained on 60 minutes. The multi-lag system, on the other hand, lever-
ages the basic models trained on both lags. All three stacking systems
deploy a PLSR as meta-learner. The results obtained show: i) the
stacking systems outperform the basic models, ii) among the stacking
systems, the multi-lag shows the best predictive performance with a
root mean square error of 19.01 mg/dl and 33.37 mg/dl for the pre-
diction horizon of 30 and 60 minutes, respectively.

1 INTRODUCTION

Diabetes mellitus is a metabolic disorder and a significant cause
of morbidity and mortality worldwide [1]. As yet, there is no cure
developed for diabetes; and management of the corresponding life-
impeding conditions is recommended as the most successful way to
control the disease [6]. In fact, the occurrence of the associated com-
plications can be suspended or even prevented by effective manage-
ment of the disease [11].

Among different types of diabetes, the importance of the self-
management for type 1 diabetes mellitus (T1DM) is accentuated
[8, 19]. The key factor in T1DM management is to control the blood
glucose level (BGL) within the normal range [2]. BGL predictive
models could contribute to achieving this goal. They can help avert
adverse glycaemic events by forecasting them and giving patients the
chance to take corrective actions ahead of time [2].

The importance of the development of BGL predictive models in
T1DM management has spurred research into this field [16, 22]. Ac-
cording to the knowledge requirement, predictive models can be clas-
sified as; physiological, data-driven, and hybrid models [21]. Data-
driven models interpret trends in sequences of data to make esti-
mations of future BGLs. Machine learning approaches are broadly
adopted in this area [21].

Mirshekarian et al. [17] developed a model to predict blood glu-
cose in 30-minute and 60-minute horizons using a recursive neural
network (RNN) with long short- term memory (LSTM) units. The

1 Department of Electronic and Electrical Engineering, Univer-
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model explored BGL, insulin, food, and activity information as in-
puts. For the same prediction horizons, Bertachi et al. [4] and Georga
et al. [9], in separate studies, proposed predictive models. Bertachi
et al. applied an artificial neural network contemplating glucose, in-
sulin, carbohydrate and physical activity as inputs for their system.
BGL profile, insulin, carbohydrate intake and physical activity were
inputs for a support vector regression (SVR) in the model developed
by Georga et al. Investigating continuous glucose monitoring (CGM)
data by recursive and direct deep learning approaches, Xie et al. [22]
recommended a model for BGL prediction. Martinsson et al. [15]
proposed an automatic forecast model for a prediction horizon of up
to 60 minutes using RNN. The model used only the information from
past BGLs as input. Bunescu et al. [7] created descriptive features to
train a SVR using a physiological model of blood glucose dynamics.
Carbohydrate intake, insulin administration, and the current and past
BGLs were inputs of their model. Despite extensive research devoted
to the development of predictive models, the performance of the pro-
posed models remains a challenge [3].

In this work, we contributed to the improvement of BGL pre-
diction for T1DM by applying a multi-lag stacking methodology.
Initially, three conventional regression tools—partial least squares,
multilayer perceptron, and long-short term memory—were applied
to forecast BGLs in horizons of 30 and 60 minutes. Each tool was
trained twice; once on a lag of 30 minutes and once on a lag of 60
minutes of CGM data. Therefore, six basic models were created for
each prediction horizon. For each horizon, three stacking systems
were then developed where predictions from a selection of the basic
models were used as features to train a new regression. The first two
stacking systems followed a uni-lag approach. They used predictions
from the three base models trained on a history of 30 minutes and 60
minutes, respectively. The third system was multi-lag and used pre-
dictions from all six base models. The stacking systems resulted in
appreciable improvements in predictive accuracy as compared to the
basic predictive models. The third stacking system showed a predic-
tive performance better than the other systems.

This is the first paper, to our knowledge, that has combined mod-
els with different time-lags to generate a multi-lag BGL prediction
system.

2 DATASET

The Ohio T1DM dataset comprises several features collected from
12 individuals with type 1 diabetes in 8 weeks [14, 13]. The last
ten days’ worth of data for each contributor was considered as the
test set. Data for a cohort of six subjects was released in 2018 for the
first BGL prediction challenge [14]; data for another six subjects was
released in 2020 for the second challenge [13].

In this work, the 2020’s data was investigated for developing and
evaluating predictive models. Among the collected features were



CGM data every 5 minutes, which was the only feature explored in
this work. A brief description of the CGM data in the Ohio T1DM
dataset released for 2020 BGL prediction challenge is displayed in
Table 1.

Table 1. Number of test and training examples of each participant in Ohio
T1DM dataset released in 2020 [13].

Patient Number of Training Number of Test
ID Examples Examples
540 11947 2896
544 10623 2716
552 9080 2364
567 10858 2389
584 12150 2665
596 10877 2743

3 METHODS
As mentioned earlier, this work proposes methodologies to predict
BGL in horizons of 30 and 60 minutes. The detail of the pursued
methodologies is presented in this section

3.1 Pre-processing
The first pre-processing task was taking care of missing data. Miss-
ing data in the training set was imputed applying a simple linear in-
terpolation. Alternatively, for the test set, a linear extrapolation was
employed. This was to ensure the model is not contaminated by ob-
serving future data in its pre-processing stage.

The next pre-processing step was transferring the time series fore-
casting problem to a supervised learning task. To this end, a rolling
window consisting of a lag and future data was used as explanatory
and dependent variables respectively. To give an illustration, for fore-
casting BGL of 30 minutes later using a history of 60 minutes, for
example, we used a window with the length of 18. As a consequence
of the 5-minute interval between data points, it therefore follows that
the first 12 data points in the window were explanatory variables, and
the rest were dependent variables.

3.2 Prediction methods
First, six basic predictive models were created by means of three con-
ventional regression tools. Subsequently, employing stacking learn-
ing, three more advanced predictive systems were developed where a
collection of the basic models were considered as base-learners and
a partial least squares regression as meta-learner. All proposed mod-
els/systems were personalised to individuals.

3.2.1 Basic models

Initially, for each prediction horizon of 30 and 60 minutes, the fol-
lowing three conventional regressions tools were employed to gen-
erate six basic predictive models—two models by each tool. For this
purpose, these tools were trained once on a history of 30 and once on
a history of 60 minutes.

• Partial least squares regression (PLSR)
PLSR, as a basic linear regression, holds substantial popularity
in different applications due to its easy-to-apply nature and mini-
mal computation time requirement. In a previous work, we applied

PLSR for glucose quantification which provided promising results
[12].
In this work, PLSR was used as one of the regression tools. For
the number of components, different values ranging from 1 to the
length of the input variable were tried. Each time, the predicted
residual sum of squares (PRESS) was calculated as follows. The
number of components (A) resulting in the minimum value for
PRESS/(N �A� 1) was then selected [20].

PRESS =

NX

i=1

(yi � ŷi)
2 (1)

where, N is the size of the evaluation set , yi is reference value,
and ŷi is predicted value.

• Multilayer perceptron (MLP)
An MLP [18] with an architecture of one hidden layer including
100 nodes and an output layer was implemented. ReLU was used
as the activation function for he hidden layer, Adam as the opti-
miser, and mean absolute error as the loss function. Learning rate
was 0.01, and the training process was based on 100 epochs.

• Long short-term memory (LSTM)
We used a Vanila LSTM [10] composed of a single hidden LSTM
layer with 200 nodes, a fully connected layer with 100 nodes, and
an output layer. ReLU was the activation function for both hidden
layers, mean squared error was the loss function, and Adam was
the optimizer. The model trained on 100 epochs with a learning
rate of 0.01.

3.2.2 Stacking systems

Ensemble learning is a machine learning technique that combines
decisions from several models to create a new model. Stacking (Fig-
ure 1) is an ensemble approach that uses predictions from multiple
base-learners (first level models) as features to train a meta-learner
(second level model). This meta-learner then makes the final predic-
tions on the test set [23].

Figure 1. A stacking system uses predictions from multiple base-learners
as features to train a meta-learner[5] .

In this paper, for each prediction horizon of 30 and 60 minutes,
three stacking systems comprised of two uni-lag and one multi-lag
were developed.

• System 1
The three basic models trained on a history of 30 minutes were
the base-learners of this uni-lag system and a PLSR was its meta-
learner.



• System 2
This system was also uni-lag. It was similar to system 1, except it
used the three basic models trained on a history of 60 minutes in
place of 30 minutes as base-learners.

• System 3
In this multi-lag system, all the six basic models were considered
as the base-learners and again a PLSR was the meta-learner. By
performing a multi-lag approach the idea was to help capture a
broader frequency range of BGL dynamics.

3.3 Evaluation

The test set was held out, and the train set was used to create the
predictive models/systems. The developed models/systems were then
utilised to predict the test data. The set of evaluation points starts 60
minutes after the beginning of the test set. First evaluation points
would be otherwise similar to the training data, and it can affect the
reliability of the results. Hence, the number of evaluated points for
each patient is 12 less than the number of test examples mentioned
in Table 1. Root mean square error (RMSE) and mean absolute er-
ror (MAE) were calculated as follows and then used as evaluation
metrics.

RMSE =

rP
N

i=1
(yi � ŷi)2

N
(2)

MAE =

P
N

i=1
|yi � ŷi|
N

(3)

where, N , yi , and ŷi carry the same definition as in (1).

4 RESULTS AND DISCUSSION

This section presents the evaluation results for both the basic mod-
els and stacking systems. Models/systems with a performance de-
pended on random initialization ran five times, and corresponding
results have been reported in the form of mean and standard devia-
tion. Extrapolated points were excluded when calculating the eval-
uation metrics. All models were built to predict future BGLs up to
the end of the intended prediction horizon, but only the evaluation
results for the horizon of interest are reported.

4.1 Prediction horizon of 30 minutes

4.1.1 Basic models

The results of the RMSE and MAE of the basic predictive models for
the prediction horizon of 30 minutes are displayed in Table 2.

Based on the average of RMSE and MAE for all patients, LSTM
trained on a history of 30 minutes showed the best performance
among the basic models. PLSR with 60-minute lag was the second-
best model. All models had satisfactory standard deviations.

LSTM yielded the best overall predictive accuracy among the three
regression tools. However, the results of the other two tools were also
comparable to that of LSTM. It is worth remarking that PLSR, as a
linear regression tool, was able to generate results comparable to that
of LSTM and even better than that of MLP.

Among all patients, patient 552 had the best overall evaluation
results. The worst results, on the other hand, belonged to patients
584 and 540.

Table 2. Evaluation results of the basic predictive models for a 30-minute
prediction horizon.

Patient Basic History RMSE MAE
ID Model (min) (mg/dl) (mg/dl)

540

PLSR 30 22.11 16.58
60 22.07 16.56

MLP 30 21.98 ± 0.48 16.52 ± 0.33
60 22.52 ± 0.78 16.76 ± 0.62

LSTM 30 21.65 ± 0.28 16.06 ± 0.12
60 21.58 ±0.67 16.20 ± 0.61

544

PLSR 30 18.08 13.34
60 18.09 13.33

MLP 30 18.22 ± 0.18 13.38 ± 0.37
60 18.25 ± 0.28 13.21 ± 0.35

LSTM 30 17.63 ± 0.15 12.63 ± 0.10
60 18.42 ± 0.60 13.36 ± 0.44

552

PLSR 30 16.76 12.76
60 16.79 12.78

MLP 30 17.08 ± 0.36 12.91 ± 0.40
60 17.03 ± 0.34 12.77 ± 0.17

LSTM 30 16.49 ± 0.10 12.29 ± 0.24
60 17.06 ± 0.70 12.88 ± 0.51

567

PLSR 30 20.98 15.12
60 21.00 15.07

MLP 30 21.24 ± 0.70 15.42 ± 0.76
60 21.10 ± 0.46 15.13 ± 0.58

LSTM 30 20.66 ± 0.16 14.79 ± 0.25
60 20.77 ± 0.36 14.72 ± 0.40

584

PLSR 30 22.00 16.15
60 21.97 16.12

MLP 30 21.67 ± 0.18 15.63 ± 0.16
60 22.43 ± 0.48 16.35 ± 0.61

LSTM 30 22.23 ± 0.70 16.33 ± 0.67
60 22.04 ± 0.22 16.11 ± 0.28

596

PLSR 30 17.79 12.77
60 17.62 12.67

MLP 30 17.74 ± 0.04 12.55 ± 0.05
60 18.44 ± 0.26 13.49 ± 0.42

LSTM 30 17.76 ± 0.67 12.74 ± 0.55
60 17.71 ± 0.28 12.50 ± 0.33

Average

PLSR 30 19.62 14.45
60 19.59 14.42

MLP 30 19.65 ± 0.32 14.40 ± 0.35
60 19.96 ± 0.43 14.62 ± 0.46

LSTM 30 19.40 ± 0.34 14.14 ± 0.32
60 19.60 ± 0.47 14.30 ± 0.43



4.1.2 Stacking systems

Table 3 shows the evaluation results of the stacking systems for a
prediction horizon of 30 minutes. For all patients, the performance
of the stacking systems surpassed that of the basic models. System
3 proposed the best predictions overall based on average RMSE and
MAE values. This system resulted in the best predictive accuracy
for all patients except patient 544 and 584. All systems possessed
small standard deviation values. The best result among all patients
belonged to patient 552. The worst results, on the other hand, were
those of patients 584, 540, and 567.

Table 3. Evaluation results of the stacking systems for a 30-minute
prediction horizon.

Patient Stacking RMSE MAE
ID System (mg/dl) (mg/dl)

540
System 1 21.13 ± 0.08 15.72 ± 0.10
System 2 21.11 ± 0.18 15.69 ± 0.14
System 3 20.93 ± 0.11 15.52 ± 0.13

544
System 1 17.47 ± 0.05 12.50 ± 0.05
System 2 17.92 ± 0.10 12.93 ± 0.08
System 3 17.52 ± 0.05 12.50 ± 0.07

552
System 1 16.29 ± 0.06 12.13 ± 0.06
System 2 16.43 ± 0.12 12.33 ± 0.16
System 3 16.21 ± 0.09 12.08 ± 0.08

567
System 1 20.43 ± 0.07 14.47 ± 0.06
System 2 20.51 ± 0.14 14.51 ± 0.16
System 3 20.43 ± 0.06 14.41 ± 0.06

584
System 1 21.61 ± 0.06 15.68 ± 0.04
System 2 21.83 ± 0.14 15.86 ± 0.08
System 3 21.75 ± 0.08 15.76 ± 0.07

596
System 1 17.26 ± 0.03 12.19 ± 0.03
System 2 17.47 ± 0.15 12.25 ± 0.11
System 3 17.22 ± 0.10 12.09 ± 0.04

Average
System 1 19.03 ± 0.06 13.78 ± 0.06
System 2 19.21 ± 0.14 13.93 ± 0.12
System 3 19.01 ± 0.08 13.73 ± 0.07

4.2 Prediction horizon of 60 minutes

4.2.1 Basic models

Table 4 lists RMSE and MAE of the basic models for 60-minute pre-
diction horizon. Among all models, LSTM trained on a lag of 30 min-
utes showed the best performance. MLP trained on 300 minutes was
the second high-performance model. The value of standard deviation
for all models were satisfactory. Among the implemented regression
tools, LSTM resulted in the highest overall prediction accuracy. PLSR
produced acceptable results in this case too. Data for patients 596 and
552 showed the highest overall predictability. In, contrast, patients
540, 567, and 584 had the lowest predictable data.

4.2.2 Stacking systems

Evaluation results of the stacking systems for a prediction horizon
of 60 minutes are displayed in Table 5. System 3 proposed the best
overall predictions based on average RMSE and MAE values. The
best result among all patients belonged to patient 596. All systems
had low values of standard deviation.

Table 4. Evaluation results of the basic predictive models for a 60-minute
prediction horizon.

Patient Basic History RMSE MAE
ID Model (min) (mg/dl) (mg/dl)

540

PLSR 30 41.03 31.68
60 41.03 31.70

MLP 30 40.20 ± 0.38 30.90 ± 0.21
60 41.94 ± 2.18 32.14 ± 1.53

LSTM 30 40.36 ± 0.91 30.80 ± 0.64
60 39.65 ± 1.16 30.28 ± 0.84

544

PLSR 30 31.80 24.71
60 31.83 24.71

MLP 30 31.58 ± 0.53 24.19 ± 0.99
60 32.15 ± 0.63 24.13 ± 0.83

LSTM 30 30.61 ± 0.19 22.97 ± 0.26
60 31.79 ± 0.31 24.57 ± 0.73

552

PLSR 30 30.23 23.67
60 30.24 23.68

MLP 30 30.14 ± 0.09 23.27 ± 0.24
60 30.59 ± 1.01 23.65 ± 0.63

LSTM 30 29.84 ± 0.25 22.52 ± 0.29
60 31.36 ± 1.43 23.72 ± 1.77

567

PLSR 30 37.47 28.28
60 37.53 28.24

MLP 30 36.81 ± 0.28 27.52 ± 0.50
60 37.73 ± 1.28 28.57 ± 1.35

LSTM 30 36.56 ± 0.17 27.58 ± 0.28
60 37.17 ± 0.58 27.90 ± 0.72

584

PLSR 30 36.71 27.65
60 36.84 27.75

MLP 30 36.32 ± 0.59 26.95 ± 0.66
60 37.35 ± 0.82 27.82 ± 0.92

LSTM 30 37.14 ± 0.98 28.03 ± 1.14
60 37.03 ± 0.99 27.42 ± 0.54

596

PLSR 30 29.63 22.05
60 29.48 21.97

MLP 30 29.68 ± 0.27 21.87 ± 0.31
60 29.97 ± 0.39 22.08 ± 0.39

LSTM 30 28.98 ± 0.29 21.14 ± 0.19
60 29.71 ± 0.72 22.09 ± 0.80

Average

PLSR 30 34.48 26.43
60 34.55 26.34

MLP 30 34.12 ± 0.36 25.78 ± 0.49
60 34.95 ± 1.05 26.40 ± 0.94

LSTM 30 33.92 ± 0.47 25.51 ± 0.47
60 34.45 ± 0.86 26.00 ± 0.90



Table 5. Evaluation results of the stacking systems for a 60-minute
prediction horizon.

Patient Stacking RMSE MAE
ID System (mg/dl) (mg/dl)

540
System 1 39.47 ± 0.17 30.10 ± 0.17
System 2 39.14 ± 0.28 29.76 ± 0.20
System 3 39.00 ± 0.20 29.65 ± 0.12

544
System 1 30.47 ± 0.10 22.92 ± 0.13
System 2 31.12 ± 0.12 23.72 ± 0.14
System 3 30.54 ± 0.09 22.95 ± 0.17

552
System 1 29.39 ± 0.15 22.39 ± 0.13
System 2 29.38 ± 0.20 22.46 ± 0.20
System 3 29.10 ± 0.13 22.10 ± 0.14

567
System 1 36.11 ± 0.11 27.08 ± 0.15
System 2 36.54 ± 0.14 27.36 ± 0.14
System 3 36.31 ± 0.14 27.09 ± 0.08

584
System 1 36.15 ± 0.16 27.04 ± 0.18
System 2 36.68 ± 0.19 27.43 ± 0.19
System 3 36.52 ± 0.10 27.30 ± 0.14

596
System 1 28.74 ± 0.16 20.84 ± 0.12
System 2 29.06 ± 0.21 21.13 ± 0.27
System 3 28.75 ± 0.10 20.78 ± 0.05

Average
System 1 33.39 ± 0.14 25.06 ± 0.15
System 2 33.65 ± 0.19 25.31 ± 0.19
System 3 33.37 ± 0.13 24.98 ± 0.12

5 CONCLUSION

BGL prediction improved using stacking learning concepts. Initially,
a time series problem was translated into a supervised learning task.
Three conventional regression tools were trained with on different
history length of 30 and 60 minutes, resulting in six basic predic-
tive models. Predictions from the basic models trained with a history
of 30 minutes were fed as features to a regression to build a com-
bined learner. The learner was then used to make final predictions on
the test set. The same scenario was repeated using the basic models
trained on 60-minute lag observations. In both cases, the combined
learner was able to make more accurate predictions on the test set.
The overall performance further improved when predictions from all
basic models—trained on both histories of 30 and 60 minutes—were
considered as features to train a new learner.

6 SOFTWARE AND CODE

For data analysis we used Python 3.6, TensorFlow 1.15.0 and
Keras 2.2.5. Pandas, NumPy and Sklearn packages of python
were used. The codes are available at: https://gitlab.com/
Heydar-Khadem/multi-lag-stacking.git
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Online Blood Glucose Prediction Using Autoregressive
Moving Average Model with Residual Compensation

Network
Ning Ma and Yuhang Zhao and Shuang Wen and Tao Yang and Ruikun Wu

and Rui Tao and Xia Yu and Hongru Li1

Abstract. Blood glucose (BG) prediction plays an important role
in daily BG control. Accurate prediction of short-term glucose con-
centration can provide early warning for hyperglycemia and hypo-
glycemia events. This paper proposed a novel framework that com-
bined an online prediction model with a residual compensation net-
work. The autoregressive moving average (ARMA) model was used
for online blood glucose prediction and the neural network was ap-
plied for compensation of prediction error. The advantages of this
combined framework are: (1) the online ARMA model is efficient
and robust to capture time-varying glucose dynamics, (2) the resid-
ual compensation network is capable to estimate errors from the on-
line prediction model. The performance of this method was evaluated
by the root mean squared error (RMSE) and the mean absolute error
(MAE) in the dataset of OhioT1DM.The results were shown in detail
that the mean values of the best RMSE of six patients at 30-min and
60-min horizon were 20.03 and 34.89 respectively, and the best MAE
at 30-min and 60-min horizon were 14.52 and 24.61. Compared with
the ARMA model, the combined predictor with a residual compensa-
tion network shows better prediction accuracy. Thus, we concluded
that the proposed framework was an available approach for online
blood glucose level prediction (BGLP).

1 INTRODUCTION

Nowadays, daily BG management is a significant challenge for a pa-
tient with diabetes. Further improvement of glucose control can be
realized through prediction, which allows users to take actions ahead
of time to minimize the occurrence of adverse glycemic events [3].
Thus, accurate blood glucose prediction plays an important role in
blood glucose control. However, multiple factors influence glucose
variability and lead to different responses between individuals under
the same conditions. The prediction of short-term glucose concen-
tration has become an urgent problem for researchers. In the past,
various machine learning approaches were proposed to develop data-
driven glucose predictive models [22]. John et al. [13] used Recur-
rent Neural Networks that trained in an end-to-end fashion to predict
future blood glucose levels through historical blood glucose data.
Jaouher et al. [2] applied an Artificial Neural Networks model to
predict future blood glucose levels and hypoglycemic events of Type
1 Diabetes Mellitus (T1DM). The results proved that the model was
accurate, adaptive, and encouraging by clinical implementation. Rey-
mann et al. [19] trained a Support Vector Regression model with an

1 Northeastern University, China, email: lihongru@ise.neu.edu.cn

online software simulator. They provided the foundation for the fur-
ther development of the mobile prediction.

Nevertheless, every prediction algorithm has its own advantages
and disadvantages. The ARMA model can be constructed easily by
several steps, but they lack the ability to deal with the nonlinear pat-
terns [15]. Due to the extremely non-stationary characteristic of the
time series, the single artificial intelligence models sometimes stuck
into the local minimum and fail to achieve satisfactory performance.
With the development of equipment, the generation of data flow is
continuous. Tracking the time-varying characteristic of the system
is crucial. Regarding the non-stationary time series, most scholars
adopted one online learning method to model the complex system.
The input of the data can adjust the parameters of the model in real-
time [12]. The data of blood glucose is non-stationary, aperiodic, and
individuality. Therefore, the use of only one method for BG predic-
tion may give one-sided results [14]. We need to combine various
prediction methods to cover the disadvantages.

In this paper, we proposed a novel framework that combined an
online prediction model with a residual compensation network. The
ARMA model was used for online blood glucose prediction and
the neural network was applied for compensation of prediction er-
ror. The advantages of this combined framework are: (1) the online
ARMA model is efficient and robust to capture time-varying glucose
dynamics, (2) the residual compensation network is capable to esti-
mate errors from the online prediction model. The accuracy of this
method was evaluated by short-term glucose prediction in the data
set of OhioT1DM.

This paper is structured as following five parts: section I presents
a brief literature review that discusses related works on short-term
glucose prediction technique; section II presents our method for
data preprocessing; section III introduces the principle of the online
ARMA model and neural network, as well as the overall framework;
section IV discusses the performance of our method on clinical data,
and section V concludes the paper.

2 DATA PREPROCESSING

The data used in this paper is provided by the BGLP challenge.
OhioT1DM dataset recorded 8-week CGMs data and corresponding
daily events from 6 patients with type 1 diabetes, including numbers
540, 544, 552, 567, 584, and 596, respectively. During data collec-
tion and transmission, the errors in calibration or measurements may
be produced many missing or outlier data points in clinical data. Al-
though, time series models do not consider any physiological factors



and only use recent BG data and other inputs that may affect BG lev-
els. The missing data will have a significant effect on the accuracy of
the models [21].

Online models emphasize the real-time input of data streams,
hence, the missing data can only be estimated using past data [7].
Our workflow for dealing with missing data problem is as follows.
Based on the CGM data, a time grid with a 5-minute sample period
was derived and the missing data were filled with zeros. Firstly, we
made a statistical analysis of the size and number of missing data seg-
ments through excel software. In both the test set and the training set,
there are more than 5% and even 20% missing data. Among them, the
loss of blood glucose between 1-100 is relatively common, which
may be caused by the replacement of CGM in patients. Secondly,
with the statistical results, a backward pushing method or mean value
method was implemented for each missing. With the increase of fill-
ing times, the cumulative error will inevitably increase.For the train-
ing set, the missing CGM values were filled with spline and the his-
torical average at the same point. When the two values are different,
the weighted method is used to fill. The test set is processed as fol-
lows :(a) the first three positions of the missing segment are filled
with extrapolation method;(b) starting from the fourth position of
the missing segment, weight the first-order Taylor series extrapola-
tion and average (the historical average at the same point and his-
torical average) to fill;(c) from position 12 of the missing paragraph
uses backward induction. Finally, unbroken data would be obtained
for prediction. Although many models with multiple inputs (insulin
dose, food intake, etc.) can effectively predict the future BG levels.
However, the data-collection process of those inputs heavily relies on
the subjective inputs provided by the user who wears a CGM device.
Since the user may not be professional, the data may be inaccurate
and have errors. Due to such limitations, we predicted the future BG
level only based on the historical BG data.

3 METHODS AND REALIZATION
In this section, we will introduce the models that are used in the fram-
work and explain how the proposed framework works for prediciton.

3.1 ARMA model
3.1.1 ARMA model

ARMA, which includes the autoregressive (AR) model and moving-
average (MA) model, is an important method to study the time series
[17]. It is widely used in the prediction of finance and wind power
[1], [20]. The ARMA could establish linear and nonlinear dynamic
models by associating input and output data. And it can be expressed
as follows:

yt =
pX

i�1

�iyt�i +
qX

j�1

↵j✏t�j + ✏t (1)

Where p is the order of the autoregressive part, �i is the autoregres-
sive parameter, q is the order of the moving average part, ↵j is the
moving average parameter, and ✏t is the error term at time t. In gen-
eral, the offline parameter determination uses the Least-squares and
the online uses Kalman filter.

3.1.2 Online model

The ARMA includes three iterative steps including model identifica-
tion, parameter estimation, and diagnostic checking. Stationarity is
a necessary condition in building an ARMA model which is useful

for forecasting. In the identification step, data transformation is often
required to make the time series stationary. Meanwhile, the sliding
window technique is more robust to the stochastic changes in the data
trend and can be applied to smaller datasets [25]. Hence, the sliding
window technique was added to the ARMA model. Discarding old
data from the training window can limit the influence of distant past
trends during model training and can promote the learning of new
trends in the data.

Differencing was applied to it to remove the trend and stabilize
the variance because of the trend of the blood glucose data. After
that, the sliding window updated the BG data. The method can re-
duce the training time of the model because the number of training
sets is always fixed. As far as we know, determining the order of
models is a key to the ARMA model. Akaike’s Information Crite-
rion (AIC) is widely used to optimize the model parameters in those
models. AIC is an estimation for the likelihood of a model. How-
ever, AIC does not have any indication of the absolute quality. The
Bayesian Information Criterion (BIC) is a similar criterion for model
selection [9]. Then, AIC and BIC were used to select an appropriate
order in this paper. For the two results, we limit the interval value
of the global model order, to conduct experiments to find the opti-
mal model parameters. The last step of model building is the diag-
nostic checking of model adequacy. If the model is not adequate, a
new tentative model should be identified, which is again followed by
the steps of parameter estimation and model verification. The ability
of the ARMA model in learning small data sets and tracking fast is
taken full advantage and can achieve the online update learning.

3.2 Residual compensation network
3.2.1 Neural network

Backpropagation (BP) neural network is a model that can approx-
imate various nonlinearities in the data. It is a kind of multi-layer
feedforward neural network trained according to the error propaga-
tion algorithm and there are three layers including the input layer,
hidden layer, and output layer. In essence, the BP neural network
takes the network error square as the objective function and uses the
gradient descent method to calculate the minimum value of the ob-
jective functio [6]. Modifying the weight and threshold is the core
of the BP neural network. It aims to get the model whose output is
consistent with expected results. In this paper, the input layer of the
neural network is the predictive value of blood glucose, and the out-
put is the prediction error. The structure is shown in Figure 1.

Figure 1. The basic structure of BP neural network.

In Figure 1, n is the number of nodes in the hidden layer, p and q



are the number of nodes in the input layer and output layer respec-
tively. The number of hidden layers can be determined according to
the empirical formula:

n =
p
p+ q + a (2)

Where a is the adjustment constant between 1 and 10. The number
of input layers is determined by correlation analysis. Then, the best
number of hidden layers is determined by the experiment to follow
equation (2). It is generally believed that increasing the number of
hidden layers can reduce the network error and improve the accuracy,
but also complicate the network, thus increasing the network training
time and the tendency of overfitting.

3.2.2 Framework of residual compensation

Both the ARMA model and BP neural network have achieved suc-
cesses in their own linear or nonlinear domains. Neither of them is
suitable for all circumstances. The statistical methods have their lin-
ear limitations, which means that they cannot simulate the real-time
series with nonlinear mode well [5]. On the other hand, a single BP
neural network is not enough to capture the time patterns contained
in highly complex time series. In the training process of the BP neu-
ral network, there may be problems of the model following error and
uncertainty, resulting in the generation of overfitting or underfitting
model [11]. A hybrid methodology can be a good strategy for practi-
cal use [24] , [4]. It combines different models to capture different as-
pects of the underlying patterns. Ji et al. [10] used the ARMA model
to predict linear components of the time series, and the TDNN model
to predict nonlinear components. Results showed that the model had
the advantages of both two methods and the prediction accuracy of
the model was improved. However, only the optimal combinations of
different models can obtain the best hybrid models, the framework of
the hybrid models becomes very important.

In this paper, we proposed a novel framework that combined an
online ARMA model with a residual compensation network (RCN-
ARMA) to predict BG. The blood glucose data which belongs to
chaotic time series contains linear and nonlinear components [8].
Due to the randomness and volatility of BG, the ARMA model in-
evitably produces large errors in the prediction of nonlinear non-
stationary time-series data, which has a certain tendency and period-
icity [23]. The BP neural network has good data error tolerance, but
it is insufficient for linear prediction. Since the ARMA model cannot
capture the nonlinear structure of the BG data. The residuals of the
linear model will contain information about the nonlinearity. The BP
neural network is valid for satisfying the prediction effect of most
non-linear properties. Hence, the BP neural network was applied to
predict residuals. The framework aimed to reduce the uncertainty of
model selection and improve the model forecasting performance by
dealing with both linear and nonlinear patterns in time series. The
flow diagram of the RCN-ARMA is shown in Figure 2.

The specific prediction process of RCN-ARMA is as follows:
Step 1. The sliding window updates the input for the ARMA

model. AIC and BIC are used to confirm the order of ARMA. Then
predict the blood glucose by the online ARMA model.

Step 2. Compared to the predicted value with the raw data, the
residual time series, which is used to the compensation network, can
be constructed.

Step 3. The correlation analysis of the predicted values and resid-
ual time series is carried out to determine the input of the residual
compensation network [16]. According to the results of the correla-

Figure 2. Flow diagram of online ARMA model with residual compensa-
tion network.

tion analysis, the range of input variables may be different from 6
patients.

Step 4. As an important supplement to model prediction, a com-
mon three-layer neural network is applied to predict the residual. The
neural network predicts the errors in the future based on a series of
errors in the past and can overcome the influence of various uncer-
tainties changes on system stability.

Step 5. Analysis of blood glucose predictions and residual time
series in statistically. The output display value range of the CGM is
[40,400], and the error is basically within the range of [-50,50]. For
this reason, some rules are employed to correct discrete data points
appropriately in the research.

Step 6. Combine the results of the two-step prediction and get the
final After the five steps, we have got the prediction results of the BG
and the error. Combine the results of the two-step prediction by the
direct sum method and get the final BG prediction.

4 RESULTS AND DISCUSSION
4.1 Evaluating indicator
For model evaluation, general and commonly used evaluation meth-
ods are sensitivity, specific, root mean square error (RMSE), and
mean absolute error (MAE) [18]. In this paper, two widely used eval-
uation indexes were applied to compare the prediction capacity. The
error indexes define as below:

RMSE =

vuut 1
N

NX

i=1

(ŷi � yi)
2 (3)

MAE =
1
N

NX

i=1

|ŷi � yi| (4)

Where: ŷi represents the predicted value, yi represents the real value
and N represents the size of the data set. Two rules were applied in
the evaluation: 1) as long as the corresponding timestamp had the raw
data, the RMSE and MAE indexes of the test set would be calculated;
2) If there was a null value in the input model data, it meant that



the data was given insufficiently, and the value at this time would
not be recorded. We only use the first and the code used during the
experiment is available on Github. In this paper, the predictions of the
model were recorded from the thirteenth point of the test set. And the
results were recorded as two decimal places rounded.

4.2 Results
In this section, the results and analysis of the proposed framework
are presented. The online AR, BP, and ARMA models were used
for 30-min ahead predictions. The mean values of the RMSE and
MAE for six patients are shown in Table 1. Then the RCN-ARMA
was used to 30-min and 60-min ahead predictions. The experiments
were conducted on patients with different inputs by establishing an
online ARMA model and a residual compensation network (RCN-
ARMA). The optimal value of the sliding window was selected by
the experimental method and keeps the same in two networks. Due to
the heterogeneity of the patients themselves, the selected parameters
had some differences. The 30-min ahead predictions of ARMA and
RCN-ARMA for 540, 567 patients are graphically shown in Figure
3 and Figure 4. Table 2 shows the RMSE and MAE of the different
contributors for 30-min and 60-min ahead predictions. Based on the
results in table2, mean RMSE and MAE of 30-min and 60-min ahead
predictions respectively with the online ARMA and RCN-ARMA
are shown in Table 3. The above tables contain the results of three
cases, and the reliability of the conclusions is enhanced through a
comparison of multiple cases.

Table 1. Mean values of the RMSE and MAE for different models (predic-
tion horizon (PH) =30 minutes.)

Method AR BP ARMA
RMSE 21.80 33.45 21.44
MAE 15.93 24.54 15.17

Figure 3. Forecasting results of patient 540 for 30-min ahead predictions.

Table 1 shows that different models have different prediction ef-
fects on blood glucose prediction. The ARMA model is better than
the other two models in prediction. The reason is that the online
ARMA model has an advantage in tracking real-time changes of
data.And the AR model which does not contain the moving average
model (MA) is a special form of ARMA model. There is a big differ-
ence in MAE between the two. Therefore, we choose online ARMA
as the base model. Figure 3 and Figure 4 clearly illustrated that (a)
the predicted value of ARMA has obvious lag on the whole, which is

Figure 4. Forecasting results of patient 567 for 30-min ahead predictions.

one of the main reasons affecting the prediction effect of the model;
(b) the addition of the error compensation model improves the hys-
teresis of the predicted value of the model; (c) the mixed prediction
results show sharp fluctuations and a certain amount of peak data that
are negative effects of adding compensation.

Table 2. RMSE and MAE of the RCN-ARMA model for 6 patients (PH=30
and 60 minutes).

ID 540 544 552 567 584 596
30-RMSE 22.19 17.66 17.40 21.12 23.88 17.93
30-MAE 16.29 13.27 12.95 14.94 16.99 12.68

60-RMSE 40.03 31.873 30.06 38.42 38.71 30.27
60-MAE 30.32 24.25 22.88 29.58 29.03 22.39

Table 3. Mean values of the RMSE and MAE for ARMA and RCN-ARMA
model.

PH=30 minutes PH=60 minutes

Method RMSE MAE RMSE MAE
ARMA 21.44 15.17 38.78 28.42

RCN-ARMA 20.03 14.52 34.89 26.41
Drop value 1.41 0.65 3.89 2.01

As can be seen from Table 2 and Table 3: (a) for different patients,
the model prediction effect is different and reflects the specificity
of blood glucose data; (b) prediction ability of the model got worse
with the increase of the prediction step. This is a major issue that
needs to be addressed urgently; (c) through the correlation analysis
of predicted value residuals, it implies that a significant correlation
relationship exists for the multi-step ahead forecast error series of
ARMA. Thus, it is very useful for the error forecast models to select
effective input variables in this multi-step ahead forecasting model;
(d) compared with the online ARMA model, the evaluating indicator
of RCN-ARMA all decreased, especially for 60-min ahead predic-
tions; (e) from the drop value, the change of two different step size
evaluation indexes gradually increases. The overall effect decreases
with the increase of prediction step size for both models. The im-
provements of the proposed combined framework compared with a
certain individual model increase with increasing prediction steps for
the continuous multi-step ahead forecasting.



4.3 Discussion
To further compare the performance difference between models, the
effectiveness of the proposed model is demonstrated by the promot-
ing percentage of between models. The data collected from 6 patients
is used as our case study. The simulation results demonstrate that
the proposed forecasting framework improves the short-term blood
glucose forecasting accuracy significantly compared with the refer-
ence models. The residual compensation network can timely predict
the errors to supplement the missing nonlinearity information of the
ARMA model. The proposed framework not only retains the advan-
tage of the ARMA model for fast-tracking a small amount of data but
also covers the shortage of nonlinear learning which mainly affects
the overall improvement of the results. For the neural networks, the
advantage of the framework can be reflected by its ability of non-
linear prediction. It proves that the framework can better capture the
nonlinear and linear characteristics of the time series. Compared with
using a single algorithm, this framework is more comprehensive. At
present, both time series and machine learning algorithms have their
disadvantages. People have been studying the corresponding match-
ing algorithm to solve the disadvantage of the algorithm. This frame-
work of models can be promoted to an individual model by fixing
known flaws using a complementary model.

5 CONCLUSION
In this study, a new framework for blood glucose prediction based on
the online ARMA model with residual compensation network was
proposed. The online ARMA model was applied for predicting dy-
namic changes of blood glucose in real-time, and the residual model
was used to track the errors of the online model. Prediction results
of 6 patients, the RCN-ARMA had much higher prediction accuracy
than the ARMA model. The proposed framework improved the abil-
ity of ARMA model prediction and proposed a better short-term pre-
diction performance. Because the accuracy of the ARMA model in
blood glucose prediction is improved, the application of the ARMA
model in the artificial pancreas (AP) system will have better safety
and stability. From the time series prediction results, the framework
is also applicable to the integration of other prediction models to
achieve clinical applications. The aim was to cover the missing use-
ful prediction information caused by the shortcomings of the single
model. Future work, we will further select an appropriate evolution-
ary algorithm to optimize the model parameters.
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