
Knowledge Engineering for Distributed
Case-Based Reasoning Systems

Kerstin Bach

Department of Computer and Information Science
Norwegian University of Science and Technology, Trondheim, Norway

http://www.idi.ntnu.no

Abstract. This chapter describes how to identify and collect human
knowledge and transform it into machine readable and actionable knowl-
edge. We will focus on the knowledge acquisition for distributed case-
based reasoning systems. Case-based reasoning (CBR) is a well-known
methodology for implementing knowledge-intensive decision support sys-
tems [1] and has been applied in a broad range of applications. It captures
experiences in the form of problem and solution pairs, which are recalled
when similar problems reoccur. In order to create a CBR system the
initial knowledge has to be identified and captured. In this chapter, we
will summarise the knowledge acquisition method presented by [4] and
give an running example within the travel medicine domain utilising the
open source tool for developing CBR systems, myCBR.

Keywords: Case-based Reasoning, Knowledge Acquisition Knowledge-
Based Systems, Knowledge Engineering, Distributed Knowledge Acqui-
sition

1 Introduction and Motivation

Following our approach of Collaborative Multi-Expert Systems [2] the knowledge
sources, which are used to store and provide knowledge, are mostly distributed.
When dealing with complex application domains it is easier to maintain a num-
ber of heterogeneous knowledge sources than one monolithic knowledge source.
Therefore we propose a Knowledge Line that holds a map of topics, which split
rather complex knowledge in smaller, reusable units (knowledge sources). More-
over, the knowledge sources contain different kinds of information as well as
there can also be multiple knowledge sources for the same purpose. Therefore
each source has to be described in order to be integrated in a retrieval process
which uses a various number of knowledge sources. In the following we describe
how multiple CBR system holding case of different topics, but aggregate their
results eventually, can be built. This knowledge acquisition method is targeted
for capturing heterogeneous knowledge sources and build a distributed CBR sys-
tem that maintains its knowledge in homogeneous containers that are queries on
demand. Therewith it fits in the requirements of knowledge acquisition for the
SEASALT architecture [14] as well as the CoMES approach [2].

http://www.idi.ntnu.no


2

The goal of the knowledge modularization is building as independent modules
as possible in order to reduce the complexity of each individual CBR system.
Modules can be described as task specific program parts as they are described
in [12]. The knowledge modularization in SEASALT aims are minimizing depen-
dencies between Topic Agents by identifying modules that are coherent within
themselves. Modules, further on, can be combined as required within a Knowl-
edge Line. The result of a problem solving system which is based on SEASALT
is always a solution that consists of partial solutions, which originate in hetero-
geneous partial domains.

For generating a solution within a Knowledge Line a Knowledge Engineer
must define the overall contexts for ensure the composition of an overall re-
sult. For that reason the Knowledge Modularization is a basis of the Knowledge
Composition.

Crucial for the effective application of such knowledge intensive systems is
the organization of knowledge. For that reason the conceptional (development)
phase requires special attention, because after that phase the development of the
CBR systems can be carried out individually. The Knowledge Line contains on
the one hand the Knowledge Map for organizing information about each module
(Topic Agent) that is required for combining the snippets, which are the partial
solutions of which the final result consists of.

2 Background and Related Work

Two related methodologies to the work presented here are DISER [17] and IN-
RECA [8]. While both, DISER and INRECA are methodologies for creating
single CBR systems, the process of building a knowledge line instead describes
the systematic development of decentralized, CBR systems.

DISER describes a methodology for developing experience-based systems in
general. It especially focuses on the integration of the CBR system in an en-
terprise rather than providing information from Web 2.0 sources to laymen.
Furthermore, the knowledge line requires knowledge engineers to execute key
tasks while in [17] enterprise executives are addressed with the goal to integrate
the system in existing socio-technical processes. With SEASALT instantiations,
we are focusing more on the technical realization rather than the social in-
teraction between stakeholders. When recalling DISER’s development aspects,
then a Knowledge Line can be positioned in the vision to pilot phases. The
presented methodologies addresses also maintenance aspects, but has not a par-
ticular phase, because novel information is constantly fed into the systems due
to the stream-like data in web forums.

INRECA on the other hand was particularly focused on developing CBR
systems and provides experiences for the development itself on various abstrac-
tion levels. Because of the specialization to CBR, common experiences derived
from the development of various CBR systems, can be generalized and shared.
INRECA does not cover any experiences for developing distributed systems such
as the previously described snippet descriptions. Eventually a Knowledge Line



3

can be seen as an addition to the INRECA recipes since it presents an approach
for distributed CBR systems, which is has not been covered before.

On INRECAs Common Generic Level contains more abstract processes for
the development of any kind of CBR system. The herewith introduced method-
ology focuses on a subset of systems that are based on heterogeneous CBR
systems. For that reason, only the abstract process presented in Figure 3 would
fit that generic level. It can for instance be applied for distinguishing whether a
distributed system is required to fit the expectations or not. The Specific Project
Level is not directly addressed with the work previously present, but the expe-
riences made during the instantiation of an application such as docQuery could
provide extensions to that level.

3 Knowledge Modularization

In this section we are introducing a process model for the knowledge modulariza-
tion within a Knowledge Line. This process model, describes the goal-oriented
development of decentralized, heterogeneous case bases and supports the Knowl-
edge Engineer with a structured approach for modularizing knowledge based on
available data. The approach presented in this work does not aim at distributing
knowledge for performance reasons, instead we specifically extract information
for the respective knowledge sources from Internet communities or to have ex-
perts or Knowledge Engineers maintaining one knowledge base. Hence, we are
creating knowledge sources, especially Case-Based Reasoning systems, that are
accessed dynamically according to the utility and accessibility to answer a given
question. Each retrieval result of a query is a part of the combined information
as it is described in the CoMES approach. The representation of the knowledge
modularization is the Knowledge Map, which will be described in the following
subsection. The successive subsection will introduce the Knowledge Line process
model and describe the containing sub-processes.

3.1 Knowledge Map

The Knowledge Map organizes all available knowledge sources that can be
accessed by a Coordination Agent that creates individual requests and combines
information. The term Knowledge Map has been introduced by [9] describing
working knowledge in an organization. In the aforementioned book they describe
a knowledge map from the organizational point of view in which human experts
are mapped to topics or expertise fields in order to ensure that everybody in a
company knows who is an expert in a certain domain. We transfer this concept
in an intelligent agent framework that coordinates different knowledge sources.

A Knowledge Map (KM) consists of a number of Topic Agents TA that are
depending on each other and each consist of a software agent A on top of a
knowledge base KB. Thus it can be defined as follows:

KM = {TA1, TA2, TA3, . . . , TAn} with TA = (KB,A) (1)



4

A Topic Agent is a knowledge-based system itself and the software agent queries
it. The Topic Agent collaborates with the Coordination Agent that navigates
through the Knowledge Map and asks subsequent questions to the individual
Topic agents thus creating an individual path through the map. There are de-
pendencies Depconstraint between the Topic Agents which define that sequence
and influence the retrieval executed by one of the subsequent Topic Agents.
A dependency exists if one agent’s output serves as another agent’s input and
thus enforces a subsequent query. Since the dependencies between Topic Agents
can take any form, we decided to implement the Knowledge Map as a graph
where each Topic Agent is represented by a node and directed edges denote the
dependencies.

Fig. 1. Knowledge Map containing Topic Agents and Knowledge Bases

Figure 1 shows a Knowledge Map containing the knowledge bases and soft-
ware agents as well as an example for a possible path through the knowledge
sources.

3.2 Pre-Processing

Based on a customers requirement for a target system, the Knowledge Engineer
defines the systems functionalities as well we the overall goal. We assume that the
overall goal of the knowledge-based system is the composition of results retrieved
from multiple, heterogeneous case bases. Examples for this are the menu creation
in the cooking domain [6,10] or the travel medicine domain as it will be used as
an example further on.

Within docQuery, we require to use information of various CBR systems such
as regional information, information on diseases, information on vaccinations and
medications or activities. There are dependencies between each case base, but
each one covers its own domain: For instance the case base disease contains



5

information about infectious diseases that work outside of docquery, i.e. in a
medical information system, as well. The dependencies or links between case
bases are necessary to compile first a retrieval graph over the knowledge map
and eventually compose the solution integrating all retrieved cases.

Knowledge Source Sounding After identifying the scope of each individ-
ual case base, existing and available knowledge sources have to be investigated
whether they can provide the required data and quality. The major goal of this
first step is getting an overview of

– What kind of knowledge already exists?
– What has to be reviewed?
– What has to be acquired in order to fit the given requirements?

Knowledge sources are mainly data collections, but also cover experts for certain
domains.

For the docQuery use case we looked at what type of knowledge is natu-
rally available. This led us to the CBR systems Region, Disease, Medicament,
Hospital and Activity. It is obvious that these information can be plugged in
any other application as well. For example, the Region case base can provide
information in a travel agency scenario. Based on the discussions with domain
experts we further identified the need of the case bases Chronic Illnesses and As-
sociated Condition. Chronic Illnesses and Disease are separated because of their
handling in a knowledge map and the information provided about them. While
chronic illnesses are information to be specified by the user, docQuery provides
prevention of diseases. Further, explanations on chronic illnesses are focused on
how to travel with that handicap, while the disease are potentially unknown and
we try to avoid the user with an infection. Therefore disease and vectors have to
be explained, while chronic illnesses are known to that particular person. The
associated condition case base mainly contains prevention information for any
kind of occasion. These information can be linked to most of the other case bases
and therefore this case base has to be queried towards the end of the querying
process.

This example shows that the identification is at least a 2-step-process in
order to define the scope of each CBR system. However, for defining attributes
and links usually more iterations are necessary. These discussion are led by the
Knowledge Engineer, which increases his/her awareness of the domain. Common
sources that should be initially considered and were used within the development
of docQuery are DBpedia1 or Google Knowledge Graph2.

Identification and Representation of Snippets The modularization of the
required knowledge is carried out based on the knowledge engineer’s understand-
ing of the domain aiming at fitting the given requirements. The main task is the

1 http://dbpedia.org/
2 https://developers.google.com/knowledge-graph/

http://dbpedia.org/
https://developers.google.com/knowledge-graph/


6

identification and definition of homogeneous and independent modules that keep
their semantic even when they are seen as singletons (independence). Each mod-
ule has to be combinable in order to complement another module (compatibility)
and requires rules or constraints ensuring a valid combination of the modules
(validity). The requirements independence and compatibility are focusing on
the information sources while validity aims at procedural knowledge applied
combining the results.

Within SEASALT the previously described modules are called snippets since
the concept is similar to [13]. After their identification, the knowledge sources
providing data for the snippet cases have to be determined. Mainly the Knowl-
edge Engineer has to decide which information from sources are included. For
the composition of information that prevent travelers from diseases. Since our
modularization happens with respect to different sub-domains, the individual
case bases that are the result of this modularization are not absolutely indepen-
dent of each other. Instead they have a net of dependencies between them that
indicates what other case bases are affected by changes in one individual case
base. These dependencies also affect some of the aforementioned maintenance
tasks and split them into two different kinds: those which have to take other case
bases into consideration and those which do not. A case factory agent that per-
forms the task of maintaining a case base’s uniqueness, minimality, incoherence
or consistency can do this without knowing about other case bases. An agent
that inserts new cases or adds new data to existing cases is a different matter.
For instance if a new case is inserted into the diseases case base, or an existing
disease breaks out in a new region, the inserting agent has to check, whether
every risk region indicated in the respective disease’s regions attribute is actu-
ally included in the country case base’s underlying knowledge model, otherwise
this diseases case will never be retrieved. Another example of such dependencies
would be, if one of the regions can not be associated, a domain expert will have
to be contacted and asked for specifications, since we assume that in this case
there is either a simple typing error, a synonymous name for a region, or the
new region will have to be added to the ontology by a domain expert. The same
is true for new data being added to the medicament case base. Here the area
of application has to yield at least one result in the disease case base, otherwise
the new data have again to be passed to a domain expert for a review. Although
this approach is rather maintenance-intensive, our medical application scenario
requires this very conservative case addition strategy in order to preserve the
system’s overall accuracy and the case factory approach allows us to realize this
strategy and also adapt to new dependencies, should they arise [3].

As an example, travel medical data contain information about countries,
diseases, medications, vaccinations as well as descriptions, guidelines, and ex-
periences. Therefore the knowledge in docQuery will be provided in case bases
and each case base will contain one specific topic with its own domain model
and maintenance agents/jobs. However, following the modularized structure of
knowledge in docQuery, CBR agents will be used for each individual topic agent
providing information. Aiming at higher accuracy each case base will serve its



7

own topic and the case format will exactly fit for the type of knowledge. Further-
more the case bases will contain similarity measures, adaptation knowledge and
the vocabulary to represent and retrieve cases. In travel medicine it can be dan-
gerous to use CBR for the whole set of information, because the combination of
medications, vaccinations, side effects, contraindications, etc. regarding the trav-
eler’s health history have to be correct, without any contradicting information.
Instead of that we will apply CBR for each topic and do the combination of the
responses afterwards using the constraints given in the response sets. Each issue
handled in a case base will be provided using CBR methods and the strength of
CBR, finding similar information on a given topic, will ensure a higher quality
of information provision.

Now we will exemplify four docQuery case bases that are each representing
one topic and explain the dependencies between them. The selected case bases
are examples to explain our approach and for the implementation of docQuery
there will be at least six more case bases. The case base country will contain
specific country information a traveler has to consider planning a journey. Fur-
thermore the information will be separated in the sections a traveler has to
pay attention to before, during, and after the journey. The country information
also includes the required vaccinations and additional information, for example
guidelines for a healthy journey. The case base disease holds more than 100 dis-
eases considered in a travel medical consultation. It concentrates on diseases that
might affect a traveler on a journey, for instance Malaria, Avian Influenza, or
Dengue. A disease in this case base is characterized by general information on the
disease, how to avoid the disease, how to behave if one has had the disease before,
and how to protect oneself. The third case base we will introduce is medicament
with details about medicaments and their area of application (diseases, vaccina-
tions, age, etc.). Basically it contains information about active pharmaceutical
ingredients, effectiveness, therapeutic field, contraindication, inter-dependencies,
and the countries in which those medicaments are approved. In diseases we do
not store information on chronic illnesses, be-cause they will be modeled in their
own case base. Instead we focus on diseases which can affect travelers during
their journey. The fourth case base will hold activities which are used within
docQuery to provide safety advice for intended activities when planning a jour-
ney. For travelers, activities are the major part of their journey, but may involve
certain risks for which safety advice is needed and furthermore while asking for
their plans they usually describe their activities which we can use to provide
better guidance. Examples of such activities are diving, hill-climbing or even
swimming.

Complete travel medical information will contain knowledge of all four case
bases enhanced with descriptions, guidelines, and previous experiences. The com-
bination of the information retrieved from each case base will be done by a Co-
ordination Agent as it can be seen in the SEASALT architecture (Figure 2). The
coordination agent will request each agent and based on the agents’ response and
the given information by the traveler the next request containing all constraints
to another topic agent will be created and send.



8

Fig. 2. Case representations for four case bases that provide knowledge for the topic
agents

4 Knowledge Modularization Methodology

In section 3 we described how to implement the knowledge modularization for the
travel medicine domain. In this showcase we explained how to proceed in order to
develop CBR systems which will be deployed in the SEASALT architecture. In
this section we will discuss a general methodology how to modularize a domain
for setting up a knowledge line.

For the development of CBR systems within SEASALT we use snippet de-
scriptions3 for describing pivotal factors (or knowledge) as topic agents. Like in
traditional CBR systems each snippet description requires its own representa-
tion including their knowledge containers. With regard to decentralization and
distribution of the content (i.e. the snippets) the Knowledge Engineer has to de-
fine the topics, the CBR system’s specifications and the linkage between topics.
Further on it has to be ensured that a composition of several snippets, which
are still meaningful, can be achieved.

The goal of this section is not to describe how to design a CBR system,
it presents a methodology for the development of distributed CBR systems,
which are based on the SEASALT architecture. In contrast to INRECA and
DISER we are not aiming at providing a complete methodology that can directly
be implemented in an enterprise. More precisely we show how to analyze an
application domain and identify topics and snippet descriptions.

The overall process can be segmented in subprocesses, which is a sequence of
its own, will also be discussed in detail. Depending on the application domain and
the available information, each subprocesses can be revisited if necessary. The
overall process is pictured in Figure 3. For the representation of the processes,

3 In the remaining parts of this work we will differentiate between snippet descriptions
and snippet. Snippet descriptions are the conceptual representation of knowledge and
are equivalent to a case representation. Snippets on the other hand are instances of
snippet descriptions and therewith equivalent to cases.



9

we used the specification language BPMN4, which has been modified in order to
fit our purpose.

Fig. 3. Abstract Knowledge Modularization process

The development process starts with the identification of the expectations
the stakeholders have in order to derive key aspects that have to be covered by
the software system. Based on the available knowledge and the insights obtained,
the domain has to be separated to determine the snippet descriptions and their
associated knowledge sources (from which the snippets/cases are generated).
Once the snippet descriptions, snippet sources and interactions are designed,
the CBR system can be implemented, evaluated, and, if necessary, incrementally
improved.

4.1 Requirement Specification

This introductory phase of the system development is activated by the demand
of creating a new knowledge-based system (e.g. by a customer). Furthermore,
this step will be the basis for all further developments. The tasks that have to be
fulfilled are the determination of the requirements from which the topics for the
knowledge distribution can be derived in order to define the required knowledge
(see Figure 4).

The Knowledge Engineer should carry out a goal-oriented development and
therefore a thoroughly requirements acquisition has to be carried out. Together

4 http://www.bpmn.org/

http://www.bpmn.org/


10

Fig. 4. Requirement Specification Process

with stakeholders, first goals should be identified, and based on them the re-
quirements are iteratively refined. Relevant aspects in this phase are demanded
and desired functionalities. Further, also standard factors such as numbers of
expected users or the expected access.

In the end of this phase a common concepts describing the system should
be available. This must contain the specification of a query and the expected
prototypical result as well as information from which topic agent each sub-result
should be retrieved. The latter briefly defines the required snippet descriptions,
which will be recalled later.

In parallel information sources already available have to be identified and
tested whether they can be included in the new system. Within an enterprise
often databases or data warehouses can be accessed. If this is possible, the Knowl-
edge Engineer has to ensure that the service will be available, required informa-
tion is accessible and the provenance of information can be trusted (as well as
the stakeholders trust them). For relevant information sources that will poten-
tially feed data in a system, it has to be specified how they are structured and
stored. The result of this task is a picture of the complete available knowledge.

Based on the available knowledge topics have to be identified in order to
make use of the advantages of the decentralized CBR systems defined in the
Knowledge Line. Each case base covers a heterogeneous topic. The definition
of topics represents the main thematic areas and are directly related to the
information/expectation about the system provided by stakeholders or initiators.

For each topic the required knowledge has to be estimated, in order to fulfill
its task within the Knowledge Line. This estimation focuses on semantic esti-
mations rather than the volume. This might lead to a constellation that topics
have to be covered, where only little information is available. This will lead into
a status of increased knowledge demand for this particular topic. On the other
hand, if sufficient information is available, this knowledge demand can also be
classified as covered.



11

4.2 Knowledge Evaluation and Acquisition

Following the initial phase of collecting system requirements and elaborating
available knowledge, in this phase an evaluation of that knowledge is carried
out. The result of the evaluation will lead into further processes of more goal
oriented knowledge acquisition for certain topics. After adding new knowledge
(bases) this phase has to be carried out again in order to either identify the
need of further investigation or carrying on to the next phase. The repetition of
this phase is carried out until sufficient knowledge is available. Afterwards the
snippet descriptions are defined.

Fig. 5. Evaluation of available knowledge

The knowledge evaluation task (see Figure 5) is carried out as testing and val-
idating of the available knowledge until the previously defined goals are met. In
the subsequent runs of this phase, only the newly added knowledge, which origi-
nates from the knowledge acquisition, has to be evaluated and existing knowledge
does not necessarily have to be evaluated twice. More importantly, it has to be
ensure by the evaluation that the newly added knowledge extends the existing
knowledge and whether the required knowledge is now available.

During the evaluation it has to be ensured that the containing knowledge
covers the topic adequately as well as the content is correct and up-to-date
(Content-Properties). Furthermore access possibilities and restrictions as well
as the used data representations have to be captured (Meta-Properties). If the
evaluation results in the fact that the newly included knowledge does not fit for
the topic, it has to be decided whether the new knowledge sources can/should
be discarded or the knowledge has to be enhanced.

The evaluation ends with the decision whether the knowledge demand for the
overall system is covered by the available knowledge sources. If there is still a
lack of knowledge, the next step has to be the knowledge acquisition (see Figure
6). If everything required is covered, it is procceded with the identification and
definition of Snippet Descriptions (see Section 4.3).



12

Fig. 6. Knowledge Acquisition

While the knowledge evaluation basically only reviews the knowledge in order
to detect knowledge lacks, the knowledge acquisition identifies in which topic
what kind of knowledge is missing. After that identification the according expert
– if available – has to be consulted. If such an expert is not available s/he has to
be found or the topic can not be covered as area of expertise. In this case it is still
possible to include the available information, but marked with less confidence.

If an expert has been identified, the expert will be in charge to define the
lack of knowledge. During this discussion, knowledge can be directly acquired.
This can be procedural or contextual knowledge that clarifies relations and en-
ables the knowledge engineer to enrich the existing knowledge. Furthermore this
discussion with the expert can lead to novel knowledge sources. Usually it is
not expected that an expert will formalize and insert the required knowledge.
Within SEASALT, we would expect the Knowledge Engineer to carry out this
task and have an expert reviewing the knowledge as well as the final results.

The result of this subprocess is accumulated expert knowledge and knowledge
sources, which will enrich the existing knowledge containers. After this step
this knowledge is re-evaluated in the overall context in order to ensure that
the knowledge still matches the scope of the overall system and the interaction
between topic agents will be still possible.

4.3 Identification and Definition of Snippet Descriptions

Once the previous cyclic processes of knowledge evaluation and acquisition end
up with the fact that the available knowledge is sufficient to represent the iden-
tified topics, relevant snippet descriptions are defined. For each snippet its rep-
resentation has to be determined and based on that its correctness.

The identification of snippet description can be differentiated between de-
scriptions derived explicitly from the system requirements and descriptions im-
plicitly described in the available domain knowledge. Snippet descriptions which
are based on the system requirements usually cover desired functionalities or
topics. These functionalities are incomplete and focus only on particular aspects



13

Fig. 7. Identification Snippet Descriptions

that, from our experience, match the expert’s area of work/expertise. Especially
when topics are combined and the combination possibilities are discussed, more
topics arise. However, each topic that comes up does not necessarily need to be
represented as such in the knowledge line. The knowledge engineer has to decide
whether this aspect is relevant (and therewith becomes an additional topic),
it can be merged into an existing topic, or has to be withdrawn. In the end
there will be a set of relevant snippet descriptions, which will the be classified
as relevant for the domain or additional information. This process can therewith
change the demands of knowledge for each topic, but also helps to reduce the
effort, if topics are identified, which are not that relevant or can be covered dif-
ferently. On the other hand, this process can also be applied if an extension of
the functionalities is necessary, because it defines the demand of knowledge and
the knowledge acquisition is later on carried out by the standardized process.

For each of the included snippet descriptions, the level of abstraction has
to be defined. According to [7], there are three levels of abstraction for cases:
Concrete Cases represent the real cases with very less loss of information and
therewith are the lowest level of abstraction. Abstract Cases are reduced in
their complexity. For abstract cases the loss of information is immanent and the
degree of abstraction can vary as well as concrete cases and abstract cases can
create a hierarchy. Generalized Cases represent a collection of cases with common
features. Based on the level of abstraction, the kind of case representation will
be defined.

After finding appropriate level of abstraction and case representation, the cor-
rectness of the therewith defined snippet descriptions has to be ensured. Each
snippet descriptions has to fulfill the following domain-dependent criteria: inde-
pendence, interoperability and validity.

The independence criterion requires that each snippet description is an indi-
vidual, semantically coherent unit. This means each snippet description should
cover a topic that would also work for itself and therewith each snippet also pro-
vides a logic piece of information and does not necessarily need the complete set
of snippets to be semantically understandable. Further on, the interoperability
ensures that snippets can be combined with others while the links or depen-
dencies describe the kind of combination [3]. It is obligatory that each snippet



14

description has to be linked at least once to another description in order to
be included in the knowledge line. The interoperability herewith describes the
semantic relationships between topics. The final criterion, validity, eventually
monitors that snippets are technically combinable – it checks common represen-
tations, identifiers and constraints. To satisfy this criterion it has to be ensures
that combination procedures are available and well defined.

In case one of the three above mentioned criteria is not met, either the missing
information has to be added or the snippet description has to be redefined. If all
requirements are satisfied, the definition of snippet descriptions is finished and
the collection of valid snippet descriptions is available for the next phase - the
implementation.

4.4 System Implementation

This phase first defines how the future system is populated with the acquired
knowledge, before the CBR system itself is implemented.

For each of the previously defined snippet descriptions one or more knowl-
edge sources have to be assigned for the case base population. Depending on
the domain, the available snippets, the Knowledge Engineer has to decide how
many sources are assigned to which snippet description and how much overlap of
snippets is allowed. Furthermore, in order to be able to combine information, it
is necessary to include certain information in more than one snippet description
- the deployment of these information is also defined and implemented within
this phase.

Fig. 8. Knowledge Container Population

Next, the technical procedures for the population have to be defined. This
also specifies whether the knowledge to be included is stored locally in the CBR
systems or queried on demand. This highly depends on the given infrastructure
and availability of knowledge sources in the particular domain.

The technical procedures closely relate to the properties of a knowledge
source, which have been determined in the knowledge evaluation phase. These



15

properties define whether and automated population is possible and how data
updates are feasible. Since each snippet description is independent this has to be
specified for each individual snippet description and includes access mechanisms
and protocols.

After the technical specifications have been defined, the content-based selec-
tion has to follow. Not all usable information of the knowledge sources are usually
relevant for a snippet. Therewith, the goal is to determine that the content of a
particular snippet description fits the expectations and can be applied.

Fig. 9. Implementation of the CBR system

Once all relevant sources are known, accessible and the target representations
are linked the implementation and population of the CBR system can start. In
the beginning the attribute descriptions for each snippet have to be identified
in order to create a case representation. Based on the system requirements, the
knowledge engineer has to decide which are the required attribute descriptions.
This decision should be based on the independence criteria described in 4.3 and
aim at only including necessary attributes.

After all relevant attribute descriptions are sorted out, the knowledge en-
gineer has to analyze whether the case description is sufficient for its purpose
within the application. The analysis ensures that the attribute descriptions as
as modular as possible and required and furthermore the attribute values can
be combined during the knowledge composition. In this process, also the data
types and value ranges are defined as well as the local similarity measure(s).

We assume that we have amalgamation functions to describe the global sim-
ilarity. Therefore the relevance of each attribute description for the case (or
snippet) has to be determined and assigned. In the final step optional adapta-
tion mechanisms are defined. In general, the previously mentioned steps describe
the process of building a CBR system once all required information is known
and available.

The closing step of this process is the evaluation of the created CBR system
regarding the requirements. If the demands set for the system are met, the mod-



16

ularizing phase is completed. If there are mismatches between the expectations
and the performance, the system has to be revised.

There are various rescue points where the revision can start. First the type of
mismatch has to be identified, before the process can move to the according task.
If there are general drawbacks regarding the incoming data, the knowledge eval-
uation and acquisition has to be refined (see section 4.2). Alternatively, decisions
made regarding the design of snippet descriptions and population processes can
be revised which can influence the type of information produced by the overall
system. Eventually, also the technical implementation can cause mismatches to
the expectations and therewith the implementation might has to be revised as
well. A detailed study of the Knowledge Line modularization methodology in a
different domain can be found in [11].

5 Software Engineering of the Knowledge Line

While the Knowledge Line describes a process of how to collect and organize
knowledge, it requires tools to capture and implement it in order to use it within
an intelligent system. For the entire process we have successfully used myCBR
[5,16], which allows to model the knowledge as well as to test the case-based
retrieval.

Fig. 10. myCBR model view showing the different case bases on the upper left, the
similarity measures for one attribute on the lower left and on example taxonomy in the
main screen



17

Figure 10 shows the myCBR view that is used to create the knowledge model
for case bases. The tool supports the creation of various concepts of which each
of them can hold individual case bases. Therewith it is possible to visualize the
included knowledge structure along with the similarity measures during discus-
sions with experts. Further on, the tool also allows to carry out the similarity
based retrieval for each concept and therewith directly evaluate how changes
made to the knowledge model and especially similarity measures affect the re-
trieval result. Also various case bases can be created and kept in parallel, which
allows different testing scopes.

Once the CBR system is designed, the resulting project can be integrated
in any kind of Java application. The myCBR back end comes as a jar file and
together with the project file the entire CBR system can be run independently
from the workbench.

Fig. 11. myCBR-based architecture of a Knowledge Line implementation in the travel
medicine domain

Figure 11 shows a possible architecture of a myCBR-powered Knowledge Line
application. We assume that we have one project that contains all knowledge
models and case bases, each topic agent can individually be instantiated and
represented by a topic agent. Numerous topic agents are coordinated by a multi-
agent system (MAS) that collaboratively compose a solution. The dependencies
that guide the knowledge composition process are implemented as an MAS und
JADE (see [15] for details).

On top of the MAS, we suggest a query interface that receives and organizes
the query process. The query interface typically has knowledge of the case rep-
resentations within the MAS and can therewith provide queries for the CBR
system in the right structure, while the MAS manages the internal case base
dependencies. The query interface can be implemented using the Spring frame-



18

work 5 which sends queries to the MAS and exposes a RESTful web API which
can be used by various types of front ends.

Further on, the population of case bases for each topic can be implemented
individually, so each case base creation can follow a customized process of ac-
cessing external knowledge sources, apply information extraction and natural
language processing, if necessary, for feeding in knowledge snippets.

6 Summary

In this chapter we present an knowledge engineering approach that describes how
a complex domain with heterogeneous knowledge components can be systemati-
cally transferred into a distributed CBR system. The resulting CBR system is a
multi-agent system that utilizes several homogeneous CBR engines to hold and
provide knowledge on demand. We describe the conceptual process of identifying,
organizing and implementing such a knowledge-based system.

Eventually we give an overview how the concept can be implemented using
existing open source tools and frameworks. To illustrate the entire process we
use the travel medicine domain and discuss the challenges it provides.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. Artificial Intelligence Communications, 7(1),
39–59 (1994)

2. Althoff, K.D., Reichle, M., Bach, K., Hanft, A., Newo, R.: Agent based maintenance
for modularised case bases in collaborative multi-expert systems. In: Proceedings of
AI2007, 12th UK Workshop on Case-Based Reasoning. pp. 7–18 (Dezember 2007)

3. Althoff, K.D., Reichle, M., Bach, K., Hanft, A., Newo, R.: Agent based maintenance
for modularised case bases in collaborative multi-expert systems. In: Proceedings
of AI2007, 12th UK Workshop on Case-Based Reasoning. pp. 7–18 (dec 2007)

4. Bach, K.: Knowledge Acquisition for Case-Based Reasoning Systems. Ph.D. thesis,
University of Hildesheim, München (2012), iSBN 978-3-8439-1357-

5. Bach, K., Althoff, K.D., Newo, R., Stahl, A.: A case-based reasoning approach
for providing machine diagnosis from service reports. In: Ram, A., Wiratunga, N.
(eds.) Proc. of the 19th Intl. Conference on Case-Based Reasoning (ICCBR-2011),
London, UK. LNCS, vol. 6880, pp. 363–377. Springer Verlag, Heidelberg (Sep 2011)

6. Bach, K., Reuss, P., Althoff, K.D.: Case-based menu creation as an example of
individualized experience management. In: Maier, R., Kohlegger, M. (eds.) Pro-
fessional Knowledge Management. Conference on Professional Knowledge Manage-
ment (WM-2011), From Knowledge to Action. pp. 194–203. LNI 182, Köllen Druck
& Verlag GmbH, Bonn (Mar 2011)

7. Bergmann, R.: Experience Management: Foundations, Development Methodology,
and Internet-Based Applications, Lecture Notes in Computer Science, vol. 2432.
Springer (2002)

5 https://spring.io/

https://spring.io/


19

8. Bergmann, R., Althoff, K.D., Breen, S., Göker, M.H., Manago, M., Traphöner, R.,
Wess, S.: Developing Industrial Case-Based Reasoning Applications: The INRECA-
Methodology, LNCS, vol. 1612, chap. Selected Applications of the Structural Case-
Based Reasoning Approach, pp. 35–70. Springer (2003)

9. Davenport, T.H., Prusak, L.: Working Knowledge: How Organizations Manage
What they Know. Harvard Business School Press (May 2000)

10. Ihle, N., Newo, R., Hanft, A., Bach, K., Reichle, M.: Cookiis - A Case-Based Recipe
Advisor. In: Delany, S.J. (ed.) Workshop Proceedings of the 8th International Con-
ference on Case-Based Reasoning. pp. 269–278. Seattle, WA, USA (July 2009)

11. Marter, S.: Case based coordination agents - knowledge modularization and knowl-
edge composition (Fallbasierte Koordinationsagenten – Wissensmodularisierung
und Wissenskomposition für dezentrale, heterogene Fallbasen). Master’s thesis,
Institute of Computer Science, University of Hildesheim (2011)

12. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15, 1053–1058 (December 1972)

13. Redmond, M.: Distributed cases for case-based reasoning: Facilitating use of mul-
tiple cases. In: AAAI. pp. 304–309 (1990)

14. Reichle, M., Bach, K., Althoff, K.D.: Knowledge Engineering within the Applica-
tion Independent Architecture SEASALT. In: Baumeister, J., Nalepa, G.J. (eds.)
Int. J. Knowledge Engineering and Data Mining, pp. 202 – 215. Inderscience Pub-
lishers (Jan 2011)

15. Reuss, P.: Concept and implementation of knowledge line retrieval strategies for
modularized, homogeneous topic agents within a multi-agent-system (konzept und
implementierung einer knowledge line – retrievalstrategien fuer modularisierte,
homogene topic-agenten innerhalb eines multi-agenten-systems). Hildesheim :
Stiftung Universität Hildesheim, Institut für Informatik, Bereich Intelligente In-
formationssysteme, Master thesis (August 2012)

16. Stahl, A., Roth-Berghofer, T.R.: Rapid prototyping of cbr applications with the
open source tool mycbr. In: ECCBR ’08: Proceedings of the 9th European confer-
ence on Advances in Case-Based Reasoning. pp. 615–629. Springer-Verlag, Berlin,
Heidelberg (2008)

17. Tautz, C.: Customizing Software Engineering Experience Management Systems to
Organizational Needs. Ph.D. thesis, Universität Kaiserslautern (2000)


	Knowledge Engineering for Distributed Case-Based Reasoning Systems
	Introduction and Motivation
	Background and Related Work
	Knowledge Modularization
	Knowledge Map
	Pre-Processing
	Knowledge Source Sounding
	Identification and Representation of Snippets


	Knowledge Modularization Methodology
	Requirement Specification
	Knowledge Evaluation and Acquisition
	Identification and Definition of Snippet Descriptions
	System Implementation

	Software Engineering of the Knowledge Line
	Summary


