
Visual analytics for exploring air quality data in an
AI-enhanced IoT environment

Ilias Kalamaras
Information Technologies

Institute - Centre for Research
and Technology Hellas

kalamar@iti.gr

Ioannis Xygonakis
Information Technologies

Institute - Centre for Research
and Technology Hellas
xygonakis@iti.gr

Konstantinos Glykos
Information Technologies

Institute - Centre for Research
and Technology Hellas

glykos@iti.gr
Sigmund Akselsen

Telenor Group
sigmund.akselsen@

telenor.com

Arne Munch-Ellingsen
Telenor Group
arne.munch-

ellingsen@telenor.com

Hai Thanh Nguyen
Telenor Group &

Norwegian University of
Science and Technology

HaiThanh.Nguyen@telenor.com
Andreas Jacobsen

Lepperod
Norwegian University of
Science and Technology

andreasleppis@gmail.com

Kerstin Bach
Norwegian University of
Science and Technology

kerstin.bach@ntnu.no

Konstantinos Votis
Information Technologies

Institute - Centre for Research
and Technology Hellas

kvotis@iti.gr
Dimitrios Tzovaras

Information Technologies
Institute - Centre for Research

and Technology Hellas
dimitrios.tzovaras@iti.gr

ABSTRACT
Visual analytics have an important role in the exploration
and analysis of large amounts of data in IoT applications.
Data visualizations can provide overviews of different as-
pects of data and user interaction can assist exploration. Re-
cent advances in machine learning and Artificial Intelligence
have provided methods that can be used in conjunction with
visual analytics to enhance user perception. However, AI
methods are often used as “black boxes”, making them dif-
ficult for end-users to trust. In this paper, a novel visual
analytics platform is presented, targeting two goals: a) an
architecture for the creation of custom interactive visual an-
alytics dashboards using well-defined components linked to
each other, and b) the inclusion of components specifically
for making AI methods more explainable. The proposed ar-
chitecture and components are being used in the context of
the AI4IoT pilot within the AI4EU project, which targets
air quality monitoring through AI and visualization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEDES ’19 November, 12-14, 2019, Limassol, Cyprus
c© 2020 ACM. ISBN 978-1-4503-4895-9. . . $15.00

DOI:

CCS Concepts
•Human-centered computing → Visualization tech-
niques; Visual analytics; Visualization toolkits;

Keywords
Visual analytics; reactive workflows; explainable AI; IoT

1. INTRODUCTION
Large-scale IoT (Internet-of-Things) applications employ

a large number of sensors and result in a very large amount
of collected data. In the context of IoT data analysis, two
tasks are usually of relevance: exploring the large amounts
of data to find subsets and patterns of interest; and analyz-
ing the available data to make assessments and predictions.
Air quality monitoring is an application area that can be sig-
nificantly assisted by IoT installations and by relevant data
analysis and exploration methods. As such, it is the sub-
ject of the AI4IoT pilot within the AI4EU project [1], which
envisions the European ecosystem for Artificial Intelligence.

Visual analytics can assist the exploration of large amounts
of data. They involve custom data visualization methods
and they enable the operator to interact with them, in or-
der to view the data from different perspectives and focus
on details of interest. However, the wide variety of applica-
tions make different types of visualizations relevant in each
case. Usually a custom set of visualizations needs to be com-
piled in a dashboard, in order to allow easy exploration of a
particular dataset.

Visual analytics can themselves be assisted by data ana-
lytics methods, especially recent advances in machine learn-

ing and AI (Artificial Intelligence). AI methods are used to
automatically extract patterns from data and make predic-
tions. Their results can be presented through visualization
to the end user. While AI methods are often very accu-
rate in their results, they usually operate as “black boxes”,
without providing insight into how they work. This often
makes them untrustworthy, since the operator is not confi-
dent about why a method produces the result it produces.
Visual analytics can be used to make AI methods more
transparent and explainable, by visualizing, apart from their
results, the way they work.

This paper presents a novel platform for visual analytics
with two main goals: a) facilitating the creation of custom
visual analytics dashboards through the composition of basic
visualization and AI components, and b) providing visual-
izations that reveal the way specific AI methods work, along
with their results. The architecture of the proposed platform
is based on the concept of components with well-defined
inputs and outputs, that can be linked to each other into
arbitrary workflows. The flow of information between com-
ponents is reactive, meaning that when the inputs of a com-
ponent change, the outputs are automatically re-calculated.
Within this overall architecture, specific visualization com-
ponents are hereby presented which are designed to make
the AI models used more explainable.

2. RELATED WORK

2.1 Visual analytics for air quality manage-
ment

Air quality data involve heterogeneous spatio-temporal
data, hence the visualization becomes challenging. The chal-
lenge is inherent to the nature of the data, since they are
high-dimensional and are produced from different types of
sensors (e.g PM 2.5, CO2, NO2) that are distributed on
different locations. Visual analytics are used to explore, in-
terpret and identify data patterns, and different representa-
tions of the data reveal different aspects of them. Depend-
ing on the use case, simple charts can be used to explore the
evolution of a specific variable or more sophisticated plots,
involving clustering methods, can be deployed to identify
data patterns and their evolution over time.

Specifically, time-series plots are used to depict the evolu-
tion of a single or multiple variables, heatmaps are used to
illustrate the spatial distribution of a variable on a map [7],
bar charts and histograms reveal the parameter distribution
over time [7], colored dots on a map depict the intensity
of the measured parameter based on color coding [7], cir-
cular heatmaps are used to compactly depict the change of
a variable over the course of a month [12], while circular
heatmaps on a map are used to explore the data from a
spatio-temporal point of view [14].

There are also more sophisticated visualizations that are
aimed to experts and data analysts. The Time-Correlation-
Partitioning (TCP) tree is a concise visual representation
depicting the correlations of multiple environmental quality
parameters and their change over time based on information
entropy [8]. Experts of the field can use this representa-
tion to explore correlation variations of air quality variables.
Clustering and dimensionality reduction methods are used
towards effectively visualizing air quality patterns and their
evolution through time. Cluster storyline visualizations rep-
resent air quality patterns based on clusters derived from

data and capture their evolution through time in a time-
line graph [26]. Weighted complete graphs have also been
proposed to depict the total correlation of all dimensions in
data [20]. Polar systems with embedded circular pixel bar
charts have also been proposed as a technique to visualize
multivariate variables and vector variables (e.g wind) [20].

The above mentioned works are ad-hoc dashboards specif-
ically designed for a specific application. Although a custom
dashboard can be designed from scratch for a specific appli-
cation, frameworks exist that facilitate this process. Vega
[3] is a Web visualization library in which a visualization is
composed of scales, axes and marks, while user input can be
propagated through user-defined reactive signals, achieving
interaction between the user and the visualization, as well
as between visualizations. However, Vega does not support
custom data analysis functions and services, which need to
be handled outside the Vega specification. Orange [2] is a
Python-based tool that allows the creation of a data analysis
and visualization workflow, by inserting component blocks
on a canvas and linking them together. The functionality
of Orange is quite close to the functionality of the hereby
proposed workflow-based architecture. However, Orange is
offered as a stand-alone tool, and does not support the com-
position of the multiple components in a dashboard. In the
architecture proposed hereby, our effort is to offer similar
functionalities in a Web environment, allowing the end user
to knit the available components in a custom dashboard.

2.2 Visual analytics for explainable AI
Artificial Intelligence has advanced immensely during the

last years, moving towards the direction of complex and
highly accurate models. As a counter-effect, the created
prediction models are black-boxes even to machine learning
experts, who are not able to fully comprehend why the model
outputted a prediction. This questions the trustworthiness
of a model, especially in critical applications such as medical
diagnoses, where the root cause of the outcome should be
transparent to doctors. Towards this end, the interpretabil-
ity of a model is a vital factor for model deployment in a
critical application, where a solution must be trustworthy
and transparent.

Popular frameworks and methods that explain the pre-
diction of any model (model agnostic), are LIME [21] and
SHAP [16]. LIME is a technique that attempts to pro-
vide model prediction explanation, mostly for image and
text models, by approximating the model with a local inter-
pretable (linear) model trained on samples around the input
sample, and provide as output a list of explanations or im-
age segments, depicting the contribution of each feature to
the prediction. SHAP computes the contribution of each
feature to each prediction using Shapey values from game
theory [16] and provides visualizations that explain individ-
ual feature importance both to individual predictions (e.g
SHAP force plot, SHAP image plot) and to multiple predic-
tions, as well as interaction between features (SHAP feature
summary plot, SHAP dependence plot respectively) [15, 16].

Towards the interpretation of deep neural network (DNN)
models, there are various methods that have been developed
in order to explain the prediction. A group of techniques
create heatmaps indicating the inputs (e.g. pixels of an im-
age) that contribute most to a prediction, based on crite-
ria defined by method, e.g. Sensitivity Analysis heatmaps
[22], Layer-wise Relevance Propagation (LRP) [19], Saliency

maps [23], Integrated Gradients [25], etc. Apart from im-
age recognition, LRP has been applied to DNN models on
applications with spatio-temporal data [24], audio data [6]
and more [19].

In the context of visual analytics tools, ActiVis is an in-
teractive visualization tool for neural network model explo-
ration, featuring neuron activation view, computation graph
overview of the model architecture upon data sample or sub-
set selection [10]. CNNVis is a visual tool to understand and
diagnose convolutional neural networks (CNN), by visualiz-
ing multiple sides of each neuron and the neuron activations
[13]. RNNVis is another visual analytic tool to understand
and diagnose Recurrent Neural Networks and their variants
e.g long short term memory (LSTM), networks and gated
recurrent units (GRU) [18]. For more information on deep
learning visualizations there is an extensive review [9].

3. WORKFLOW-BASED DASHBOARD CRE-
ATION

The problem of custom dashboard design for an IoT appli-
cation can be stated as follows: Given a set of measurements
collected by several IoT sensors scattered in a geographical
area, and a number of AI models applied on the data, create
a dashboard that allows the operator to explore the avail-
able raw measurements and get insight in how the models
work, in order to enhance the operator’s trust on the models.
This description indicates the following requirements for a
dashboard creation system:

• IoT measurements are highly dynamic, with new mea-
surements being collected at real time; the dashboard
should update as soon as new measurements are avail-
able.

• The dashboard should be interactive in order to allow
the operator to engage with the data and explore them.

• The dashboard should provide means to look into the
applied models and visualize their internals, towards
enhancing the transparency and explainability of the
models.

In order to fulfill these requirements, a component-based
architecture is proposed for dashboard design. The architec-
ture is ultimately implemented as a library that can be used
within web applications to facilitate the implementation of
a dashboard. In the proposed architecture, a dashboard is
composed using two types of primitive entities: components
and links.

A component is a basic unit of functionality that accepts
a number of inputs and produces a number of outputs, as
depicted in Fig. 1. A component can also have side-effects,
such as displaying on the screen. In case of components that
display on the screen, user actions on the screen can also be
used to produce the outputs of the component.

An example of a component with no side-effects is the
REST call component, shown in Fig. 2a, which sends a
REST request to a web service. It accepts the request URL,
method, headers and body as its inputs and returns the
service response as its output. An example of a component
with side-effects is the scatterplot component, shown in Fig.
2b, that draws a scatterplot on the screen. It accepts the
data to visualize, the attributes to use for the x and y axes,
and the attributes to use for the point color and size. The

Figure 1: Conceptual view of a component.

(a) REST call (b) Scatterplot

Figure 2: Example components.

outputs are produced when the user performs actions on
the scatterplot on the screen, such as clicking an item or
selecting a rectangular range, in which cases the clicked or
selected items and ranges are sent to the outputs.

Components are reactive: when one of the inputs changes
its value, the outputs that depend on this input are auto-
matically updated. Similarly, when the user performs an
action on the screen that affects some of the outputs, the
outputs are instantly updated. This provides a useful mech-
anism for implementing highly interactive dashboards. Ta-
ble 1 provides a summary of some indicative components
implemented in the proposed architecture.

It should be noted that the components listed in Table 1
do not contain complex data analysis methods, apart from
basic data manipulation. Such components have been de-
liberately left out, due to their high computational needs
that would slow down a client-side implementation of the
architecture. Instead, in our implementation, methods such
as prediction, classification, regression, clustering, etc. have
been separated and made available as web services, which
can be readily called through the “RESTCall” component.

The power of the proposed architecture comes when com-
ponents are linked to each other in a workflow. A link con-
nects the output of a component to the input of another, as
depicted in Fig. 3. In this example, the data returned as
the response of the REST call component are provided as
the “data” input of the scatterplot component. If the other
necessary inputs of the components are specified, the data
will be visualized in a scatterplot view. The advantage of
the reactive nature of the components is that once an input
of the REST component changes, thus returning a different
response, the scatterplot will be automatically updated to
display the new data. A transformation function can be as-
signed to a link, in order to transform the data from the
source before arriving at the target input.

A workflow can be specified in a declarative manner, as a
JSON document, describing the components and the links
between them. A component is given a unique name and is
instantiated by specifying its type (one of the types of Table
1), any arguments necessary for the instantiation of the com-
ponent (e.g. its container HTML element) and any default
values for its inputs. A link is specified by the source output,

Table 1: Indicative implemented components in the proposed architecture.

Category Component Functionality
Data loading DSVLoader Loads a DSV file as a JSON object.
Data loading RESTCall Makes a REST call and returns the result.
Data loading WebSocketConnection Gets data from a web socket stream.
Data manipulation Transformation Transforms its input using a custom transformation function.
Data manipulation Combination Combines multiple inputs into a single output object.
Data manipulation Filter Filters data based on a data attribute and a condition.
Visualization Datatable Creates a data table view using the jQuery Datatables library.
Visualization BarPlot Creates a bar chart using the Vega library.
Visualization LinePlot Creates a line plot using the Vega library.
Visualization ScatterPlot Creates a scatterplot using the Vega library.
Visualization Heatmap Creates a heatmap view using the Vega library.
Visualization ForceDirected Creates a force-directed graph layout using the Vega library.
Visualization MapView Creates a map view using the Leaflet library.
Visualization AnnotatedLineChart Creates an annotated line chart (see Section 4.1).
Visualization SHAPChart Creates a SHAP chart (see Section 4.2).
Input controls HTMLSelect Creates an HTML select box.
Input controls HTMLSlider Creates an HTML slider.

Figure 3: Link example.

the target input and an optional transformation function to
transform the data from the source to the target. An exam-
ple JSON specification of a workflow, corresponding to the
example of Fig. 3 can be seen below.

{
"components": {

"restCall": {
"type": "RESTCall",
"defaults": {

"url": "http :// my_web_service.json",
"method": "GET"

}
},
"scatterplot": {

"type": "ScatterPlot",
"args": ["scatterplotContainerDiv"],
"defaults": {"xAttr": "x", "yAttr": "y"}

}
},
"links": [

{
"from": "restCall.response",
"to": "scatterplot.data"

}
]

}

The proposed architecture has been implemented as a
JavaScript library that can be imported in web applications.
The inputs and outputs of each component are implemented
as reactive streams using the RxJS1 library. Individual vi-

1https://rxjs-dev.firebaseapp.com/

sualization and data manipulation components use libraries
such as D32, Vega3 and Leaflet4. It should be noted that
a workflow defines functionality, not appearance. It defines
which components to use and how to link them but does not
specify where the components will be placed on the screen
and how they will appear; this is left to HTML, CSS, etc.
Procedures are currently ongoing for releasing the library as
an open-source project.

4. COMPONENTS FOR VISUALIZING EX-
PLAINABLE MODELS

Within the overall architecture described above, compo-
nents can be designed that serve specific visualization pur-
poses. The components developed in the context of the
AI4EU project should provide comprehensive information
and analysis results to the human viewer, as well as in-
sights in the ways that the AI models work. The latter
is relevant to the guidelines for explainable and trustworthy
AI, which are central in the AI4EU concept. This section
presents the visualization components implemented hereby
to address these purposes.

4.1 Annotated line chart
The proposed annotated line chart allows the user to see

which parts of a time-series influence most the result of a
prediction model. Existing visualizations for text prediction
and image classification [21] highlight the areas (letters or
pixels) that mostly affect the prediction, so that the user can
decide whether the algorithm works in an expected manner
or not. The annotated line chart uses the same principle
in the context of time-series visualization, highlighting the
time instances that mostly affect the predicted values.

An example annotated line chart can be seed in Fig. 4.
The chart depicts a time-series of a particular measurement
of interest, such as particle concentration in the air. The
historical measurements are depicted as a solid line, while
predicted values, here by an ARIMA model, are depicted as

2https://d3js.org/
3https://vega.github.io/vega/
4https://leafletjs.com/

Figure 4: Example of annotated line chart.

white dots connected with dashed lines. The 95% confidence
interval for each prediction is illustrated as a shaded area
around each point.

In order to add information about how the ARIMA model
makes its predictions, the chart is enhanced as follows. When
the user moves the mouse pointer over one of the predicted
points (bottom of Fig. 4), the historical measurements used
to produce this prediction are highlighted, according to the
corresponding weight learned by the model (m highlighted
moments for an m-order auto-regressive model). Positive
weights are colored in green and negative weights in red,
while larger absolute values are colored in higher opacity.

In this manner, areas of high opacity denode the time in-
stances that mostly affect the selected prediction. In the
example of Fig. 4, the most opaque time instance (the vivid
green bar) appears 7 time intervals before the selected pre-
diction, which coincides with the dominant period of the
time series (7 intervals), indicating that instances at the
same position in the previous period are highly relevant to
the current prediction. This behaviour seems expected on
behalf of the ARIMA model; if a rather accurate prediction
was produced using time instances that seem irrelevant, the
model could be questioned for over-fitting.

4.2 SHAP chart
The SHAP framework [16] provides a consistent method-

ology to evaluate the contribution of each classifier input
(feature) to the final predicted output as it was aforemen-
tioned in Section 2.2. SHAP has initially been implemented
to provide explanations for a machine-learning model pre-
dicting hypoxaemia event risk factors during general anaes-
thesia [17]. As it is noted in this study, hypoxaemia risk
estimation accompanied with explanations was really use-
ful for doctors performing surgery, since they were able to
evaluate the risk estimation and decide whether or not the
estimation is consistent with their knowledge and hence re-
gard it as trustworthy.

SHAP values measure the contribution of each individ-
ual feature to the prediction that a machine-learning model
made, with the exact method of computing them described
in [15, 16]. The relation between SHAP values and predic-
tion is straight-forward; given an input feature vector, the
predicted value is equal to the sum of all SHAP values of the
input vector plus a base-reference value, that is the expected
model outcome given no input [15]. Hence the name SHAP,

Figure 5: Example of a SHAP summary plot.

that stands for SHapley Additive exPlanation.
SHAP summary plots [15] illustrate the distribution of

feature importance, given a trained model and a dataset.
Each classifier (feature vector) input is represented as a col-
ored dot, with the color indicating the value of that feature.
A dot is placed on the x-axis, according to the contribution
of that feature to the final model outcome, and can have
either positive or negative contribution. With the SHAP
summary plot we can infer which are the most important
features that the model relies on, and how high and low
feature values impact feature importance. Fig. 5 provides
an example plot. The vertical axis corresponds to the dif-
ferent features used, while the horizontal axis to the SHAP
values. The top features exhibit large absolute SHAP val-
ues, which indicates that they are important for the specific
model, while features at the bottom do not contribute much.

5. PILOT APPLICATION
As an example application of the proposed architecture

and components, a dashboard has been created for the AI4IoT
pilot of the AI4EU project, focusing on air quality monitor-
ing. The overall purpose of the pilot is to make use of IoT
sensors to make assessments and predictions of air quality.
A detailed description of the pilot can be found in [4].

5.1 Data sources
The pilot is run in Trondheim, Norway, a city with around

200,000 inhabitants. Air quality in Trondheim is usually
fine, but there is a high variation, and days of severe pollu-
tion can occur, especially during the winter. The available
data include pollutants from the Norwegian Environment
Agency5 measured by industrial sensors, weather data from
the Norwegian Meteorological Institute6, and traffic data
from the Norwegian Road Authorities7 counted by induc-
tive loops.

The pilot site includes three stations for measuring pol-
lutants and one station for measuring weather parameters.
In addition, a number of traffic counting stations, 35 in to-
tal, are used to record traffic-related parameters, such as
the number of passing vehicles in both driving directions.
More details on the dataset is available in [11]. In addition,

5https://api.nilu.no/
6https://frost.met.no/
7https://www.vegvesen.no/trafikkdata

trials with portable air-quality micro-sensing units are on-
going. These units consist of a board with sensors reporting
temperature, humidity, PM 10, PM 2.5, NO2 as well GPS
coordinates. This board has an integrated modem that sup-
ports both LTE-M and NB-IoT connectivity. So far only off-
the-shelf low-cost micro-sensors (in the price range less than
USD 40) have been used in these designs. The initial test of
the data quality of sensors from the unit developed in this
project (compared to an industrial sensor of particle dust
in the same location) has indicated that the measurements
were influenced by variations in temperature, humidity and
pollutant levels. So far these data have not been included for
training prediction models in this project. The future plan
includes systematic testing of more micro-sensors. It also in-
cludes combination of the mentioned public data with other
datasets (e.g. cleaning actions by municipality, installed fire-
places, people mobility data).

5.2 Machine Learning methods used
In previous work [11], we experimented with a variation of

machine learning methods and included additional features
in order to improve the prediction of NOX, CO2, PM2.5
and PM10 forecasts. We used ARIMA as baseline and com-
pared its result with Ridge, Random Forest, Gradient Boost-
ing, and Dropouts meet Multiple Additive Regression Trees
(DART) following a multi-output strategy of the single tar-
get regressors. We also added deep learning approaches to
the experiments, namely Multilayer Perceptrons (MLP) and
Gated Recurrent Units (GRU), which are both designed
for multi-output regression to compare all the mentioned
models with deep learning. When creating the models we
also incorporated other data sources in the air quality data
set such as weather observations, traffic volume count, and
wood burner data set. The experiments showed that DART
has the strongest results of predicting the overall air quality
for all the pollutants (PM2.5, PM10, NO2) when predicting
both 24 and 48 hours ahead. Further, we found that GRU
can classify sudden changes better than the other methods.

Although the accuracy of the above mentioned methods
is important, explaining why the used models perform as
they perform is equally important to make trustworthy es-
timations. In our study, we have so far used the ARIMA
and Random Forest methods as case studies of how visu-
alization can help in this direction, as can be seen in the
following example. Further experimentation with the other
types of models will be considered in the future.

5.3 Example dashboard
An example dashboard created using the proposed archi-

tecture is depicted in Fig. 6. Its purpose is to visualize the
concentration of air pollutants over time in multiple geo-
graphical areas, as well as to show the correlations between
measurements of different areas, which may be indications
for major sources of pollution. At a different level, the dash-
board illustrates the usage of the proposed architecture to
design a custom analysis.

A map of the area around Trondheim is displayed in the
top left part, showing the locations of the four stations gath-
ering pollutant and weather information. The heatmap layer
shows the values of a selected pollutant at a specific point in
time. Below the map, three line charts depict monthly aver-
ages of the three main pollutants of interest (PM 10, PM2.5
and NO2) through time, in a selected area on the map, along

with the predictions made by an ARIMA model. The anno-
tated line chart type described in Section 4 has been used, in
order to depict the predictions as well as the model weights.

The map and the line charts are linked: when the user
clicks on the map, the line charts are updated to show
the measurements for this specific area; similarly, when the
user clicks on a time instance in one of the line charts, the
heatmap layer of the map is updated to show the correspond-
ing pollutant measurements at this time instance. This link-
ing is achieved by connecting the corresponding outputs of
the map component to the necessary inputs of the line chart
components, and vice versa, through any appropriate inter-
mediate transformations. The dashboard designer can add
such links at any time, in order to make one component
react to the changes of another.

The right panel displays an analysis of the importance of
geographical areas in model predictions. To make the pre-
sentation clearer, we start from the bottom. A SHAP chart
(see Section 4) shows the significance of the measurements
of different areas in predicting the next value of a selected
parameter. The SHAP chart uses weekly averages of the
measurements. The user selects an area on the map and
one of the pollutant types. The corresponding time-series
is used as the target values for a Random Forest regression
model, while the measurements of the same pollutant in the
other areas are used as predictors. A number of lagged time
instances from all time series is used as the predictor fea-
tures. The SHAP values of the predictions for all features
are displayed in the SHAP chart. The features are ordered
according to the variance of the SHAP values in each fea-
ture: high-variance features at the top contain several large
absolute SHAP values, i.e. they largely influence the pre-
dictions.

At the top right part, a heatmap depicts the correlations
among areas. For each area of the vertical axis, a SHAP-
based analysis has been performed for the selected pollutant
and lag number, similar to the one that produced the SHAP
chart. The considered features are listed in the heatmap’s
horizontal axis. The variances of the SHAP values for each
considered feature are used to color the heatmap cells, nor-
malized per area. A high cell value means that the corre-
sponding feature of the horizontal axis is important to make
predictions about the pollutant in the corresponding area of
the vertical axis. In the example shown that uses 2 lags, we
can see that most influence for an area comes from the same
area with a lag of 1 time interval, which is rather expected.
In addition, we can see that the features of the E6-Tiller area
are rather important for predictions in all areas, which may
indicate a central role of this area in pollutant monitoring.
The operator can first use this heatmap for an overview of
influences between areas, and then focus on a specific area
to see in detail why the influences are such, by viewing the
corresponding SHAP chart below.

The different parts of the dashboard are implemented as
components of the proposed architecture described in Sec-
tion 3. The workflow that provides the functionality for this
dashboard is depicted in Fig. 7. Components that render
visualizations or controls on the screen are colored in or-
ange, those that call external web services are colored in
green and those that perform intermediate transformations
and manipulations are colored in blue.

6. CONCLUSIONS

Figure 6: Example dashboard.

Figure 7: Workflow behind the dashboard of Fig. 6.

This paper presented a proposed architecture for the de-
sign of custom interactive visual analytics dashboards, which
can find usages in applications employing large amounts of
data, such as IoT applications. In the proposed architec-
ture, each (visible or not) part of a dashboard is considered
as a component performing a focused set of operations with
well-defined inputs and outputs. This allows components to
be linked to each other and form custom reactive workflows

defining the logic behind a visual analytics dashboard. Vi-
sualization methods can be designed as components to cover
specific needs and be readily used within workflows. In this
paper, two components have been specifically designed to-
wards achieving explainability in AI models: the Annotated
Line Chart visualizes the parameters of an ARIMA predic-
tion model, while the SHAP Chart provides insight in the
most significant features used for Random Forest regression.
Such visualizations provide hints into how the analysis out-
come is produced, which can be of assistance to the operator
in trusting the models.

The work presented is work in progress. The proposed
architecture is generic enough to include any functionality
that can be structured in a component form, providing a ba-
sis for further development. New visualization components
will be considered in the future, especially ones relevant to
the explainability of AI models such deep neural networks.
Other types of data available in the pilot, such as weather
and traffic data, will be used to explore different types of
models and visualizations. Furthermore, the implementa-
tion of the architecture as a library permits its inclusion in
other projects as well. Existing component-based visual ana-
lytics platforms, such as VisualBox [5], can benefit from the
input-output specification imposed by the proposed archi-

tecture and by the linking mechanism between components.
We will examine the integration of our proposed platform in
such projects in the near future.

7. ACKNOWLEDGMENTS
This work is part of the AI4EU project (www.ai4eu.eu),

funded from the EU Horizon 2020 research and innovation
programme, under the Grant Agreement No 825619.

8. ADDITIONAL AUTHORS

9. REFERENCES
[1] European project AI4EU. https://www.ai4eu.eu/,

September 2019.

[2] Orange - Data Mining Fruitful and Fun.
https://orange.biolab.si/, September 2019.

[3] Vega - A Visualization Grammar.
https://vega.github.io/vega/, September 2019.

[4] S. Akselsen, P. E. Aurdal, K. Bach, J. P. Costeira,
I. Kalamaras, A. J. Lepperød, P. Lima,
I. Martinkenaite, O. J. Mengshoel,
A. Munch-Ellingsen, H. T. Nguyen, D. Tzovaras,
T. Veiga, K. Votis, L. Wienhofen, W. Zhang, and
P. Øzturk. On the need for explanations, visualisations
and measurements in data-driven air quality
monitoring and forecasting. In 1st International
Workshop on Evaluation and Benchmarking of
Human-Centered AI Systems (EBHAIS-2019), 2019.

[5] P. E. Aurdal. VisualBox – A Generic Data Integration
and Visualization Tool. Master’s thesis, The Arctic
Univeristy of Norway (UiT), Tromsø, Norway, 2019.

[6] S. Becker, M. Ackermann, S. Lapuschkin, K.-R.
Müller, and W. Samek. Interpreting and explaining
deep neural networks for classification of audio signals.
arXiv preprint arXiv:1807.03418, 2018.

[7] P. Chen. Visualization of real-time monitoring
datagraphic of urban environmental quality.
EURASIP Journal on Image and Video Processing,
2019(1):42, 2019.

[8] F. Guo, T. Gu, W. Chen, F. Wu, Q. Wang, L. Shi,
and H. Qu. Visual exploration of air quality data with
a time-correlation-partitioning tree based on
information theory. ACM Transactions on Interactive
Intelligent Systems (TiiS), 9(1):4, 2019.

[9] F. M. Hohman, M. Kahng, R. Pienta, and D. H. Chau.
Visual analytics in deep learning: An interrogative
survey for the next frontiers. IEEE transactions on
visualization and computer graphics, 2018.

[10] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P.
Chau. Activis: Visual exploration of industry-scale
deep neural network models. IEEE transactions on
visualization and computer graphics, 24(1):88–97,
2017.

[11] A. J. Lepperød. Air Quality Prediction with Machine
Learning. Master’s thesis, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway,
2019.

[12] H. Li, H. Fan, and F. Mao. A visualization approach
to air pollution data exploration - a case study of air
quality index (PM2.5) in Beijing, China. Atmosphere,
7(3):35, 2016.

[13] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu.
Towards better analysis of deep convolutional neural
networks. IEEE transactions on visualization and
computer graphics, 23(1):91–100, 2016.

[14] W. Lu, T. Ai, X. Zhang, and Y. He. An interactive
web mapping visualization of urban air quality
monitoring data of China. Atmosphere, 8(8):148, 2017.

[15] S. M. Lundberg, G. G. Erion, and S.-I. Lee.
Consistent individualized feature attribution for tree
ensembles. arXiv preprint arXiv:1802.03888, 2018.

[16] S. M. Lundberg and S.-I. Lee. A unified approach to
interpreting model predictions. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc., 2017.

[17] S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe,
M. J. Eisses, T. Adams, D. E. Liston, D. K.-W. Low,
S.-F. Newman, J. Kim, et al. Explainable
machine-learning predictions for the prevention of
hypoxaemia during surgery. Nature biomedical
engineering, 2(10):749, 2018.

[18] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song,
and H. Qu. Understanding hidden memories of
recurrent neural networks. In 2017 IEEE Conference
on Visual Analytics Science and Technology (VAST),
pages 13–24. IEEE, 2017.

[19] G. Montavon, W. Samek, and K.-R. Müller. Methods
for interpreting and understanding deep neural
networks. Digital Signal Processing, 73:1–15, 2018.

[20] H. Qu, W.-Y. Chan, A. Xu, K.-L. Chung, K.-H. Lau,
and P. Guo. Visual analysis of the air pollution
problem in Hong Kong. IEEE Transactions on
visualization and Computer Graphics,
13(6):1408–1415, 2007.

[21] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should
I trust you?: Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and
data mining, pages 1135–1144. ACM, 2016.

[22] W. Samek, T. Wiegand, and K.-R. Müller.
Explainable artificial intelligence: Understanding,
visualizing and interpreting deep learning models.
arXiv preprint arXiv:1708.08296, 2017.

[23] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep
inside convolutional networks: Visualising image
classification models and saliency maps. arXiv
preprint arXiv:1312.6034, 2013.

[24] I. Sturm, S. Lapuschkin, W. Samek, and K.-R. Müller.
Interpretable deep neural networks for single-trial
EEG classification. Journal of neuroscience methods,
274:141–145, 2016.

[25] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic
attribution for deep networks. In Proceedings of the
34th International Conference on Machine
Learning-Volume 70, pages 3319–3328. JMLR. org,
2017.

[26] Z. Zhou, Z. Ye, Y. Liu, F. Liu, Y. Tao, and W. Su.
Visual analytics for spatial clusters of air-quality data.
IEEE computer graphics and applications,
37(5):98–105, 2017.

