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Abstract. Checklists are used in a variety of different applications,
such as aviation, health care or labour inspections. However, optimiz-
ing a checklist for a specific purpose can be challenging. With labour
inspections as a starting point, we introduce the Checklist Construction
Problem. To address the problem, we seek to optimize labour inspection
checklists in order to improve the working conditions in every organisa-
tion targeted for inspections. To do so, we introduce a hybrid framework
called BCBR to construct trustworthy checklists. BCBR is based on case-
based reasoning (CBR) and Bayesian inference (BI) and constructs new
checklists based on past cases. A key novelty of BCBR is the use of BI
for constructing new features in past cases to promote trustworthiness
of the BI estimates. The augmented past cases are retrieved via CBR
to construct checklists, which ensures justification for the content of the
checklists. Experiments show that BCBR outperforms any other baseline
we tested, in terms of constructing trustworthy checklists.

Keywords: Bayesian CBR · Feature construction · Checklist.

1 Introduction

Fig. 1. Conceptual view of NLIA’s procedure

Context. Every year more than
three million workers are victims
of serious accidents causing more
then 4000 deaths due to poor work-
ing conditions in EU alone3. World-
wide, it has been estimated that
there are at least 9.8 million people
in forced labour (2005) [2]. The most important measure to prevent poor work-
ing conditions is regulations. Regulations are usually enforced through labour
inspections, which makes them a vital part of the strategy employed by many
countries to ensure good health, safety, decent work conditions and well-being for

3 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC033
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workers (see UN’s SDGs 3, 8 and 164). Hence it is important that governmental
agencies carry out inspections efficiently at large scale.

To identify poor working conditions, the labour inspection agencies use sur-
veys to check individual organisations for non-compliance [24]. Such procedures
vary between different countries and we will use the Norwegian Labour Inspec-
tion Authority (NLIA) as an example. NLIA’s inspection procedure is shown
in Figure 1. It consists of a checklist which is a set of control points that are
answered during the inspection. Every control point is a question that corre-
sponds to a specific regulation. The answer to each question indicates whether
the inspected organisation is compliant or not. These answers provide a basis
for reactions if non-compliance is found. Checklists for quality assurance are also
used in other domains such a health (e.g. surgery) or flight procedures to ensure
high accuracy of due diligence, and success often relies on applying checklists [5].
Challenges with checklists. Currently, labour inspection agencies operate
with a limited, fixed number of static procedures or checklists targeting spe-
cific industries that organisations belong to. The inspectors select the checklist
they subjectively believe is most relevant to the organisation they are visiting.
A drawback with this approach is that the selected checklist can be poorly opti-
mized for its target, while also being limited in terms of scope. This may prevent
the inspections from fulfilling their purpose of addressing high risks to the work-
ers’ health, environment and safety. Checklists used for other applications such
as aviation and health care may have similar problems where poorly optimized
checklists can suffer from compatibility issues with users or contexts [5, 7]. This
can have a negative effect on the users’ motivation to use the checklists.

Contributions. We introduce the Checklist Construction Problem (CCP): Sup-
pose that we have N unique questions with yes/no answers, where the answer
to each question has an unknown probability distribution. Given the questions,
construct a checklist for a target entity by selecting K unique questions that
maximize the probability for obtaining no-answers.

This problem could be applied to any domain where checklist optimization is
an issue, such as healthcare or aviation. In these domains, the N unique questions
may be designed to accomplish a specific task such as surgery or flight check and
the target entity may be a patient or an aircraft. Any question with a likely no-
answer should then be on the surgery or flight checklist so that yes-answers are
obtained instead.

As a starting point for solving CCP, we introduce BCBR, which is a frame-
work based on Bayesian inference (BI) and case-based reasoning (CBR) for con-
structing new checklists optimized for a target entity. For this work, BCBR is
used to address the CCP for labour inspections. BCBR uses CBR to retrieve
control points from checklists which have been used in past cases to survey or-
ganisations similar to the target organisation. BI is used to construct features in
past cases which ensures that the retrieved control points have high probabili-
ties for non-compliance. The approach starts with a data set of cases containing
organisations and control points from previously used checklists. New features

4 https://sdgs.un.org/
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are then constructed by means of BI and added to each row in the data set to
create augmented cases. The augmented cases are added to a case base which is
queried using similarity based retrieval. The query contains a target probability
and organisation, which is used to retrieve cases containing the control points
(questions) for a new checklist (solution).

From a technical perspective, the use of augmented cases is a key novelty of
BCBR that can be viewed as a data-driven approach that uses feature construc-
tion to embed solution knowledge in cases for case retrieval in CBR [8, 15, 18].
The use of BI to estimate probability ensures transparency because the estimates
are made by counting cases in the data set. The use of similarity based retrieval
also promotes trustworthiness and ensures justification of the BI estimates be-
cause they are related to past cases. Trustworthiness is important to ensure user
compliance with the checklists. The core contributions of this paper are:

– We introduce a formal definition of the Checklist Construction Problem and
a new data set of previously used control points collected from NLIA’s labour
inspections between 2012 and 2019.

– We present the details for BCBR, which is designed for constructing check-
lists based on CBR and Bayesian inference. The key motivations behind this
are trustworthiness and interpretability.

– We establish an approach for evaluating the checklists constructed by BCBR.
The framework is then empirically compared to baselines. The results show
that BCBR constructs more efficient checklists than the baselines.

2 Related work

Hybrid frameworks based on CBR and BI for explanations. There are
multiple examples of frameworks with combinations of CBR and BI to address
uncertainty for applications where some prior belief or information is available.
Such frameworks also provide explanations, where CBR has been used to achieve
explanation goals [22] or generate explanations [19]. Nikpour et al. [18] use
Bayesian posterior distributions to modify or add features to input case de-
scriptions to increase accuracy of similarity assessments in case retrieval. They
also use the same approach to provide explanations for case failures in different
domains [17]. This approach is similar to BCBR, but BCBR constructs new fea-
tures which are also added to the case base-cases. Kenny et al. [12] also use a
combination of BI and CBR to exclude outlier cases from case retrieval and to
provide explanations by examples. The purpose of the framework is to predict
grass growth for sustainable dairy farming. Gogineni et al. [9] combines CBR and
BI to retrieve and down-select explanatory cases for underwater mine clearance.
Similarity based retrieval for trustworthiness. Lee et al [13] replaced the
output layer of a neural network with k-nearest neighbor (kNN) to generate
voted predictions and find the nearest neighbor cases to explain the predictions.
This also guarantees that every prediction can be justified by a relevant past
explanatory case. The justification via explanatory cases promotes trustworthi-
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ness, according to the authors. BCBR is also based on the same principle where
BI predictions are justified by being embedded in past cases as features.

Trustworthy case-based recommender systems. BCBR aims to select a
subset of all possible control points for a new checklist. Similarily, in recom-
mender systems, a user is recommended a subset of items from the space of all
possible items. Such systems can be divided into two classes: collaborative and
case-based (content or user-based) recommender systems [3], where the latter
could be described as a relevant approach to solve our problem. The case-based
approach has been used to predict running-paces for different stages in ultra
races, based on cases from similar runners in past cases [16]. CBR has also been
used to provide explanatory cases for black-box recommender systems to achieve
justification [4, 10]. Explanations for such systems can also be created through
relations between features (concepts) [11]. However, the quality of explanations
for black-box systems in terms of transparency, interpretability and trustworthi-
ness can still be questionable [20]. Some authors also suggest to avoid explainable
black box models in cases where they are not needed [21] and to use transparent,
interpretable models for high-stakes decision making [20].

Summary. Although there are methods and frameworks aiming to achieve goals
similar to ours, these are designed for other problems or purposes that do not
have much in common with the Checklist Construction Problem. However, some
of the principles and ideas are used for our work.

3 Data set and problem definition

Name Description Type

xisc Industry subgroup code Ordinal
xigc Industry group code Ordinal
xic Industry code Ordinal
xiac Industry area code Ordinal
ximac Industry main area code Categorical
xmnr Municipality number Ordinal
xfyl Fylke (county) Categorical
id Past checklist id Integer
l Non-compliance Binary
e Control point Categorical

Table 1. Description of a case in the data set.

We introduce a new data set of con-
trol points used in previous inspec-
tions conducted by NLIA. The data
set consists of 1,075,126 entries
from inspections conducted be-
tween 01/01/2012 and 01/06/2019.
Embedded in these entries are N =
1967 unique control points from
checklists used in 59,989 inspec-
tions. The entire data set will be
made available after an eventual
acceptance for publication. The fol-
lowing definitions can be derived from the data set.

Data set and cases. A data set D for variables Z is a tuple (d1, ...,dN ) where
a case dj ∈ D is an instantiation of Z [6]. A case can be defined as a tuple
d = (e,x, l) where e denotes a control point which is a question of a checklist, x
is an organisation and l ∈ {0, 1} denotes non-compliance. A case in the data set
can be viewed as a past experience where a question e has been applied to x to
obtain the answer l. A case description is shown in Table 1. Cases in the data
set may be identical (share the same e, x and l) if they have different ids.
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Fig. 2. Industry and location hier-
archies of an organisation, includ-
ing an example.

Entity. Every case in the data set contains
an entity description in the form of an organi-
sation x, defined by its location and industry.
The features are organised according to Figure
2. An organisation can be implicitly defined as
x = (xmnr, xisc), since the other features of x
are located higher in the hierarchies.
Question. Each case in the data set contains
a question in the form of a control point e,
which consists of a text formulated as a yes/no
question used to survey x.
Checklist. Each case in the data set has an
id which maps to a checklist y (past solution)
used to survey the organisation x in a past inspection5. A checklist is defined
as a set of control points such that y = (e1 ∈ d1, e2 ∈ d2...en ∈ dn). A control
point can only occur once per checklist such that ei 6= ej for every ei ∧ ej ∈ y.
The checklists contain around 15 unique control points on average and the size
of the checklists varies according to the location and industry.
Answer. The label l of each case in the data set is the recorded answer from
applying the control point e to the entity x. This represent the answer of the
control point where l = 1 means that non-compliance has been found, while
l = 0 means that x is compliant.

Fig. 3. An overview of CCP.

The Checklist Construction Problem. The
problem is shown on Figure 3. Given a target
entity xcnd (organisation), a model M needs to
select K unique questions (e1, e2, ..., ek) (control
points) for a candidate checklist ycnd. Each ques-
tion ei ∈ ycnd needs to be selected so that it
maximizes the probability for observing the an-
swer li = 1(non-compliance) when applied to the
target entity xcnd.

4 BCBR framework

An overview of the BCBR framework is shown in Figure 4. The motivation for the
framework is to solve the CCP problem and to ensure that every ei ∈ ycnd can be
justified by a relevant past experience (see Section 5.3). The framework can be
described by the following three steps: (1) A naive Bayesian inference method
is used to generate two probability estimates (θbexisc

and θbexmnr
) for every case

dj ∈ D. The estimates are generated by counting cases with the same question
and entity description as dj . This ensures transparency for the estimates. (2)
A case base CB of augmented CBR cases cj is created. Each case cj ∈ CB is
created by adding both estimates as features to each dj ∈ D. (3) A query q is

5 id is used to index a pair (y,x)id of the data set.
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defined, which contains a target entity xcnd and target values for the probability
estimates. The query is used to retrieve a selection of K cases from CB. Each
case contains a question ei for the candidate checklist ycnd.

Fig. 4. An overview of the BCBR framework

4.1 Naive Bayesian inference

When prior knowledge or belief is available, it is possible to use BI to esti-
mate empirical distributions from a data set by counting cases. BI replaces the
standard maximum likelihood method for doing so and addresses inaccurate em-
pirical estimates caused low or zero case counts (”Zero count problem”) [6]. The
problem may have a negative impact on the quality of the K answers selected by
BCBR. To further deal with this problem we use Naive Bayesian inference (NBI)
which generates two probability estimates instead of just one. A derivation for
this follows below.
Estimating the empirical probability for l. By using the definitions from
Section 3, the empirical distribution of a data set D can be defined as:

θD (α) =
D#(α)

N
(1)

where D#(α) is the number of cases in the data set D which satisfy the event
α [6]. From the expression above, the probability for l = 1 can be calculated
given x and e:

θD (L = 1|α) =
θD (L = 1 ∧ α)

θD (α)
=
D#(L = 1 ∧X = x ∧ E = e)

D#(X = x ∧ E = e)
(2)

where alpha is rewritten as α = (X = x) ∧ (E = e). That is, the event where
the entity description is given as x and the question is given as e.
Naive Bayesian Inference for estimating the probability for l. The pos-
terior probability for an event L = 1|α can be expressed as the mean of a Beta
distribution according to the formula below [6]:

θbe(L = 1|α) =
D#(L = 1 ∧ α) + ψL=1|a

D#(L = 1 ∧ α) + ψL=1|a +D#(L = 0 ∧ α) + ψL=0|α
(3)

where ψ is a set of prior belief parameters and where (D#(L = 1∧α) +ψL=1|a)
and (D#(L = 0 ∧ α) + ψL=0|a) are the parameters for a Beta distribution.
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From the components xisc and xmnr of x, two NBI probability estimates θbexisc

and θbexmnr
can be obtained from Equation 3 by substituting α: θbexisc

= θbe(L =
1|(Xisc = xisc ∧ E = e)) and θbexmnr

= θbe(L = 1|(Xmnr = xmnr ∧ E = e)).
Using two probability estimates instead of one is an effective measure against
low case counts because D#(Xisc = xisc ∧ E = e) ≥ D#(X = x ∧ E = e) and
D#(Xmnr = xmnr ∧ E = e) ≥ D#(X = x ∧ E = e). The approach is ”naive”
since it assumes that xmnr and xisc are independent given l and e.

4.2 Case base and retrieval

Algorithm 1 Creation of a case base
CB with cases c

Input: D;
Output: CB ← ();
for each dj ∈ D do

//(x(isc,j), x(mnr,j), ej) ∈ dj

θbexisc
← θbe(L = 1|(x(isc,j), ej);

θbexmnr
← θbe(L = 1|(x(mnr,j), ej);

cntxmnr ← D#(L = 1 ∧ Xmnr =
x(mnr,j) ∧ E = ej);

cntxisc ← D#(L = 1 ∧ Xisc =
x(isc,j) ∧ E = ej);

c ← Join(dj , θ
be
xmnr

,θbexisc
,

cntxmnr , cntxisc);
CB ← Join(CB, c);

end for
return CB;

This section defines the details for the
augmented CBR cases, case base and
similarity based retrieval from Figure 4.

Augmented CBR case and case
base. Algorithm 1 shows the creation of
a case base CB with augmented cases
c. The algorithm includes two additional
features: cntxmnr

and cntxisc
. The fea-

tures are included to adjust for the case
counts of the probability estimates when
retrieving cases. The values for the prob-
ability and cnt-features are estimated
from D, given x(mnr,j), x(isc,j) and ej
from dj ∈ D. The features are added to
dj to form a case c for CB. An example
showing the specific features of the aug-
mented cases can be found in Section 4.3.

Case retrieval and similarity function. The similarity based retrieval is
implemented by using the myCBR tool [1]. To retrieve questions ei for the can-
didate checklist ycnd, a query case q and similarity function is used. The query
consists of the target entity xcnd and the desired values for both the probabil-
ity estimates and the case count features. A similarity function assigns a score
Sim(·, ·) ∈ [0, 1] to every pair (q, cj ∈ CB). A set of unique ei for ycnd is
then retrieved from the K cases with the highest similarity score. The similarity
function is defined according to the equation below.

Sim(q, cj) =
1∑
wi

∑
i

wi · simi(q, cj). (4)

Where wi is a weight, simi is a local similarity function and i denotes a feature
common to the query and the case. Each local similarity function in Equation
(4), yields a score [0, 1] for each feature (i) according to the similarity simi(q, cj)
between the cases q and cj . The local similarity functions and the weights are
defined by a domain expert for the purpose of this work. They can be found in
Section 5.1.
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4.3 Example: NBI estimates, case retrieval and CBR case

NBI estimates. Let xisc = 22.230, xmnr = 1507 be features of an entity
description x and e =”Did the employer make sure to equip all employees who
carry out work at the construction site with a HSE card?” be a question of a
case d ∈ D. The prior parameters are ψL=1|α = 1 and ψL=0|α = 5 because l = 1

is observed in approximately 1 of (1+5) cases. Given this information, θbexisc
is

estimated by counting cases d in data set D that satisfy Xisc = xisc and E = e.
Applying α = (X = xisc ∧ E = e) to Equation 3 yields: θbexisc

= 1+1
1+2+6 ≈ 22%.

Feature w Query 1 Case 1 Query 2 Case 2

xisc 1 22.230 22.230 22.230 22.230
xigc 2 22.23 22.23 22.23 22.23
xic 2 22.2 22.2 22.2 22.2
xiac 2 22 22 22 22
ximac 2 C C C C
xmnr 2 1507 1507 1507 1507
xfyl 2 MoM MoM MoM MoM
l 0 - 0 - 0
e 0 - e1 - e2
θbexisc

9 100% 22% - 7%

θbexmnr
4 100% 32% - 7%

cntxisc 1 70 1 - 0
cntxmnr 1 70 89 - 30
Sim - 0.546 - 0.448

Table 2. Description of case features, similarity
weights, query and retrieved case for the example.

This estimate is more accu-
rate than the empirical proba-
bility estimate, which is θxisc =
1

1+2 ≈ 33% (Eq. 2). The differ-
ence can be explained by low
case count, which affect the
quality of both the Bayesian
and empirical estimates.

The same procedure is used
to calculate: θbexmnr

= 89+1
89+186+6 ≈

32%. In this case the Bayesian
estimate is approximately the
same as the empirical proba-
bility estimate, since the case
count is high. The estimates are
used to create an augmented
CBR case c, which happens to
be Case 1 in Table 2.
Case retrieval and augmented CBR case. For this example we assume
that a case base of CBR cases has been created and that K = 1, for the sake
of brevity. The case retrieval starts by defining a query case (Query 1), shown
in Table 2. θbexisc

and θbexmnr
are set to 100%, which is the target value for the

retrieved cases. Both cntxisc
and cntxmnr

are set to 70 so that case counts of 70
or higher yield full similarity scores, according to Figure 5.

Fig. 5. Local similarity functions.

After applying the similarity func-
tion to every pair (q, c ∈ CB), the
top K = 1 case with highest similarity
(Case 1) is retrieved for the candidate
checklist ycnd.

For comparison, we also defined
Query 2 in Table 2 where θbexisc

, θbexmnr
,

cntxisc
and cntxmnr

are undefined. The
K = 1 case returned from CB is Case
2. Case 2 fully matches Query 2 in
terms of x, but θbexisc

and θbexmnr
sug-

gest that it is unlikely to observe l = 1
when e2 is applied to x. This is ex-
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pected because we removed the part of the query that maximizes the probability
for observing l = 1.

5 Experiments

In this section three experiments are presented. In the first experiment a sim-
ple label classification problem is introduced to establish a starting point for
comparing ML methods as baselines for the labour inspection CCP. The second
experiment aims to measure the justification of checklists constructed by the
two best performing baselines from the first experiments, to establish the mo-
tivation for the BCBR framework. The third experiment aims to measure the
performance of BCBR against the baselines from the second experiment.

5.1 Experimental setup

Measure of justification. We introduce Equation 5 to measure the justification
(J ∈ [0, 100%]) of a checklist y for an entity x, according to the proportion of
questions ei ∈ y which also exist in past cases (ei,x, ·) ∈ D.

J(y,x, D) =
|{ei ∈ y : (ei,x, ·) ∈ D}|

|{ei ∈ y}|
(5)

The expression can be seen as an adaptation of Massie alignment score [14] that
measures the percentage of questions ei ∈ y with full alignment to the nearest
neighbor case in D.
BCBR configuration. The NBI estimates θbexisc

and θbexmnr
are calculated from

Equation 3 using fixed priors ψL=1|α = 1 and ψL=0|α = 5. The priors are based
on the belief that l = 1 can be observed in 1 out of 6 cases. In the future, more
domain knowledge could be incorporated into the estimates by varying the priors
according to x and e.

The weights used for the similarity based retrieval are the same as in the
example above and can be found in Table 2. The weights for the probability
estimates are calculated by summing the weights assigned for x. The weight
for θbemnr is set to 4 because xmnr and xfyl belongs to the same hierarchy (see
Fig. 2) and because wxmnr

+ wxfyl
= 4. The weight for θbexisc

is set to 9 because
wximac + wxiac + wxic + wxigc + wxisc = 9. Each of the other weights in Table 2
are assigned one of three possible values {0, 1, 2} by a domain expert, according
to the importance of the feature it is associated with.

The local similarity functions are defined according to Figure 5. The functions
are defined to adjust the similarity according to the hierarchical relationship
between the ordinal features of the entity x (see Section 3). For any other features
the default option in the myCBR tool is used, which is identity functions for
categorical features and linear difference for everything else.

For every query q executed by BCBR, the target θbexisc
and θbexmnr

are set to
100%. The case count targets cntxisc and cntxmnr are set to 70.
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Baselines for the experiments. The baseline methods used for the experi-
ments are: CBR (CBR-BL), Logistic Regression(LR), Decision tree (DT) and
Naive Bayes classifier (NBC), Conditional probability estimates (CP), Bayesian
inference (BI), Naive conditional probability (NCP) and NBI.

CBR-BL generates predictions from the label of the closest neighbor case
in the training data. CP generates predictions for any pair (e,x) according to
Equation 2. BI uses Equation 3 with ψL=1|α = 1, ψL=0|α = 5 and α = (X =
x ∧ E = e). NCP is based on Equation 2 and is defined as following:

θ (L = 1|e,x) =
θxisc

+ θxmnr

2
(6)

NBI estimates are calculated using ψL=1|α = 1 and ψL=0|α = 5:

θ (L = 1|e,x) =
θbexisc

+ θbexmnr

2
(7)

Environment. A Dell XPS 9570 with Intel i9 8950hk, 32GB RAM and Windows
10 was used as hardware for the experiments. Every experiment is conducted in
a Python environment using Jupyter Notebook. NBI (both baseline and BCBR),
BI, CP and NCP are implemented as MSSQL17 queries executed by PYODBC.
CBR-BL is implemented via myCBR. The rest of the methods are implemented
via Scikit-learn 0.24.

5.2 Experiment 1: Answer classification performance test of basic
ML methods

The goal of this experiment is to compare ML methods and select the two best
as baselines for the labour inspection CCP. Because CCP is a complex problem,
the experiment is conducted on a new, simple classification problem:
The Answer Classification Problem. Let each case dj ∈ D be a case with
a ground truth label lj . A model M is trained on the cases in D such that for
any new case d = (e,x, l), M correctly classifies the value of l based on (e,x).
Method. Each model is validated on the data set D (from Section 3), using
8-fold cross validation with the same partitioning of data for every model. Each
model M outputs a class prediction score for every (e,x). Thus, the classification
threshold is set to the median of M ’s scores for each validation fold.

Method Acc Prec Rec Avg Time

Random guess 0.500 0.161 0.500 0.387 -
CBR-BL 0.677 0.178 0.246 0.367 60238
LR 0.591 0.252 0.782 0.542 68.4
DT 0.644 0.233 0.529 0.469 122.6
NBC 0.588 0.251 0.778 0.539 67.33
CP 0.680 0.210 0.357 0.416 3.84
BI 0.760 0.270 0.288 0.439 3.89
NCP 0.592 0.250 0.761 0.534 9.0
NBI 0.605 0.261 0.790 0.552 10.4

Table 3. Result from baseline experiments. The
time is measured in seconds per validation fold.

Results and discussion. The
results are shown in Table 3. In
terms of accuracy, precision and
recall NBI performs better then
standard ML methods such as
LR, DT and NBC. BI had the
best performance in terms of ac-
curacy and precision, but had
poor performance in terms of
recall due to a high number
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of cases with zero-value predic-
tions. The worst performing method was CBR-BL where the size of the training
data was reduced to 100000 cases due to long running time.

The results suggest that NBI yields the best performance in average, which
is one of the motivations for combining NBI with CBR. Another advantage with
NBI is the average runtime of 10.4 seconds per validation fold, which is signif-
icantly less than NBC, DT, LR and CBR-BL. A limitation for this experiment
is that it cannot be used to evaluate BCBR, as BCBR is designed for CCP.

5.3 Experiment 2: Trustworthiness of constructed checklists

The goal of this experiment is to measure justification of the constructed check-
lists ycnd for the CCP. This is done by measuring the average proportion of
questions ei ∈ ycnd which are justified by past cases. The experiment is based
on Lee et al’s concept where the existence of a past case justifies a prediction
and promotes trust [13]. The experiment is conducted on checklists constructed
by BCBR and the two best baselines in the previous experiment, NBI and LR.
Method. Each model M is trained on the data set D. The models are evaluated
on every past entity/checklist (y,x)id given by an unique id ∈ D (see Sect. 3).
For each xcnd ∈ {(x,y)id : id ∈ D} the construction of a checklist ycnd is done
based onM . ForM = NBI orM = LR:M generates a prediction score for every
unique ej ∈ D. The top K = 15 questions with the highest prediction scores
are selected as the candidate checklist ycnd for each xcnd. For M = BCBR: a
query containing each xcnd is defined to retrieve ycnd. Each ycnd constructed by
M forms an evaluation pair (ycnd,xcnd) with the corresponding xcnd. Based on
Eq. 5, the average justification (JM ) for every pair (ycnd,xcnd) given M is:

JM (D) =

∑
(ycnd,xcnd) J(ycnd,xcnd, D)

|{id ∈ D}|
(8)

JM measures the average percentage of ei ∈ ycnd where at least one explanatory
case (ei,x

cnd, ·) exists in D. A high JM score means high justification.
Results and discussion. The results are: JNBI = 0.6%, JLR = 4.8% and
JBCBR = 64%, which indicates that both LR and NBI perform poorly in terms
of justification. Qualitative assessments of some of the checklists also reveals
that many of their questions (ei ∈ ycnd) are unrelated to the target entities.
Thus, LR and NBI are not trustworthy because their checklists are unreliable
and unjustified. The checklists constructed by BCBR is more reliable because
similarity based retrieval is used.

5.4 Experiment 3: Evaluation of constructed checklists

The goal of this experiment is to evaluate the performance of the BCBR frame-
work against LR, NBI and past checklists. Due to the results in Section 5.3, a
filter is applied to both LR and NBI to ensure that every checklist can be justi-
fied by past cases. This is necessary for the evaluation procedure, as it assumes
that the questions on the checklists can be justified by past similar cases.
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Method. The evaluation approach can be summarized as following: The data
set D is divided into a training and validation fold, where the training fold is
used to calculate probability estimates for the validation cases. The validation
fold is used as the case base and for performance evaluation. The evaluation is
done on every checklist ycnd constructed for every entity x in the validation fold.

A problem with the validation is that since every ycnd is a new checklist, the
ground truths l needed to evaluate ycnd does not necessarily exist. A common
solution to this problem is to collect the ground truth empirically [23], but this
is not an option for us. To get a meaningful validation result, the performance
statistics for the evaluation need to be estimated. To accomplish this, the fol-
lowing assumption is made: Let dcnd = (−,xcnd,−) be a case without question
component or observed ground truth answer and d = (e,x, l) be any validation
case with ground truth. If xcnd and x are content-wise equal or similar, we as-
sume that the unobserved ground truth answer lcnd from applying e to xcnd is
correctly estimated from an empirical distribution of l, conditioned on x, e and
the validation data fold. This is based on the assumption that similar problems
have similar solutions [15].

Based on the assumption, we introduce the following procedure to estimate
accuracy (Acc), precision (Prec)6 and recall (Rec) for every model M .

1. The procedure is done on every pair (x,y)id ∈ CB given by every unique
id ∈ CB. CB denotes both the validation fold and case base (for BCBR).

2. For every xcnd ∈ {(x,y)id : id ∈ CB}, K unique questions (ei) are selected
for ycnd. The questions are selected from CB by a model M . The model is
trained on the training data fold from D.

3. For each pair (xcnd,ycnd) the number of true positives (TP ), false positives
(FP ), true negatives (TN) and false negatives (FN) are estimated by evalu-
ating each ei ∈ ycnd(predicted positives) and ej /∈ ycnd(predicted negatives).

4. For every question ei ∈ ycnd, both TPei and FPei are estimated using

the following function: f(l,x0, ei) = CB#(L=l∧X=x0∧E=ei)
CB#(X=x0∧E=ei)

, so that TPei =

f(1,x0, ei) and FPei = f(0,x0, ei). If CB#(X = xcnd ∧ E = ei) > 0, then
x0 = xcnd is applied to f . If CB#(X = xcnd ∧ E = ei) = 0, then x0 = xi
from the case (ei,xi, li) retrieved by BCBR7 for ycnd is used because there is
no data to evaluate (ei,x

cnd). Each TPei and FPei is assigned a value [0, 1]
via f so that TPei = 1− FPei .

5. For every unique question ej /∈ ycnd in CB, both TNej and FNej are esti-

mated using the following function: g(l, ej /∈ ycnd) =
CB#(L=l∧X=xcnd∧E=ej)
CB#(X=xcnd∧E=ej)

.

The function is used to obtain TNej = g(0, ej) and FNej = g(1, ej), so that
each TNej and FNej receives a value of [0, 1] and that TNej = 1− FNej .

6. TP , FP , FN and TN for each candidate checklist ycnd ∈ (xcnd,ycnd) are
calculated as following: TP =

∑
ei
TPei , FP =

∑
ei
FPei , TN =

∑
ej
TNej

and FN =
∑
ej
FNej for every unique ei ∈ ycnd and ej /∈ ycnd from CB.

6 An additional statistic Prec(gt) is also included, which is calculated precision (step
4-8) using only ei ∈ (ycnd∧y) from cases containing the original ground truth labels.

7 The condition CB#(X = xcnd ∧ E = ei) = 0 only occurs if BCBR is used.
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7. Statistics are then calculated for each ycnd: Accycnd = TP+TN
TP+FP+TN+FN ,

Precycnd = TP
TP+FP and Recycnd = TP

TP+FN . Repeat from Step 2 until every

pair (xcnd,ycnd) is evaluated.
8. The average Acc, Prec and Rec for every ycnd constructed by M is found

by: Acc =
∑

ycnd Accycnd

|{id∈CB}| , Prec =
∑

ycnd Precycnd

|{id∈CB}| and Rec =
∑

ycnd Recycnd

|{id∈CB}| .

The procedure is used to evaluate BCBR and the other baselines. For the
original checklists, the procedure is applied by using the past checklists so that
ycnd = y in Step 2. Step 2 for NBI and LR is done by generating predictions for
every unique question (see Sect. 5.3). Then a filter is applied after prediction and
before the selection of the questions for ycnd. The filter excludes any question (e)
from selection if (e,xcnd, ·) /∈ CB. This means that every ei ∈ ycnd is justified
by a past case so that JNBI and JLR is 100% (Eq. 8). The filter is necessary
for the evaluation to ensure that NBI and LR construct checklists that satisfy
the assumption above. The models uses K = 15 and are validated using 4,8 and
16-fold cross validation. Method Acc Prec (gt) Prec Rec Avg

Org. CL 0.337 0.170 0.181 0.622 0.328

LR 0.484 0.226 0.267 0.694 0.418

NBI 0.486 0.229 0.270 0.698 0.421

BCBR 0.574 0.259 0.343 0.718 0.474

Table 4. 8 fold cross validation results of the con-
structed vs. the original checklists (Org. CL).

Results and discussion. The
results in Table 4 shows that the
constructed checklists are more
effective than the original check-
lists. In average, each checklist
constructed by BCBR contains
5.14 true positives against 2.86
for the original checklists. Figure 6 shows the results for different numbers of
validation folds and that BCBR has the best performance in every setup. The
variation across the validation folds can be explained by the fact that folds are
used as case bases (BCBR) or filters (NBI/LR). Figure 6 shows that both accu-
racy and precision statistics tend to increase with the size of the validation data
sets. This is mainly caused by the fact that TP and TN increases compared
to FP and FN as the quality of the retrieved questions increases when more
cases are available. Recall also decreases with the size of the validation data sets
as the number of predicted positives is fixed (K = 15), which entails that FN
increases more than TP when the size of the validation set increases. In overall,
BCBR is more effective for constructing checklists than LR or NBI.

Fig. 6. Crossvalidation results for different validation fold sizes

A drawback with this experiment is that the results are based on estimated
statistics. For CBR frameworks, the validity of the evaluation results partially
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depends on high similarity between the x-part of the query and retrieved cases.
This could be problematic when evaluating and comparing multiple CBR-based
frameworks and should be investigated further in future work.

6 Conclusion

In this paper we introduced BCBR for constructing checklist to address CCP.
BCBR uses naive BI to construct features in CBR cases for retrieving questions
for the checklists. We conducted three experiments on a data set of past labour
inspections, which we introduced for the paper. Because CCP is a fairly com-
plex problem, we conducted our first experiment on a simple answer classification
problem. The goal of the experiment was to select two baselines for CCP, which
was NBI and LR. In the second experiment we measured the justification of the
checklist constructed by BCBR, NBI and LR, where we found that only BCBR
constructs checklists which are justified by past cases. Another conclusion from
the experiment is that questions selected for the constructed checklists should be
justified in terms of prior use in similar entities, because some questions may be
closely related to the entities that they originally were designed for. The results
from the last experiment also indicate that BCBR is the most effective method
for constructing checklists to address poor working conditions in inspected or-
ganisations. Compared to the original checklists, the checklists constructed by
BCBR yield a 79% increase in the average number of violations (true positives)
that can be expected to be found at the labour inspections.

One of the things that could be addressed in future work is solution adapta-
tion, such as optimizing the order of the questions in checklists. Another option
is to explore data-driven approaches to derive the weights and local functions
for BCBR. It could also be interesting to see how BCBR perform in other CCPs
such as surgery or preflight checklists.
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A user-centric evaluation to generate case-based explanations using formal con-
cept analysis. In: International Conference on Case-Based Reasoning. pp. 195–210
(2020)

12. Kenny, E.M., Ruelle, E., Geoghegan, A., Shalloo, L., O’Leary, M., O’Donovan,
M., Keane, M.T.: Predicting grass growth for sustainable dairy farming: A cbr
system using bayesian case-exclusion and post-hoc, personalized explanation-by-
example (xai). In: Bach, K., Marling, C. (eds.) Case-Based Reasoning Research
and Development. pp. 172–187 (2019)

13. Lee, R., Clarke, J., Agogino, A., Giannakopoulou, D.: Improving trust in deep
neural networks with nearest neighbors. In: AIAA Scitech 2020 Forum. p. 2098
(2020)

14. Massie, S., Wiratunga, N., Craw, S., Donati, A., Vicari, E.: From anomaly reports
to cases. In: International Conference on Case-Based Reasoning. pp. 359–373 (2007)

15. Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning similarity measures
from data. Progress in Artificial Intelligence (2020)

16. McConnell, C., Smyth, B.: Going further with cases: Using case-based reasoning
to recommend pacing strategies for ultra-marathon runners. In: Bach, K., Marling,
C. (eds.) Case-Based Reasoning Research and Development. pp. 358–372 (2019)

17. Nikpour, H., Aamodt, A.: Fault diagnosis under uncertain situations within a
bayesian knowledge-intensive cbr system. Progress in Artificial Intelligence pp.
1–14 (2021)

18. Nikpour, H., Aamodt, A., Bach, K.: Bayesian-supported retrieval in bncreek: A
knowledge-intensive case-based reasoning system. In: Case-Based Reasoning Re-
search and Development. pp. 323–338 (2018)
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