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Abstract. Feature selection for case representation is an essential phase
of Case-Based Reasoning (CBR) system development. To (semi-)automate
the feature selection process can ease the knowledge engineering process.
This paper explores the feature importance provided for XGBoost mod-
els as basis for creating CBR systems. We use Patient-Reported Outcome
Measurements (PROMs) on low back pain from the SELFBACK project
in our experiments. PROMs are a valuable source of information that
capture physical, emotional as well as social aspects of well-being from
the perspective of the patients. Leveraging the analytical capabilities
of machine learning methods and data science techniques for exploiting
PROMs have the potential of improving decision making. This paper
presents a two-fold approach employed on our dataset for feature selec-
tion that combines statistical strength with data-driven knowledge mod-
elling in CBR and compares it with permutation feature selection using
XGBoost regressor. Furthermore, we compare the performance of the
CBR models, built with the selected features, with two machine learning
algorithms for predicting different PROMs.

Keywords: Case-Based Reasoning, Feature Selection, Case Represen-
tation, Patient-Reported Outcome Measurements

1 Introduction

Patient-reported outcome measurements (PROMS)H are collected routinely in
clinical settings and are designed to capture the patients’ perception of their
own health through structured questionnaires. By utilising machine learning
methods and data science techniques, there is a large potential for PROMs to
inform and improve clinical decision making [27]. In the current work, we use
PROMSs on low back pain (LBP) as an example. Among patients seen in primary
care, a specific cause of LBP can rarely be identified and the symptoms are most
often diagnosed as being “nonspecific”’. This also highlights the multi-factorial

3 https://www.hss.edu/proms.asp
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nature of LBP, i.e., both genetic, physiological, social and psychological factors
are likely to contribute to LBP. While an early and thorough assessment of LBP
is recommended (for example, to detect cases at high risk of poor outcome) [1§],
there are currently no clinical decision support systems (CDSS) in use in clinical
practice that can assist or improve such detection or predict the likely outcome
for a patient.

Case-Based Reasoning (CBR) systems are well suited for the task of CDSS
[5] since the PROMs of the patients can be described in a case-base, a knowl-
edge repository that can aid decision making [2]. However, clinical datasets with
PROMs usually contain several clinical measures, all of which may not neces-
sarily be required for decision making and it is therefore necessary to be able to
select optimal subset of features that can be used for building CBR systems to
predict the patient outcomes and facilitate decision making [10].

Retrieval of similar cases is an important phase in CBR systems, which relies
on the case representation and similarity measures. Hence, the selection of the
most relevant and important features can easen and simplify the development
of the entire CBR system. The focus of this paper is the feature selection phase
for building CBR systems from PROMs to predict patient outcomes. While the
overall method can be applied to other domains, we will present our evaluation
using a dataset with PROMs (described in section [3)) in this work. We employ a
two-fold approach on our dataset for feature selection that combines statistical
strength with data-driven knowledge modelling in CBR and compare it with
permutation feature selection using XGBoost regressor. Additionally, we com-
pare the performance of the CBR models, built with the selected features, with
two machine learning algorithms for predicting different PROMs.

2 Related Work

PROMs are a valuable source of information and present opportunities for highly
sophisticated analysis, but has only been exploited by a few studies in the context
of leveraging analytical capabilities of machine learning methods. Rahman et al.
[20] used a total of 130 PROMSs collected via their pain self-management mobile
application ("Manage My Pain”). Using Random Forest, they showed that pain
volatility levels at 6 months follow-up could be predicted with a 70% accuracy. In
their followup work [I9], the authors showed that similar level of accuracy (68%)
could be obtained with just 9 features. In another study, Harris et al. [I2] used
preoperative PROMs to predict whether or not a patient achieves a clinically
important improvement in several pain- and function-related outcomes at 1-year
post knee arthroplasty. Using several supervised machine learning algorithms,
they showed that similar performance can be achieved across different algorithms
for the outcomes by varying the number of inputs.

Using the CBR methodology for clinical datasets has already proven useful
in decision making [I3]. For building robust decision support CBR systems, suf-
ficient description of the problem is necessary. Knowledge about the importance
of various features in the dataset plays an important role in problem descrip-



tion for building CBR systems [I]. Xiong and Funk [28] proposed an approach
wherein they assessed the feature subset selection based on the performance of
CBR models. Later on, the authors proposed a hierarchical approach to select
feature subsets for similarity models [29]. They used individual cases to optimise
the possibility distributions in the case base and features were selected based
on the magnitude of their parameters in the similarity models. Similar to the
feature-selection approach proposed by Li et al. [I7], we identify optimal feature
subsets for our CBR system by iteratively building CBR systems with different
feature subsets and evaluating the performance based on the predictions. While
Li et al. used mutual information as a preset criterion for selecting feature sub-
sets and evaluating the subsequent CBR systems, we used correlation. In their
previous work [16], Li et al. combined feature reduction using rough set with case
selection for handling large datasets. Similarly, Zhu et al. [30] selected reduced
feature sets through neighborhood rough set algorithm, a method that has been
used widely for feature and case selection in CBR [21122].

3 selfBACK Dataset

The dataset consists of PROMs collected during the randomised controlled trial
(RCT)E| that tested the effectiveness of the SELFBACK E| DSS [23].

Care-seeking patients in primary care with non-specific LBP were recruited
to the study. Patients were screened for eligibility based on a set of criteria.
The eligible patients were invited to participate in the RCT and those who ac-
cepted the invite answered a baseline questionnaire. The participating patients
were randomized into either intervention group or control group. The interven-
tion group had access to the SELFBACK DSS mobile application and received
tailored self-management plans weekly whereas the control group did not. The
participants answered questionnaires at different time-points: (1) (only inter-
vention group) at the end of every week: Tailoring questionnaire, and (2) at the
end of 6-weeks, 3-months, 6-months and 9-months: Follow-up questionnaire. The
questionnaires consist of measures of pain intensity, pain self-efficacy, physical
activity, functional ability, work-ability, sleep quality, fear avoidance and mood.
Additionally, the baseline questionnaire included patient sociodemographics (ed-
ucation, employment and family). Table [I| summarises the information collected
from the participants at various time-points. We use the Baseline, Follow-up 1
(after 6 weeks) and Follow-up 2 (after 3-months) PROMs in our evaluation. A
detailed account of data collection for the RCT can be found in Sandal et al.
[23].

From the dataset, six outcomes were selected as target outcomes: Roland
Morris Disability Questionnaire (RMDQ), range: [0,24]), Numeric Pain Rating
Scale (NPRS, range: [0,10]), Work-ability index (WAI, range: [0,10]), Pain Self
Efficacy Questionnaire (PSEQ, range: [0,60]), Fear Avoidance Belief Question-
naire (FABQ, range: [0,30]) and Global Perceived Effect Scale (GPE, range:

4 https://clinicaltrials.gov/ct2/show/NCT03798288
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Table 1: The SELFBACK dataset created consists of participant characteristics
collected at different time points and includes a selection of PROMs.

Descriptive variables

Patient Characteristics Sociodemographics

Primary Outcome Measure

Roland Morris Disability Questionnaire

Secondary Outcome Measures

Pain Self-Efficacy Questionnaire Fear Avoidance Belief Questionnaire Pain Intensity
Brief Tllness Perception Questionnaire Saltin-Grimby Physical Activity Level Scale
Global Perceived Effect

Other Outcome Measures

Workability Health-related Quality of Life Activity Limitation
Patient Health Questionnaire Perceived Stress Scale Sleep

Patient Specific Functional Scale Pain Duration and frequency Physical Activity
Exercise

[-5,45]). The primary outcome, RMDQ), is used to evaluate the effect of the
self-management app in the RCT. The other outcomes were chosen to elucidate
the variation in LBP symptoms amongst the participants.

The intervention group dataset consists of PROMs from 218 participants
while the control group dataset contains PROMs of 158 participants. Each par-
ticipant is initially described by 47 features. Only the participants who completed
at least the first two follow-up questionnaires were included in this work.

4 Feature Engineering for CBR systems

Feature selection is an important step in the process of developing CBR systems.
Reducing the dimensionality of the data enables the algorithm(s) to train faster
by removing redundant information, thereby reducing model complexity, risk
of overfitting, better generalisation and aiding interpretability of the models
[7]. This is especially pertinent for building CBR systems for datasets with a
high dimensionality, such as healthcare-oriented datasets, to ensure focus on the
relevant attributes and enhance explainability of the models. Nonetheless, the
methodology we present can be used for other domains for feature selection since
the principle here is determining the best representation of a dataset in order to
learn a solution to a given problem. While we use a healthcare domain dataset,
the methodology itself has a broader application.

We use both filter and embedded methods in this work to determine reduced
sets of predictors for the target outcomes. Filter methods use the principal crite-
ria of ranking technique to select the most relevant features. Features are ranked
based on statistical scores, correlation in our case, to determine the features’
correlation with the outcome variable. This method is computationally efficient
and does not rely on learning algorithms which can introduce a biased feature



subset due to over-fitting [7]. However, correlation-based feature selection has
shortcomings if there is a high degree of mutual correlation in the feature set.
Embedded methods on the other hand are algorithm-specific, iteratively extract-
ing features which contribute the most to the training of a particular iteration of
a model during the training process. Impurity-based feature selection using tree-
based algorithmsﬂ is a commonly used embedded method. Permutation feature
importance determines the influence of random permutation of each predictor’s
values on the model performance while still preserving the distribution of the
feature [9].

We experimented with two methodologies for selecting optimal predictors for
each target outcome:

1. Correlation and CBR: Using a two-step hybrid method that combines
statistical strength with data-driven case modelling, we attempted to derive
optimal predictors of the target outcomes by computing correlation and iter-
atively building CBR models using features derived from correlation. Here,
similarity measure development and building case representation are impor-
tant factors in evaluating the performance of the CBR models for each set
of features.

2. Permutation feature importance using XGBoost: Features are se-
lected by computing permutation feature importance (PFI) with XGBoost
(XGB) algorithm based on an evaluation metric.

Both methodologies aim to select optimal feature sets based on the trade-off
between model performance and model simplicity, that is, fewer features.

4.1 Feature Selection and CBR System Optimization

To determine the optimal set of predictors for developing CBR systems, we
experimented with two methodologies for selecting features: correlation-based
and based on the feature importance of a XGBoost model. The features selected
by both methodologies were used to build CBR systems for all the outcomes at
both follow-up time-points. Additionally, we implemented Support Vector and
XGB Regression models to compare and contrast the performance of the CBR
systems. Figure [I] illustrates the process of feature selection methods we used.
The modeling of the CBR systems was done with the myCBR workbench
[3]. The experiments were run using myCBR Rest APIE] [4] for batch querying
the CBR systems and python packages such as Scikit learn [6] and XGBoost [§]
(python version 3.6.7) were used for building regression models and Pingouin for
the statistical correlation [24]. For each target outcome we created datasets with
the baseline data as input features and the PROMs of follow-up 1 and follow-up

S https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_
~ importances.html
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Fig. 1: Flowchart of the feature selection process

2 as target values. These datasets were used to build CBR systems in a data-
driven manner and as training data in the other two regression algorithms. In all
the CBR models built for various target outcomes in this work, local similarity
modelling of the attributes has been done in the same data-driven manner as
presented in our previous work [2526]. The individual features are weighted
equally in the global similarity function. Figure [2| showcases examples of local
similarity measure modelling for numerical and categorical (ordinal) attributes
(using correlated features of NPRS at follow-up 2 as an example). We urge
the reader to refer to the previous work to fully grasp how the local similarity
measures have been developed, as it is not possible to include the details in
this work. Figure [3| shows the case representation of the same target outcome
(NPRS) in myCBR workbench with 10 most correlated features.

To predict the target outcomes for a given participant using CBR model, we
exploit the “similar problems have similar solutions” principle of CBR. While the
query participant has been left out (leave-one-out cross validation), we determine
their n-nearest neighbours (most similar case) with n in range [1,20] and compute
mean of the target value reported by the n-neighbours, which is assigned as
prediction for the given participant. The process is repeated for each participant
and each target outcome dataset at both follow-up time-points for both the
intervention and control group. The mean absolute error (MAE) is used as the
metric to evaluate the predictive performance of the models.

4.2 Correlation-based Feature Selection

Figure [1f shows that we we first compute correlation between the baseline fea-
tures and each target outcome to select features. Since the dataset comprises of
both numerical and categorical features, we use Pearson for numerical features
and one-way ANOVA for categorical features to determine correlation between
the baseline features and the target outcomes. Features with absolute correla-
tion greater than the average correlation of the feature set and p < 0.05 were
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Fig. 2: Modelling of Local similarity measures for numerical (a) and categorical
(b) attributes in myCBR workbench.

Instance information

Name Patient1

Attributes
BIPQ_life 6.0 Special Value: none
BIPQ_pain_continuation 10,0 Special Value: none
BIPQ_symptoms 5.0 Special Value: none
BT_pain_average 3.0 Special Value: none
EQSD 80.0 Special Value: none
EQSD_anxiety not_anxious Change

Special Value: none
EQSD_pain slight_pain Change

Special Value: none
Pain_1year Above30days Change.

Special Value: none
Pain_worst 7.0 Special Value: none
RMDQ 7.0 Special Value: none

Fig.3: Case representation in myCBR for NPRS (at follow-up 2, control group
dataset) with 10 most correlated features

selected. For several reasons including simplified process of modelling in myCBR
and based on experience from earlier experiments, it was decided to include only
the top ten correlated features for building CBR systems. Previous experiments
on the intervention group datasets showed that no more than ten features are
necessary to predict any of the chosen target outcomes without any loss in the
model performance. To build each CBR model, the casebase is populated with
cases imported from a csv file in the myCBR workbench. Local similarity mea-
sures are developed for each attribute individually. Instead of building a new
CBR model for each set of features, we build one model with the ten most cor-
related features and use ten different global similarity functions to progressively
add more features. Once both the local and the global similarity measures are in
place, we batch query the casebase using POST calls in the python implemen-



tation to generate predictions for the target outcome. The MAE is calculated
between the reported outcome and the predictions for the entire dataset.
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Fig.4: On the right side of the figure are the top ten correlated features used
to build the CBR model for predicting NPRS (input: baseline data, target:
NPRS at follow-up 2). Features were added progressively one at a time in the
given order, starting with the most correlated feature. np2 (eta-squared) is the
squared correlation coefficient. Graph on the left shows the MAE variation
with different sets of features in the corresponding CBR model for predicting
NPRS, with x-axis presenting the n-neighbours used for generating predictions
and y-axis presenting the MAE in the predictions for the entire dataset.

Figure 4| gives an example for one target outcome, NPRS. It shows the result
of the correlation (left) and the MAE when predicting the NPRS using the
baseline data (right). We can see that the progressive addition of correlated
features improves the prediction by the CBR system already by using the most
similar case. Further, we observe that adding neighbors generally reduces the
error and for the final model we choose the combination with the lowest MAE.

4.3 Feature Importance using XGBoost

In this approach, we select features by computing the permutation feature impor-
tance using the XGBoost Regressor and compare the MAE of the predictions to
determine the optimal feature set. The permutation feature importance is deter-
mined by the difference between the modified (permuted) dataset and a baseline
model based on the MAE. First, a baseline model with all the features is trained
and its MAE is computed. Next, the values of one feature in the dataset are
permuted and then the model is re-trained and the MAE is computed for the
modified dataset. The process is repeated for all the features in the dataset. The
optimal number of features are selected based on the trade-off between model
performance and number of features.

Figure [6a] shows the feature importance for predicting the GPE and figure
shows the development of the MAE while adding the features. To select the
best configuration, we choose the set with the lowest number of features that has
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Fig.5: Feature Selection using permutation feature importance with XGB for
predicting GPE (input: baseline data, target: GPE at follow-up 1). a. Features
ranked by their importance. b. Effect of feature permutation on the XGB model:

The MAE on the y-axis in this plot is scaled.

the lowest MAE as shown in figure We favor the lowest number of features
to build simpler model that requires minimal data collection and can be better
explained. The selected features are then used to build CBR model in exactly
the same way as described in the previous section and the prediction results are

noted.

5 Experimental Results

To compare the performance of the CBR systems, we implemented two regression
algorithms, XGB and Support Vector Regression (SVR) for each corresponding
CBR system to predict the target outcomes. The algorithms were selected based
on previous experiments with the intervention group data where we evaluated
the performance of XGB and SVR along with other algorithms, including Lin-
ear Regression, Passive Aggressive Regression, Stochastic Gradient Descent, Ad-



aBoost, Random Forest, and found SVR and XGB to lead to the best results.
For the simplicity of comparison and clarity, it was decided to keep only SVR
and XGB for further evaluation. To optimize the hyperparameters, we used grid
search [I5]. Tables [2| and [3| summarise the results of predicting target outcomes
using the CBR models, SVR and XGB for the intervention and control group
participants, respectively.

Table 2: Results of Prediction of Target Outcomes using different Feature Se-
lection Methodologies and Regression Methods for the Intervention Group (size
of dataset: 218 participants). Numbers in bold letters are lowest MAE. FU1:
Follow-up 1, FU2: Follow-up 2, n: number of features

Feature Selection Methodology

| Correlation+CBR |  PFI+XGBoost

Target | Follow-Up | n | CBR [ SVR [ XGB | n | CBR | SVR | XGB

FU1 40298 [319 [332 [5|278 [269 |271
RMDQ

FU2 8290 [2.83 [285 |4 317 [392 |3.02

FU1 71138 [145 [150 |3 150 |149 |1.52
NPRS

FU2 9148 [1.33 [138 |3 146 |1.41 | 142

FU1 50116 [198 |1.98 |2 |1.14 |1.96 | 201
WAT

FU2 40114 [216 221 [1[124 [219 |224

FU1 1055 |169 |170 |2 |5.45 [172 |173
PSEQ

FU2 3595 |166 |166 |2 |5.95 | 164 |17.1

FU1 3 (387 [374 [376 |6 |39 |3.50 | 367
FABQ

FU2 139 [360 |384 |6]38 |364 |386

FU1 1]1.37 273 276 [2]130 [282 |278
GPE

FU2 2154 [251 [243 [3|1.49 [254 | 246

6 Discussion

A number of inferences can be made based on the results. We see in figure [4] that
the baseline measurement (listed as BT_pain-average) of the associated target
outcome NPRS is its’ first most important predictor. This is a trend observed
for all the target outcomes, except GPE which does not have an associated
baseline measurement (see figure . This is an important observation from
clinical perspective, since baseline measurements of the associated outcomes have
previously been found to be their most important predictor [TIJT4], and our
experiments support these findings.



Table 3: Results of Prediction of Target Outcomes using different Feature Se-
lection Methodologies and Regression Methods for the Control Group (size
of dataset: 158 participants). Numbers in bold letters are lowest MAE. FU1:
Follow-up 1, FU2: Follow-up 2, n: number of features

Feature Selection Methodology

‘ Correlation+CBR | PFI+XGBoost

Target | Follow-Up | n | CBR [ SVR [ XGB | n | CBR | SVR | XGB

FU1 2 |311 [299 207 [4]307 [292 275
RMDQ

FU2 2 [311 [2.97 [314 [3[322 [297 [314

FU1 6 141 [177 [185 |2[149 [173 |185
NPRS

FU2 71156 [149 |17 [1[172 [156 |171

FU1 1102 [102 [101 [1]102 [102 [101
WAI

FU2 2 114 |12 [117 [1]119 [115 118

FU1 7668 [192 [196 |[1[701 [194 [19s
PSEQ

FU2 30623 100 |195 |5 594 | 191 | 193

FU1 1| 347 [327 |358 |1 [347 [327 |358
FABQ

FU2 2 |377 [369 |380 |2 |38 |358 393

FU1 7122 255 [252 [1]126 |261 |249
GPE

FU2 1]1.33 [265 |258 |2 139 |267 |256

Selecting optimal features, especially for healthcare datasets, is one of those
application domains where no one particular method prevails and one must de-
cide based on application domain knowledge and experience, among others. From
the results in table [2] and [3| we see that the features selected by either of the
methodologies give similar results with respect to the error in predictions. There
is no clear winner here. However, taking into consideration the time and effort
required, XGBoost permutation feature importance methodology requires min-
ima and provides a more streamlined process for selecting optimal feature sets
as compared to the two-fold approach, which requires estimating correlation,
building several similarity measures and CBR systems for the target outcomes
and comparing the MAE for determining optimal feature sets. As for a concrete
time comparison, it is not possible since the modelling of local and global simi-
larity measures for building a CBR model requires manual input. On the other
hand, this comparison also establishes the utility of the two-fold approach for
building tailored CBR systems.

All the three regression methods give fairly similar results when it comes
to predicting the outcomes. However, for an outcome with a relatively large
range (PSEQ) or no baseline measurement of the target outcome (GPE), both
SVR and XGB fall short in comparison to the results we get from the CBR
models. This is similar to our findings in our previous work [25] where we found



CBR model built with our data-driven modelling approach to be more sensitive
and robust to the data-distribution of individual features, thereby, furthering our
premise that both data-driven similarity modelling and CBR are better suited for
this task. Moreover, outcomes generated by CBR models are more explainable,
which is a pre-requite for any CDSS where explainable systems are preferred
over complex ones.

7 Conclusion and Future Work

In this paper, we presented a two-fold approach for feature selection wherein
we used the correlation coefficient as a pre-processing step to select ten most
correlated features and build the CBR models with progressively more features
for predicting PROMs. We examine the performance of the predictions gener-
ated using CBR systems to determine optimal feature subsets for the outcomes.
Through evaluation and comparison with tree-based feature selection methods
(permutation feature importance with XGBoost), it can be concluded that al-
though the presented two-fold approach is feasible and gives results similar to
the other approach undertaken, it is however more time and effort intensive and
therefore, feature selection using XGBoost permutation feature importance ap-
pears to be a more promising option. Predictive performance of the CBR systems
is at par with and many a times better than the traditional algorithms such as
SVR and XGBoost.

From a clinical perspective, building prognostic models that can provide nec-
essary information to clinicians and patients of possible outcome(s) pertaining to
a specific treatment is a necessity to support informed clinical decision making.
Access to individualized predictive analytics for different outcomes may be the
next step in the management of pain and related symptoms for patients with
LBP. The results we get from our dataset confirm the predictive value of baseline
measurements of associated target outcomes, similar to other studies such as by
Fontana et al. [I1] and Huber et al. [I4].

In future work, it may be worthwhile to compare performance of the CBR
models built with features selected by an expert with the approach presented in
this work.
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