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Today’s menu
➔ Why?

3 perspectives and needs for explanations.

➔ Why not?
Mathematics, we have a problem.

➔ How?
Many directions, methods and open questions
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Let’s start with some basic understanding
AI = Artificial intelligence. 

XAI = eXplainable AI

In the present discussion, AI means machine learning
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Machine learning: A program that learns from data (i.e. from experience)

DIY ML in Excel!
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Let’s start with some basic understanding
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Let’s start with some basic understanding
Machine learning: A program that learns from data (i.e. from experience)
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“Artificial intuition”
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Let’s start with some basic understanding
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In the EU (and parts of the US) customers are protected by regulations

GDPR: 

“meaningful information about the logic of processing”

The end user doesn’t care about your model;
they care about how they can affect the outcome

⇒ A convincing story about how the relevant part of the world works

Part 1: Legal requirements
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Note: The legal status isn’t clear yet
GDPR:
“an explanation of the decision reached after 
[algorithmic] assessment”

However, it’s not specified what such an explanation entails

Problem? Yes. But: New EU proposal for AI regulation released April 2021.
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Stakeholder / business leader must understand in order to
evaluate risk and defend decisions. Risk is a central aspect in business decisions.

New EU proposal for AI regulation also has a risk based approach.

Question: Is the system trustworthy?

The traditional approach is testing… 

Part 1: Legal requirements
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Regarding testing:

Robust Physical-World Attacks on Deep Learning Visual Classification, Kevin Eykholt et al

(How can this happen?? Stay tuned)

https://arxiv.org/abs/1707.08945
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Part 2: Researchers and developers
Wants to know

➔ Which part of the world has my model understood?
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What, ‘which part’? My model is perfect.
“any two optimization algorithms are equivalent when their performance is averaged 
across all possible problems"

-No free lunch theorems, Wolpert and Macready (2005)

Your model is never perfect. But it can have a high 
accuracy where you tested it.
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The curse of dimensionality
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The curse of dimensionality
You want to solve some problem using machine learning, and collect a 
data set… 

Say… feature values in the range [0, 10], one data point per integer

Two features (dimensions): 102 = 100 data points

Three features: 103  = 1000 data points

13 features: 1013 = ten thousand billion data points. Good luck.
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What to do?
Explainable AI (XAI) is a fairly young and active field of 
research. Nobody knows exactly what to do. But:

1. Accept that human intuition won’t cut it. We can’t 
understand complex models by looking at them.

2. Methods. New methods are developed all the time.

Let’s have a look at methods
17
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A mystery box fell from the sky
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A mystery box fell from the sky

Information → →Predictions 
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A mystery box fell from the sky

Scien
tist
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What do do with the mystery box?

Scien
tist

➔ Poke from outside
➔ Look inside
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Poke the box like a boss

==> Feature attribution

The Shapley decomposition:
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Shapley value example: 
Cab sharing
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Shapley cab sharing

Characteristic function values
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Shapley cab sharing
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N = total passengers

Shapley cab sharing
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N = total passengers
S = subsets of N

Shapley cab sharing
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N = total passengers
S = subsets of N

subsets S of N 
excluding passenger i

Shapley cab sharing
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Sets excluding passenger 1:

Shapley cab sharing
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Sets excluding passenger 1:

Shapley cab sharing
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True story: The fair and unique way to distribute the cost 
of the journey (at a price of 1NOK per km), is when 
passenger 1 pays 1, 
passenger 2 pays 3 and 
passenger 3 pays 6.

Shapley cab sharing
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Shapley values for machine learning… 
Shapley values do dependence attribution. From game theory to ML

N all players -->  features

i player --> feature 

S coalition of players --> set of features

v game --> model

The Shapley value takes as input a set function v: 2N→R and 
produces attributions 𝜑i for each player i ∈N that add up to v(N)
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Various libraries: SHAP, SAGE, … 

Shapley values for machine learning… 

Model prediction drivers Model loss drivers
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Intrinsic explanations
What does the model focus on?



Inga Strümke - inga.strumke@ntnu.no

Intrinsic explanations
What do the different parts of the model focus on?



Inga Strümke - inga.strumke@ntnu.no

Intrinsic explanations
A convincing story and the truth are not necessarily the same thing

(this holds for all aspects in life)

Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use 
Interpretable Models Instead: https://arxiv.org/pdf/1811.10154.pdf
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The story these days

… can you spot what’s missing?
Principles and Practice of Explainable Machine Learning
Vaishak Belle and Ioannis Papantonis



Inga Strümke - inga.strumke@ntnu.no

Part 3: Ethics
I cannot stress enough how important ethical 
development is in AI. 

Think

AI impact ∝ medicine + atomic bomb
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The full picture?
We don’t even know what we expect from an explanation

Explanation for human-beings: 
Not just the model but its impact 

(depends on environment and context) Super secret figure 
removed after presentation :) 



Thank you!

inga.strumke@ntnu.no
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Discussion points:
1. I said that the discussion on XAI is about machine learning. Does it have 

to be? 
a. Can non-learning approaches to AI require explanations?

2. What are heat maps?
a. What are their weaknesses? 
b. Do they match the way humans would explain a visual decision?

3. What is a feature importance ranking?
a. How could a bank use feature ranking to tell you why you got a loan?
b. Would you accept such an explanation, and why (not)?
c. What weaknesses does this have when used as an explanation? 


