
Partial Deduction in the Framework of
Structural Synthesis of Programs

Mihhail Matskin, Jan Komorowski, John Krogstie
Department of Computer Systems

Norwegian University of Science and Technology
N-7033 Trondheim, Norway

{misha, janko}@idt.unit.no, john.krogstie@ac.com

Abstract. The notion of partial deduction known from logic program-
ming is defined in the framework of Structural Synthesis of Programs
(SSP). Partial deduction for unconditional computability statements in
SSP is defined. Completeness and correctness of partial deduction in the
framework of SSP are prov.en. Several tactics and stopping criteria are
suggested.

1 Introduction

The main motivation for this work is to provide incremental formal program
development in the framework of the proof-as-programs approach [3, 13]. In our
case, it is Structural Synthesis of Programs [16, 20] (hence abbreviation SSP).
In SSP, a specification at hand is transformed into a set of formulae of a logical
language complete with respect to intuitionistic propositional logic. A problem to
be solved is formulated as a theorem to be proven in this logic. A program is then
extracted from the proof of the theorem. This approach has been implemented
(see, for instance, [21]) and commercialized. It can be further strengthened by
applying a principle similar to Partial Deduction as known in logic programming
[7, 12, 9].

In this paper, we formulate the principle of partial deduction for SSP and
prove its correctness and completeness in the new framework.

The rest of the paper is organized as follows. A brief informal introduction
to SSP is given in Sect. 2. The next section presents partial deduction in SSP.
Stopping criteria and tactics are discussed in Sect. 4. Concluding remarks are
given in Sect. 5, where the use of partial SSP is briefly discussed. It is assumed
that the reader is acquainted with partial deduction in logic programming.

2 Introduction to Structural Synthesis of Programs
(SSP)

A formal foundation of SSP was developed by Mints and Tyugu [16, 20] and
applied in a number of programming systems [21]. Here we give a brief intro-
duction to the method and define notions which will be used later in the paper.
First, the LL language of SSP is defined. Then inference rules are formulated

240

using sequent notation. Program extraction is discussed next. It is obtained by
extending the LL language.

2.1 Logical l anguage (LL)

The logical language of SSP has only the following kinds of formulae:

1. Propositional variables: A, B, C
A propositional variable A corresponds to an object variable a from the
source problem, and it expresses the fact that a value of the object variable
can be computed. A propositional variable will be termed an atom in the
following.

2. Unconditional computability statements:

AI&.. .&Ak -+ B

.

This expresses computability of the value of the object variable b correspond-
ing to B from values of al . . . ak corresponding to A (A is an abbreviation
for AI& . . . 8~ Ak). A will be termed the body of the statement, whereas B
is termed the head. Thus body (A -+ B) - A and head (A -+ B) = B.
Conditional computability statements

(A 1 -")" B 1) ~ . . . ~ (A n + B n) + (C_--} D)

A conditional computability statement such as (A ~ B) ~ (C ~ D) ex-
presses computability of d from c depending on the computation of b from a.
We also use (A-+ B) as an abbreviation for (A 1 --+ B1)8~...&(A n -+ Bn).
In the statement (A -+ B) --+ (C_. -+ D), (A --~ B) will be termed the body
of the statement, whereas (C__ -+ D) will be termed the head. The functions
head and body are defined as above, whereas body(body((A -+ B) ~ (C -~
D))) = A etc.

2.2 Structural Synthesis Rules (SSR)

A sequent notation is used for the derivation rules. A sequent F i- X, where F
is a list of formulae and X is a formula, means that the formula X is derivable
from the formulae appearing in F. Axioms have a form of F, X t- X.

The SSR inference rule are as follows.

- 1 . (-+-)
t- A--+ V;Fi - A

F t - V

where F I- A is a set of sequents

- 2 . (+ +)
F,A B

F b A - + B

241

- 3. (~ - -)

(A-~ B) -~ (C-+ V);r, AF B;z~ ~ C
F,_A F- V

where F, A P B and A ~- C are sets of sequents.

It is somewhat surprising but LL with simple implicative formulae is equiv-
alent to the intuitionistic propositional calculus. The intuitionistic completeness
of SSR was proven [16]. In addition, an experiment with a programming system
based on SSR was done [22]. In this experiment, all intuitionistic propositional
theorems (about 100 formulae) contained in [6] were proven automatically.

2 .3 P r o g r a m e x t r a c t i o n

In order to be able to extract programs from proofs, the language LL is extended
as follows.

We write
A - - ~ B - - !

where f is a term representing the function which computes b from a l , . . . , an.
Analogously, we write

(A a-~ B) -+ (__C > D)
F(g_,~_)

where g is a term representing function which is synthesized in order to compute
B from A and F is a term representing computation of D from C depending on
g_ and c (g_ is a tuple of terms).

Following the notation in [20], A(a) means that a is a term whose evaluation
gives the value of the object variable corresponding to logical variable A. In the
logical axioms which are written as F, X(x) l- X(x), x is a variable or a constant.

The resulting language is termed LL1.
The modified inference rules (SSR1) are as follows:

- 1. (- + -)

- 2. (-+ +)

- 3. (~ - -)

t- A --+ V; F }- A(a) - - !

F_ [- V(f(a))

r, A e B(b)
F b A .>B

- - Aa.b

P (A ~ B) - + (C _ _ >V);F, A F B (b) ; A F C (c)
F(g,r

F, A__ I- V(F(Aa.b, c))

A problem to be solved is formulated as a theorem to be proven. An example
theorem and its proof are given in the next section.

242

2.4 A Specif icat ion Level

Whereas the LL1 language specifies the internal language for structural synthe-
sis, higher level languages are defined for expressing problem specifications. One
of these, the NUT language [21], is used in the sequel. It is an object-oriented
language where methods and structural relations can be translated into formulae
of the LL1 language.

The working example in this paper is a definition of the inve r t e r , and-port
and nand-port of logical circuits.

E L E M E N T
var Delay:numeric;

I N V E R T E R
super ELEMENT;
vir InINV, 0utINV: bool;
tel inv: InINV -> OutINV

{0utINV := not InINV}

I N V E R T E R is a subclass of E L E M E N T , having two virtual boolean primitive
type specifiers InINV and 0utINV. Virtual components can be used in computa-
tions, but their values are not contained in the value of the object. The method
inv specifies computations of 0utINY from InINV which are performed by se-
quence of statements (body of the method) in the curly brackets. Actually, we
can consider this method as a language construction for I n I N V ~ O u t I N V

1
where f refers to the body of the method, i. e. to {0utINV := not InIl~}.

AND
super ELEMENT;

vir InANDI, InAND2, OutAND: bool;
tel and: InANDI,InAND2->OutAND

{OutAND:=InANDI & InAND2}

N A N D
s u p e r INVERTER;
s u p e r AND ;

v i r InNAND1, InNAND2, OutNAND: b o o l ;
r e l InAND1 = InNAND1; InAND2 = InNAND2;

OutNAND = OutlNV; InINV = OutAND;
nand: InNAND1, InNAND2 -> OutNAND(specification}

Symbol "=" denotes equality methods which are transformed into two formu-
lae of LL1. For example, InAND1 = InNAND1 is transformed into I n A N D 1 >

asg

I n N A N D 1 and I n N A N D 1 ~ I n A N D 1 , where asg is the name of the stan-
asg

dard function performing assignment, s p e c i f i c a t i o n in the last method indi-
cates that a function for the hand method has not been developed yet.

243

The interested reader can find a full description of NUT in [23].
The description of the class N A N D can be now transformed into the fol-

lowing set of logical formulae (called problem-oriented axioms), where and, inv
and asg indicate methods which implement the corresponding formulae:

b- I n l N V) O u t l N V ; ~- I n A N D l g ~ I n A N D 2) O u t A N D ;
inv and

b I n A N D 1) I n N A N D 1 ; F I n N A N D 1) I n A N D 1 ;
asg asg

F I n A N D 2 ~ I n N A N D 2 ; F I n N A N D 2 ~ I n A N D 2 ;
asg asg

b O u t N A N D) O u t I N V ; b- O u t I N V) O u t N A N D ;
asg asg

F I n I N V) O u t A N D ; F O u t A N D) I n I N V ;
asg asg

The theorem to be proven is t- I n N A N D 1 , I n N A N D 2 --+ O u t N A N D . Us-
ing the set of formulae and the inference rules from Sect. 2.2, the following proof
can be made:

I n N A N D I (i n l) l- I n N A N D I (i n l) ; t - I n N A N D 1) InAND1;
a s g

InNAND2(in2) F I n N A N D I (i n 2) ; I n N A N D 2) I n A N D 2
a#g

(~ -)
InNAND2(in2) t- InAND(asg(in2))

I n N A N D I (i n l) b InANDl (asg (in l))

I- I n A N D I & I n A N D 2) Ou tAND
a n d (-+ -)

I n N A N D I (i n l) , I n N A N D 2 (i n 2) ~- OutAND(and(asg(inl) , asg(in2))

Ou tAND) I n I N V ;
elsg (-~ -)

I n N a N D l (i n l) , I n N a N D 2 (i n 2) b- In lNV(asg(and(asg(in l) , asg(in2)))

b- I n I N V) Out INV;
l a y

I n N A N D I (i n l) , InNAND2(in2) b OutlNV(inv(asg(and(asg(inl) ,asg(in2)))
(--+ -)

b O u t l N V) O u t N A N D

I n N A N D I (i n l) , I n N A N D 2 (i n 2) ~" OutN-'f-ND(asg(inv(asg(and(asg(inl),asg(in2)))) ('+

b- I n N A N D I & I n N A N D 2) Ou tAND (--r +)
J~i~l i n ~ . a , g (i n v (e l , g (a n d (a , g (i ~ l) , a s g (i ~ 2))))

Q.E.D.

The extracted program is as follows

Ain l in2.asg(inv(asg(and(asg(in l), asg(in2)))))

or in a simplified form

Ainl in2. inv(and(inl , in2))

The example considered here is, of course, very small. The approach is, how-
ever, sealable. Problem specifications containing thousands of variables and com-
putability statements have been developed [17].

244

3 Partial deduct ion in SSP

Partial deduction (a.k.a. partial evaluation in logic programming) is a specializa-
tion principle related to the law of syllogism [12, 8]. Our motivation for transfer-
ring Partial Deduction (PD) to the framework of SSP is based on the following
observations:

- PD provides a specialization of logic programs. The most important features
of PD is that more efficient programs can be generated. Efficiency for a
residual program can be discussed in terms of the size of derivation trees.

The same observation is true for SSP. Residual program specification can be
more efficient in terms of synthesis of programs.

- Our experience with the NUT system shows that users are not always able
to specify completely goals such as A -+ G. In many cases, the user knows/
remembers only the input parameters of the problem and s/he does not
care about the output parameters. In this case, s/he is satisfied with result
that everything that is computable from inputs is computed. For example,
the user may know that inputs of the problem are values for InNAND1 and
InNAND2 of the NAND element and s/he would like to know which other val-
ues can be computed. This feature is supported by the program statement
compute, e.g. NAND. compute(InNhND1, InNAND2), This problem arises es-
pecially for specifications containing a large number of variables (very large
circuits). These goals are hardly expressible in LL1. The problem is that
one would take into account a set of all variables of the specification and all
subsets of this set. Additionally, an order over the subsets has to be defined
and possible output parameters considered as a disjunction of the subsets.
This is a very inefficient approach.

On the other hand PD allows us to make efficient derivations even if the
output parameters of the problem are unknown. This issue will be discussed
in Sect. 4.

- A problem similar to the above mentioned one, but with another type of
incompleteness, may also arise. Consider a situation in which the user knows
outputs of problem but s/he is not able to specify inputs. Actually, this
relates mostly to debugging of specifications. If the original problem is not
solvable, what should be added into the problem specification in order to
make it solvable?

Also in this case PD provides a good framework for making assumptions.

It is possible to apply PD at different levels in the framework of SSP:

- At the LL1 specification.
- At the resulting functional expressions.

- At the recta-specification.

245

Here we consider the first of the above cases and, in particular, the uncon-
ditional computabili ty statements of LL1. The second case has been studied
elsewhere and by numerous authors, see, for instance, [2, 1, 5]. Work has also
been done on applying PD at the meta-specification level [4, 15].

Before moving further on we formalize the notion PD in the SSP framework.

3.1 Partial deduction of L L 1 specifications

It is natural to informally express PD of unconditional computabili ty statements
as follows.

Let A, B and C be propositional variables and A --+ B, B ~ C, C ~ D
] h g

be unconditional computabili ty statements. Some possible partial deductions
are the following: A > C, A > D, B ~ D. It is

Aa.h(f(a)) Xa.g(h(f(a))) Ab.g(h(b))
easy to notice that the first partial deduction corresponds to forward chaining
(from inputs to outputs), the third one corresponds to backward chaining (from
outputs to inputs) and the second one to either forward or backward chaining.

The main difference between our definition of PD and the ones considered
in [12, 8, 9] are: (i) the use of logic specifications rather then logic programs
and (ii) the use of intuitionistie (propositional) logic rather then classical (first
order) logic.

Definition 1 (L L1 specification) Let H be a set of unconditional computabil-
ity statements A --+ B and S be a set of conditional computability statements - - y

(A_ -4 B) --+ (C) D) then P = H U S is called a LL1 specification.
g F(g,~)

Definition 2 (LL1 unconditional resultant) An LL1 u n c o n d i t i o n a l re-
s u l t a n t is an unconditional computability statement A ~ G where f is

- - ~ . f (a)

a term representing the function which computes G from potentially composite
functions over al,.. �9 ,an

The assumption that G is an atom can be relaxed by transformation of
A --+ G into {A ~ G1, ...,A --~ Gin} and vice versa.
- - f - - _ _

In our definitions we use the notion of computat ion rule (or selection function)
from logic programming [11].

Definition 3 (Derivation o f an LL1 u n c o n d i t i o n a l r e s u l t a n t) Let ~ be a
fixed computation rule. A d e r i v a t i o n o f a LL1 unconditional resultant R0
is a finite sequence of LL1 resultants: Ro ~ R1 ~ R2 ~ . . . , where,

(1) for each j, Rj is an unconditional computability statement of the form

B_..L&...&Bi&...&Bn > G
- - Xbl...bl...b,~.f(ba,...,bi,...,bn)

and Rj+I (if any} is of the form:

246

/f

Ba&...&C&...&zBn) G
- - Xb~. ..~_.. .b~. I (b__~ ,. .. ,h (~ , . .be . ,)

�9 the ~-selected atom in Rj is Bi and
�9 there exists an unconditional computability statement C -+ Bi E P

- - h
called the matching computability statement. Bi is called the matching atom.

(2) for each j, Rj is an unconditional computability statement of the form

A___~ &...&A__L~&...&A,~ - - ~ F
- - Xa...L...a..L...a__~. t (a . . L , . . . , a i , . . . , a , ,)

and Rj+a (if any) is of the form:

A__&t &...&Ai__ ~...&Am ~ H
) ~ a a . . . a i . . . a , ~ . h (a l , f (aa a l a , ~))

if
* the ~-selected atoms in Rj are A_L and/or F. F denotes a conjunction

of F (heads of computability statements)from resultants Ro , Rj
. there exists an unconditional computability statement Ai&F --+

H E P called the matching computability statement. Ai, F are called the
matching atoms.

(3) If Rj+I does not exist, Rj is called a leaf resultant.

Definition 3 gives two ways of derivating resultants. (1) corresponds to
backward derivations and (2) corresponds to forward derivations. We will use
terms derivation form (1) and derivation form (2), correspondingly.

Definition 4 (Partial deduction of a propositional goal) A partial de-
duction of a propositional goal A --+ G in a specification P is the set of leaf
resultants derived from G ~ G (derivation form (1) and in this case A cannot
be selected atoms) or from A --+ (derivation form (2) and in this case G cannot
be selected atom).

The assumption that G is an atom can be relaxed to allow a conjunction of
atoms, A --+ G_G_, and a partial deduction of A_ ~ G in P is the union of partial
deductions of G = { A - + G1 , . . . ,A ~ Gin} in P. These partial deductions are
called residual unconditional computability statements.

Definition 5 (Partial deduction of an L L 1 specif icat ion)A partial de-
duction of a LL1 specification P wrt G is a specification P' (also called
a residual LL1 specification) obtained from P by replacing computability state-
ments having Gi in their heads (derivation form (1)) or only variables from A
in their bodies (derivation form (2)) by corresponding partial deductions.

247

The notions of Correctness and completeness are defined as follows. Let P be
a LL1 specification, A --+ G a propositional goal, and P ' a partial deduction of
P wrt to A --4 G.

Definition 6 (Correctness of partial deduction of LL1 specification) The
function (or its computational equivalent) for the computation of A ---r G is deriv-
able (can be extracted from a proof of A --+ G) from P if it is derivable from P'.

Completeness is the converse:

Definit ion 7 (Completeness of partial deduct ion of LL1 specifications)
The function (or its computational equivalent) for the computation of A --+ G
is derivable (can be extracted from a proof of A__ ~ G) from P' if it is derivable
from P.

Our definitions of correctness and completeness require only derivation of a
function which implements the goal (all functions which satisfy this criteria are
computational equivalents). This may correspond, for example, to the following
case. Let an LL1 specification contains computability statements C -4 B and

- - h

C -+ B. Then functions f and h are computational equivalents.
]
The notions of correctness and completeness are defined with respect to the

possibility of proving the goal and extracting a function from the proof [10].
Our proof of correctness and completeness is based on proving that derivation
of LL1 unconditional resultant is a derivation (proof + program extraction) in
a calculus corresponding to the LL1 language.

Lemma 1 Derivation form (1) of LL1 unconditional resultants is a derivation
by SSRI inference rules.

P r o o f Consider the case, when

Rj = B_.L&...&Bi&...&Bn > G
- - A b l . . . b i . . . b n . f (b l , . . . , b i , . . . , b ~)

or in a short form

Rj = Bl_____&B2&B___33) G
ablb~b~.1(h,b~, h)

and the matching computability statement is C -+ B2
- - h

According to Def in i t ion 3 the LL1 unconditional resultant will be

BI&C__&B3) G

Rj and the matching computability statement have the form of the following
problem-oriented axioms in the calculus for LL1 language:

~- B__L&B2&B3) G
- - .~blb2ba.] (b_k ,b~,b_.~s)

~-C --+ B2
h

248

Given these axioms, the following derivation is obtained by SSR1 inference
rules:

C(c) ~- C(c); Bl(bl) e Bl(bl); Bs(b~) ~ Bs(b~); _C ~ B~;
h (~ _)

C(c) F- B~(h(c)); ~- B I ~ B ~ B 3) G;
- - - - X b l b a b a . f (b x ,b2 ,ba .)

B1 (51), C(c), Ba(b3) 1- G(()tblb2b3.f (b._L , b..~2, b_.a))(bl, h(c_), b s))
(~ -)

B_.L&C__gzBa > G
(-~ +)

- -)~b,_c_ba.(()tbl..._b2ba.f(b._zl,b.~,b._a.a))(b..zt,h(c_),ba__))

After a simplification of the h-expression under the arrow in the last sequent
we end up with:

BI___~C~B3 } G
- -)~blcb_._..~a.:f(b_.L,h(c),b_~a)

which is equal to the LL1 unconditional resultant.
The above derivation is a derivation of the inference rule which corresponds

to the PD step:

l- BI__~B2~Ba ~ G; ~- C -+ B2
- -) t b l b ~ b a . f (b l , b 2 , b ~ a) - - h

[- B._L&C__&B3) G
Xb~b~4(b__,,h(~),h)

If the unconditional computability statements are in the form of resultants
and matching statements (see Def ini t ion 3), then a derivation in the calculus
corresponding to the LL1 language will be done in accordance to the derived
inference rule.

Q.E.D.

L e m m a 2 Derivation form (2) of LL1 unconditional resultants is a derivation
by SSR1 inference rules.

P r o o f The proof of L e m m a 2 is analogous to the proof of L e m m a 1. The
only difference is in the derivation of the inference rule for PD. We describe only
the essential part of the proof and omit the part of the proof which is common
with the previous proof.

Rj and matching computability statements in calculus for LL1 language have
the form of the following problem-oriented axioms:

i- AI&A2&Aa) F
X a l a ' ~ a a .] (al,a..~2,aa__)

}- A2&F -4 H
h

Hence, the following derivation is obtained by SSR1 inference rules:

249

Al(al) ~Al(al); A2(a2) ~A2(a2); Aa(a3) ~ Az(a3);

AI&A2&A3 ~ F
)~ala2aa.](ai ,a2,a3)

A1 (al), A2(a2), Az(az) b F((Aala2az.f(al, a~, a_.~))(a_.a, a2, as)); b A2&F --4 H ('+ -)
h

Al(al) , A2(az), A3(a3) ~- H(h(a.__22, (~ata2a3.f(aL, a..22, a_.33))(a_.L, a._.22, a....3a))) ('-+ -)

~- AI&A2&A3) F (-+ +)
)~al)~a2)~a3 h(a2,()~al a2aa.l (al ,a_.?.2,aa))(at,a2,a~)))

A simplification of the h-expression in the last sequent leads to

AI&A~&A3 ~ F
)~al a2aa.h(a2,l (al,a2,aa))

which is equal to the LL1 unconditional resultant.
The above derivation is a derivation of the inference rule which corresponds

to the PD step:

}- A~&A~&A3) F; F A2&F --+ H
)Laxa2aa.](at ,a2,aa) - - h

F At&A2&A3 > H
Aal a2aa.h(a2,l (a_L, az,a3))

In case of a conjunction F in the matching computability statement, a set of
resultants Rj (0 > j > j+ l) for all Fi from _F is considered.

Q.E.D.

Theorem 1 (Correctness and Completeness of PD in LL1 specification)
Partial Deduction o f a LL1 specification is correct and complete.

Proof of the theorem immediately follows from L e m m a 1 and L e m m a 2.
Since PD is a proof by SSR1 inference rules proof of A -+ G in pi is a subproof
of A ~ G in P where paths to resultants are replaced by the derived resultants
themselves. It means that both specifications P and P ' are equal with respect
to derivation of the goal and extraction of a program.

3.2 Pa r t i a l deduc t ion of conditional computability s t a t e m e n t s

Until now we have considered only unconditional computability statements as
sources for PD. In case of conditional computability statements, the main frame-
work for definitions is the same. However, particular definitions become more
complicated. Here we do not consider all definitions for PD of conditional state-
ments but rather point out most important moments.

250

D e f i n i t i o n 8 (LL1 c o n d i t i o n a l r e s u l t a n t) A LL1 c o n d i t i o n a l r e s u l t a n t
is a conditional computability statement (I9 --~ E) --+ A - - § G where F is

- - ~ . F (~ _ , g)

a term representing the function which computes G from potentially composite
functions over a l , . . . ,a , , g~,... ,g, & , . . . ,g, are terms for all (19 + E)).

We would like to notice that the main difference in this case is the treatment
of nested implications.

There are several possibilities to apply conditional computabil i ty statements
in PD. Conditional resultant can be a matching statement for derivation of
unconditional resultant as follows.

D e f i n i t i o n 9 (D e r i v a t i o n o f an LL1 u n c o n d i t i o n a l r e s u l t a n t) [with con-
ditional computability statements]. Let ~ be a fixed computation rule. A de r iva -
t i o n o f a n LL1 u n c o n d i t i o n a l r e s u l t a n t R0 w i t h c o n d i t i o n a l c o m p u t a b i l -
i t y s t a t e m e n t s is a finite sequence of LL1 resultants: Ro ~ R1 ~ R~ ~
. . . , where,

(4) if Rj is an unconditional computability statement of the form

B__L&...&B~&...&Bn

then Rj+I (if any) is of the form:

> G
~ b l . . . b i . . . b n . f (b _ L , . . . , b l , . . . , b n)

if

(D--+ E) -+ (B,&...~E~...~:B.) a)
~ . . . ~ . . . ~ . f (~ h(a_,~) b~)

�9 the ~-selected atom in Rj is Bi and
�9 there exists a conditional computability statement

(D ~g E) -4 (C_ -----4 Bi) E P
- - h(a_,~

called the matching computability statement. Bi is called the matching atom.

(5) if Rj is an unconditional computability statement of the form

AI&...&AIgz...&Am > F
- - - - - -) ~ a l . . . a i . . . a m . f (. a l a i a , , .)

then Rj+I (if any) is of the form:

(D-+ E) -+ (A1,...,A_A,...,A,~ ~ H)
) ~ g a l . . . a i . . . a m . h (g , a l ,] (. a l ,...,al,...,am))

251

* the ~-seleeted atoms in Rj are A__s and/or F. F denotes a conjunction
o f f (heads of computability statements} from resultants Ro, ..., Rj

. there exists a conditional computability statement

(D - + E) -+ (A_s) H) E P
g h(g_,~,f_)

called the matching computability statement. Ai, F are called the matching
atoms.

Derivation of conditional resultants by unconditional computabil i ty state-
ments can be considered as separate derivations of the head and b'ody of condi-
tional statements. Derivation of heads is similar to derivations of unconditional
resultants. However, derivation of bodies is more complicated. We remind that
bodies of conditional statements describe a function (program) to be synthesized.
Actually, they are subgoals of a general goal. In our case, PD of a goal (subgoal)
does not make sense (c.f. Definition 4 where A and G cannot be selected atoms
in derivations form (1) and (2) correspondingly). The only way to apply PD in
this case is to have an ordered set of derivations with respect to the goal and
the subgoals.

This is not the only problem with PD of bodies of conditional statements.
Assumptions from the head of the conditional s tatement can be used during
derivation of subgoals. For example, if we have a conditional resultant

(D -+ E) -+ (A__L&...&A_A~&...&Am H)
)~gal ...aL...a n.h(g_,ai,f (al ,...,ai,...,a,~))

then the proof of (D -+ E) may use A__L, ..., A_A , ..., Am as assumptions. This causes
a more complex form of resultants.

Unfortunately, derivation of conditional resultants with conditional com-
putabili ty statements cannot be defined in our framework. In this case we would
have come up with more then one level of nested implications in the resulting
formulae. This is out of the scope of the language defined in the Sect. 2.

Correctness and completeness for derivations of resultants with conditional
computabil i ty statements are defined similarly to those in Sect. 3., this subject
is out of the scope of this paper.

4 Partial Deduct ion tactics

PD is a very simple principle and its practical value is limited without defining
appropriate strategies. These are called tactics and refer to the selection and
stopping criteria. We describe them informally.

252

4.1 Select ion cr i ter ia

Selection functions (computation rules) define which formula should be tried next
for derivation of resultant. We consider the following possible selection criteria.

. Unconditional computability statements are selected first and if there is no
unconditional computability statements that can be applied to derivation of
resultant then a conditional statement (i f any) is selected.

This is the main selection criterion which is implemented in the NUT system.
This criterion keeps simplicity of derivation when it is possible. However it
does not say which unconditional/conditional statement to choose next if
more then one statement is applicable at the same time.

2. Priority based selection criteria.

These criteria require binding priorities to computability statements. They
should be done by user. Synthesis with priorities was considered in some work
on SSP. The most reasonable base for priorities is an estimated computa-
tional cost of function/program which implements computations specified
by computability statements. Whenever it is possible to obtain such costs,
the criterion allows to synthesize more efficient program. This criterion al-
lows to make decision when the same objects can be computed by different
functions. Until now the criterion was implemented only experimentally.

3. Only a specified set of computability statements is used in the derivation.

This criterion requires partitioning of the set of statements. It is not realistic
to ask the user to point out particular computability statements which could
be used in derivation. However, such partitioning can be done on the level
of the specification language. For example, the user can specify that s/he
would like to perform computations on objects of class NAND only and
then only computability statements derived from this class description are
considered for the derivations. This criterion is implemented and widely used
in the NUT system and it is a feature of object-orientation rather than of
the logical part of the system (message sending to an object means that the
context of computations/derivations is restricted by this object).

4. A mixture of forward and backward derivations.

This is quite interesting but a less investigated criterion. The idea is to de-
velop derivation forms (1) and (2) (see Sect. 2) concurrently or in parallel. It
means that computability statements are selected to support derivations of
both resultants in some order. It can be strict alteration or some other crite-
rion. We think that such criteria should be investigated in more detail in the

253

context of distributed computations. Another application of this approach
was investigated in the context of debugging of specifications [14],

We would like to notice that the above criteria are not mutually exclusive
but rather complementary to each other.

4.2 Stopping criteria

Stopping criteria define when to stop derivation of resultants. They can be com-
bined freely with all the selection criteria above. We suggest the following stop-
ping criteria.

1. Stepwise: The user is queried before each derivation which of the possible
derivations s/he wants to perform. Actually, this stopping criterion can be
of interest in debugging and providing the user with traces of the derivation
process.

2. Restricted: A goal is given together with an indicator of the maximum depth
of the derivation. This criteria is of a similar virtue as the previous one.

3. Goal-based: A derivation stops when resultant is equal to the goal. This
criterion allows to synthesize a program when the goal is completely defined.
A more interesting case is specialization of this criterion to a mixture of
forward and backward derivations. In this case, a derivation can stop when
bodies of resultants of derivation form (1) (backward derivation) are included
in the union of bodies and heads of resultants of derivation form (2) (forward
derivation).

4. Exhaustive: A derivation stops when no new resultants are available. This is
the case when goals are not specified completely (Sect. 3) or when problem
is not solvable (derivation of the goal can not be done).

The last stopping criteria is very important for PD and makes possible de-
riving programs from incompletely specified goals. Notice that the Goal - based
criterion allows to derive programs in case of completely specified goals.

5 C o n c l u d i n g r e m a r k s

The notion of partial deduction has been transferred from logic programming to
the framework of SSP. Our main results are a definition of partial deduction in
this framework, a proof of completeness and correctness of PD in the framework
and a set of selection criteria for utilizing them together with a set of stopping
criteria.

In addition to the theoretical interest partial SSP defines a method for syn-
thesis of programs in the case of incompletely specified goal. One specific appli-
cation of the partial deduction technique in connection with SSP is to support
debugging of LLl-specifications. In case of a non-solvable problem (a proposi-
tional goal cannot be derived) PD of an LL1 specification contains the set of

254

all possible derivations and is a good starting point for reasoning about possible
inconsistency and/or incompleteness of the specification [14].

This paper has focused on partial deduction of the unconditional computabil-
ity statements. We have only pointed out how the approach can be extended to
the case of conditional computability statements. This and tactics supporting a
mixture of backward and forward derivations of resultants will be investigated
in future.

R e f e r e n c e s

1. M. Z. Ariola and Arvind. A syntactic approach to program transformation. In
Proceedings of the symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM'91), pages 116-129. ACM press, 1991.

2. D. Bjcrner, A. P. Ershov, and N. D. Jones, editors. Partial Evaluation and Mixed
Computation, Gammel Avernaes, October 18-24 1987. North-Holland.

3. R.L. Constable, S.F. Allen, H.M. Bromley et al. Implementing mathematics with
the Nurpl Proof development system Prentice-Hall, 1986.

4. H-M. Haav and M. Matskin. Using partial deduction for automatic propagation
of changes in OODB. In H. Kangassalo et al, editor, Information Modeling and
Knowledge Bases IV, pages 339-352. lOS Press, 1993.

5. N. D. Jones, C. K. Gomard, and P. Sesoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, Englewood Cliffs, N J, 1993.

6. S. KIeene. Introduction to metamathematics. Amsterdam, North-Holland, 1952.
7. J. Komorowski. A Specification of An Abstract Prolog Machine and Its Application

to Partial Evaluation. PhD thesis, Department of Computer and Information
Science, LinkSping University, LinkSping, Sweden, 1981.

8. J. Komorowski. Partial evaluation as a means for infereneing data structures in an
applicative language: a theory and implementation in the case of Prolog. Proc. of
the ACM Symp. Principles of Programming Languages, ACM, pp. 255-267, 1982.

9. J. Komorowski. A Prolegomenon to partial deduction. Fundamenta Informaticae,
18(1):41-64, January 1993.

10. I. Krogstie and M. Matskin. Incorporating partial deduction in structural synthesis
of program. Technical Report 0802-6394 5/94, tDT, NTH, Trondheim, Norway,
June 1994.

11. J. W. Lloyd. Foundations of logic programming. Springer Verlag, second edition,
1987.

12. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. ,
Journal of Logic Programming, 1991:11:217-242, also: Technical Report CS-87-09
(revised 1989), University of Bristol, England, July 1989.

13. Z. Manna, R. Waldinger. A Deductive approach to program synthesis. ACM
Trans. on Programming Languages and Systems, 2(1):294:327, Jan, 1980.

14. M. Matskin. Debugging in programming systems with structural synthesis of pro-
grams (in Russian). Software, 4:21-26, 1983.

15. M. Matskin and J. Komorowski. Partial deduction and manipulation of classes and
objects in an object-oriented environment. In Proceedings of the First Compulog-
Network Workshop on Programming Languages in Computational Logic, Pisa, Italy,
April 6-7 1992.

255

16. G. Mints and E. Tyugu. Justification of structural synthesis of programs. Science
of Computer Programming, 2(3):215-240, 1982.

17. J. Pahapill. Programmpaket zur modeliering der hydromachinen systeme. 6. Fach-
tagung Hydraulik und Pneumatik, Magdeburg, pp. 609-617, 1985.

18. D. A. Schmidt. Static properties of partial evaluation. In Bjerner et al. [2], pages
465-483.

19. E. Tyugu. The structural synthesis of programs. In Algorithms in Modern Mathe-
matics and Computer Science, number 122 in Lecture Notes in Computer Science,
pages 261-289, Berlin, 1981. Springer-Verlag.

20. E. Tyugu. Knowledge-Based Programming. Turing Institute press, 1988.
21. E. Tyugu. Three new-generation software environments. Communications of the

ACM, 34(6):46-59, June 1991.
22. B. Volozh, M. Matskin, G. Mints, E. Tyugu. Theorem proving with the aid of

program synthesizer Cybernetics, 6:63-70, 1982.
23. T. Uustalu, U. Kopra, V. Kotkas, M. Matskin and E. Tyugu. The NUT Language

Report. The Royal Institute of Technology (KTH),TRITA-IT R 94:14, 51 p., 1994.

