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Abstract.  The notion of partial deduction known from logic program- 
ming is defined in the framework of Structural Synthesis of Programs 
(SSP). Partial deduction for unconditional computability statements in 
SSP is defined. Completeness and correctness of partial deduction in the 
framework of SSP are prov.en. Several tactics and stopping criteria are 
suggested. 

1 Introduction 

The main motivation for this work is to provide incremental formal program 
development in the framework of the proof-as-programs approach [3, 13]. In our 
case, it is Structural Synthesis of Programs [16, 20] (hence abbreviation SSP). 
In SSP, a specification at hand is transformed into a set of formulae of a logical 
language complete with respect to intuitionistic propositional logic. A problem to 
be solved is formulated as a theorem to be proven in this logic. A program is then 
extracted from the proof of the theorem. This approach has been implemented 
(see, for instance, [21]) and commercialized. It can be further strengthened by 
applying a principle similar to Partial Deduction as known in logic programming 
[7, 12, 9]. 

In this paper, we formulate the principle of partial deduction for SSP and 
prove its correctness and completeness in the new framework. 

The rest of the paper is organized as follows. A brief informal introduction 
to SSP is given in Sect. 2. The next section presents partial deduction in SSP. 
Stopping criteria and tactics are discussed in Sect. 4. Concluding remarks are 
given in Sect. 5, where the use of partial SSP is briefly discussed. It is assumed 
that the reader is acquainted with partial deduction in logic programming. 

2 Introduction to Structural Synthesis of Programs 
(SSP) 

A formal foundation of SSP was developed by Mints and Tyugu [16, 20] and 
applied in a number of programming systems [21]. Here we give a brief intro- 
duction to the method and define notions which will be used later in the paper. 
First, the LL language of SSP is defined. Then inference rules are formulated 
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using sequent notation. Program extraction is discussed next. It is obtained by 
extending the LL language. 

2.1 Logical l anguage  (LL)  

The logical language of SSP has only the following kinds of formulae: 

1. Propositional variables: A, B, C .... 
A propositional variable A corresponds to an object variable a from the 
source problem, and it expresses the fact that a value of the object variable 
can be computed. A propositional variable will be termed an atom in the 
following. 

2. Unconditional computability statements: 

AI&.. .&Ak -+ B 

. 

This expresses computability of the value of the object variable b correspond- 
ing to B from values of al . . .  ak corresponding to A (A is an abbreviation 
for AI& . . .  8~ Ak). A will be termed the body of the statement, whereas B 
is termed the head. Thus body (A -+ B) - A and head (A -+ B) = B. 
Conditional computability statements 

(A 1 -")" B 1 ) ~ . . . ~ ( A  n + B n) + (C_--} D) 

A conditional computability statement such as (A ~ B) ~ (C ~ D) ex- 
presses computability of d from c depending on the computation of b from a. 
We also use (A-+ B) as an abbreviation for (A 1 --+ B1)8~...&(A n -+ Bn). 
In the statement (A -+ B) --+ (C_. -+ D), (A --~ B) will be termed the body 
of the statement, whereas (C__ -+ D) will be termed the head. The functions 
head and body are defined as above, whereas body(body((A -+ B) ~ (C -~ 
D))) = A etc. 

2.2 Structural Synthesis  Rules (SSR) 

A sequent notation is used for the derivation rules. A sequent F i- X, where F 
is a list of formulae and X is a formula, means that the formula X is derivable 
from the formulae appearing in F. Axioms have a form of F, X t- X. 

The SSR inference rule are as follows. 

- 1 .  (-+-) 
t- A--+ V;Fi -  A 

F t - V  

where F I- A is a set of sequents 

- 2 .  (+ +) 
F,A B 

F b  A - + B  
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- 3. ( ~ - - )  

(A-~ B) -~ (C-+ V);r, AF B;z~ ~ C 
F,_A F- V 

where F, A P B and A ~- C are sets of sequents. 

It is somewhat surprising but LL with simple implicative formulae is equiv- 
alent to the intuitionistic propositional calculus. The intuitionistic completeness 
of SSR was proven [16]. In addition, an experiment with a programming system 
based on SSR was done [22]. In this experiment, all intuitionistic propositional 
theorems (about 100 formulae) contained in [6] were proven automatically. 

2 .3  P r o g r a m  e x t r a c t i o n  

In order to be able to extract programs from proofs, the language LL is extended 
as follows. 

We write 
A - - ~ B  - - !  

where f is a term representing the function which computes b from a l , . . . ,  an. 
Analogously, we write 

(A a-~ B) -+ (__C > D) 
F(g_,~_) 

where g is a term representing function which is synthesized in order to compute 
B from A and F is a term representing computation of D from C depending on 
g_ and c (g_ is a tuple of terms). 

Following the notation in [20], A(a) means that a is a term whose evaluation 
gives the value of the object variable corresponding to logical variable A. In the 
logical axioms which are written as F, X(x) l- X(x),  x is a variable or a constant. 

The resulting language is termed LL1. 
The modified inference rules (SSR1) are as follows: 

- 1. ( - + - )  

- 2. ( -+ + )  

- 3. ( ~ - - )  

t- A --+ V; F }- A(a) - - !  

F_ [- V(f(a))  

r, A e B(b) 
F b A  .>B 

- -  Aa.b 

P ( A ~ B ) - + ( C _ _  >V);F, A F B ( b ) ; A F C ( c )  
F(g,r 

F, A__ I- V(F(Aa.b, c)) 

A problem to be solved is formulated as a theorem to be proven. An example 
theorem and its proof are given in the next section. 
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2.4 A Specif icat ion Level 

Whereas the LL1 language specifies the internal language for structural synthe- 
sis, higher level languages are defined for expressing problem specifications. One 
of these, the NUT language [21], is used in the sequel. It is an object-oriented 
language where methods and structural relations can be translated into formulae 
of the LL1 language. 

The working example in this paper is a definition of the inve r t e r ,  and-port 
and nand-port of logical circuits. 

E L E M E N T  
var Delay:numeric; 

I N V E R T E R  
super ELEMENT; 
vir InINV, 0utINV: bool; 
tel inv: InINV -> OutINV 

{0utINV := not InINV} 

I N V E R T E R  is a subclass of E L E M E N T ,  having two virtual boolean primitive 
type specifiers InINV and 0utINV. Virtual components can be used in computa- 
tions, but their values are not contained in the value of the object. The method 
inv specifies computations of 0utINY from InINV which are performed by se- 
quence of statements (body of the method) in the curly brackets. Actually, we 
can consider this method as a language construction for I n I N V  ~ O u t I N V  

1 
where f refers to the body of the method, i. e. to {0utINV := not InIl~}.  

AND 
super ELEMENT; 

vir InANDI, InAND2, OutAND: bool; 
tel and: InANDI,InAND2->OutAND 

{OutAND:=InANDI & InAND2} 

N A N D  
s u p e r  INVERTER; 
s u p e r  AND ; 

v i r  InNAND1, InNAND2, OutNAND: b o o l ;  
r e l  InAND1 = InNAND1; InAND2 = InNAND2; 

OutNAND = OutlNV; InINV = OutAND; 
nand: InNAND1, InNAND2 -> OutNAND(specification} 

Symbol "=" denotes equality methods which are transformed into two formu- 
lae of LL1. For example, InAND1 = InNAND1 is transformed into I n A N D 1  > 

asg  

I n N A N D 1  and I n N A N D 1  ~ I n A N D 1 ,  where asg is the name of the stan- 
asg  

dard function performing assignment, s p e c i f i c a t i o n  in the last method indi- 
cates that a function for the hand method has not been developed yet. 



243 

The interested reader can find a full description of NUT in [23]. 
The description of the class N A N D  can be now transformed into the fol- 

lowing set of logical formulae (called problem-oriented axioms), where and, inv 
and asg indicate methods which implement the corresponding formulae: 

b- I n l N V  ) O u t l N V ;  ~- I n A N D l g ~ I n A N D 2  ) O u t A N D ;  
inv and 

b I n A N D 1  ) I n N A N D 1 ;  F I n N A N D 1  ) I n A N D 1 ;  
asg asg 

F I n A N D 2  ~ I n N A N D 2 ;  F I n N A N D 2  ~ I n A N D 2 ;  
asg asg 

b O u t N A N D  ) O u t I N V ;  b- O u t I N V  ) O u t N A N D ;  
asg asg 

F I n I N V  ) O u t A N D ;  F O u t A N D  ) I n I N V ;  
asg asg 

The theorem to be proven is t- I n N A N D 1 ,  I n N A N D 2  --+ O u t N A N D .  Us- 
ing the set of formulae and the inference rules from Sect. 2.2, the following proof 
can be made: 

I n N A N D I ( i n l )  l- I n N A N D I ( i n l ) ; t -  I n N A N D 1  ) InAND1;  
a s g  

InNAND2( in2 )  F I n N A N D I ( i n 2 ) ; I n N A N D 2  ) I n A N D 2  
a#g 

( ~  - )  
InNAND2( in2)  t- InAND(asg(in2))  

I n N A N D I ( i n l )  b InANDl (asg ( in l ) )  

I- I n A N D I & I n A N D 2  ) Ou tAND 
a n d  (-+ - )  

I n N A N D I ( i n l ) , I n N A N D 2 ( i n 2 )  ~- OutAND(and(asg(inl) ,  asg(in2)) 

Ou tAND ) I n I N V ;  
elsg (-~ -) 

I n N a N D l ( i n l ) ,  I n N a N D 2 ( i n 2 )  b- In lNV(asg(and(asg( in l ) ,  asg(in2))) 

b- I n I N V  ) Out INV;  
l a y  

I n N A N D I ( i n l ) ,  InNAND2( in2 )  b OutlNV(inv(asg(and(asg(inl) ,asg(in2)))  
(--+ - )  

b O u t l N V  ) O u t N A N D  

I n N A N D I ( i n l ) , I n N A N D 2 ( i n 2 )  ~" OutN-'f-ND(asg(inv(asg(and(asg(inl),asg(in2)))) ('+ 

b- I n N A N D I & I n N A N D 2  ) Ou tAND (--r +) 
J~i~l  i n ~ . a , g ( i n v ( e l , g ( a n d ( a , g ( i ~ l ) , a s g ( i ~ 2 ) ) ) )  

Q.E.D. 

The extracted program is as follows 

Ain l in2.asg( inv( asg( and( asg( in l ), asg( in2 ) ) ) ) ) 

or in a simplified form 

Ainl  in2. inv(and( inl ,  in2)) 

The example considered here is, of course, very small. The approach is, how- 
ever, sealable. Problem specifications containing thousands of variables and com- 
putability statements have been developed [17]. 
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3 Partial deduct ion in SSP 

Partial deduction (a.k.a. partial evaluation in logic programming) is a specializa- 
tion principle related to the law of syllogism [12, 8]. Our motivation for transfer- 
ring Partial Deduction (PD) to the framework of SSP is based on the following 
observations: 

- PD provides a specialization of logic programs. The most important features 
of PD is that more efficient programs can be generated. Efficiency for a 
residual program can be discussed in terms of the size of derivation trees. 

The same observation is true for SSP. Residual program specification can be 
more efficient in terms of synthesis of programs. 

- Our experience with the NUT system shows that users are not always able 
to specify completely goals such as A -+ G. In many cases, the user knows/ 
remembers only the input parameters of the problem and s/he does not 
care about the output parameters. In this case, s/he is satisfied with result 
that everything that is computable from inputs is computed. For example, 
the user may know that inputs of the problem are values for InNAND1 and 
InNAND2 of the NAND element and s/he would like to know which other val- 
ues can be computed. This feature is supported by the program statement 
compute, e.g. NAND. compute(InNhND1, InNAND2), This problem arises es- 
pecially for specifications containing a large number of variables (very large 
circuits). These goals are hardly expressible in LL1. The problem is that 
one would take into account a set of all variables of the specification and all 
subsets of this set. Additionally, an order over the subsets has to be defined 
and possible output parameters considered as a disjunction of the subsets. 
This is a very inefficient approach. 

On the other hand PD allows us to make efficient derivations even if the 
output parameters of the problem are unknown. This issue will be discussed 
in Sect. 4. 

- A problem similar to the above mentioned one, but with another type of 
incompleteness, may also arise. Consider a situation in which the user knows 
outputs of problem but s/he is not able to specify inputs. Actually, this 
relates mostly to debugging of specifications. If the original problem is not 
solvable, what should be added into the problem specification in order to 
make it solvable? 

Also in this case PD provides a good framework for making assumptions. 

It is possible to apply PD at different levels in the framework of SSP: 

- At the LL1 specification. 
- At the resulting functional expressions. 

- At the recta-specification. 
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Here we consider the first of the above cases and, in particular, the uncon- 
ditional computabili ty statements of LL1. The second case has been studied 
elsewhere and by numerous authors, see, for instance, [2, 1, 5]. Work has also 
been done on applying PD at the meta-specification level [4, 15]. 

Before moving further on we formalize the notion PD in the SSP framework. 

3.1 Partial deduction of L L 1  specifications 

It is natural to informally express PD of unconditional computabili ty statements 
as follows. 

Let A, B and C be propositional variables and A --+ B, B ~ C, C ~ D 
] h g 

be unconditional computabili ty statements. Some possible partial deductions 
are the following: A > C, A > D, B ~ D. It is 

Aa.h(f(a))  Xa.g(h(f(a)))  Ab.g(h(b)) 
easy to notice that  the first partial deduction corresponds to forward chaining 
(from inputs to outputs),  the third one corresponds to backward chaining (from 
outputs to inputs) and the second one to either forward or backward chaining. 

The main difference between our definition of PD and the ones considered 
in [12, 8, 9] are: (i) the use of logic specifications rather then logic programs 
and (ii) the use of intuitionistie (propositional) logic rather then classical (first 
order) logic. 

Definition 1 ( L L1 specification) Let H be a set of unconditional computabil- 
ity statements A --+ B and S be a set of conditional computability statements - -  y 

(A_ -4 B) --+ (C ) D) then P = H U S is called a LL1 specification. 
g F(g,~) 

Definition 2 (LL1 unconditional resultant) An LL1 u n c o n d i t i o n a l  re-  
s u l t a n t  is an unconditional computability statement A ~ G where f is 

- -  ~ . f ( a )  

a term representing the function which computes G from potentially composite 
functions over al,.. �9 ,an 

The assumption that G is an atom can be relaxed by transformation of 
A --+ G into {A ~ G1, ...,A --~ Gin} and vice versa. 
- -  f - -  _ _  

In our definitions we use the notion of computat ion rule (or selection function) 
from logic programming [11]. 

Definition 3 (Derivation o f  an  LL1 u n c o n d i t i o n a l  r e s u l t a n t )  Let ~ be a 
fixed computation rule. A d e r i v a t i o n  o f  a LL1 unconditional resultant R0 
is a finite sequence of LL1 resultants: Ro ~ R1 ~ R2 ~ . . .  , where, 

(1) for each j, Rj is an unconditional computability statement of the form 

B_..L&...&Bi&...&Bn > G 
- -  Xbl...bl...b,~.f(ba,...,bi,...,bn) 

and Rj+I (if  any} is of the form: 
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/f 

Ba&...&C&...&zBn ) G 
- -  Xb~. ..~_.. .b~. I ( b__~ ,. .. ,h (~ , . .be . ,  ) 

�9 the ~-selected atom in Rj is Bi and 
�9 there exists an unconditional computability statement C -+ Bi E P 

- -  h 
called the matching computability statement. Bi is called the matching atom. 

(2) for each j, Rj is an unconditional computability statement of the form 

A___~ &...&A__L~&...&A,~ - -  ~ F 
- -  Xa...L...a..L...a__~. t ( a . . L , . . . , a i , . . . , a , ,  ) 

and Rj+a (if  any) is of the form: 

A__&t &...&Ai__ ~...&Am ~ H 
) ~ a a . . . a i . . . a , ~ . h (  a l , f  ( aa . . . . .  a l  . . . . .  a , ~  ) ) 

if 
* the ~-selected atoms in Rj are A_L and/or F. F denotes a conjunction 

of F (heads of computability statements)from resultants Ro .... , Rj 
. there exists an unconditional computability statement Ai&F --+ 

H E P called the matching computability statement. Ai, F are called the 
matching atoms. 

(3) If  Rj+I does not exist, Rj is called a leaf resultant. 

Definition 3 gives two ways of derivating resultants. (1) corresponds to 
backward derivations and (2) corresponds to forward derivations. We will use 
terms derivation form (1) and derivation form (2), correspondingly. 

Definition 4 (Partial deduction of  a propositional goal) A partial de- 
duction of  a propositional goal A --+ G in a specification P is the set of leaf 
resultants derived from G ~ G (derivation form (1) and in this case A cannot 
be selected atoms) or from A --+ (derivation form (2) and in this case G cannot 
be selected atom). 

The assumption that  G is an atom can be relaxed to allow a conjunction of 
atoms, A --+ G_G_, and a partial deduction of A_ ~ G in P is the union of partial 
deductions of G = { A - +  G1 , . . .  ,A  ~ Gin} in P. These partial deductions are 
called residual unconditional computability statements. 

Definition 5 (Partial deduction of  an L L 1  specif icat ion)A partial de- 
duction of  a LL1 specification P wrt G is a specification P'  (also called 
a residual LL1 specification) obtained from P by replacing computability state- 
ments having Gi in their heads (derivation form (1)) or only variables from A 
in their bodies (derivation form (2)) by corresponding partial deductions. 
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The notions of Correctness and completeness are defined as follows. Let P be 
a LL1 specification, A --+ G a propositional goal, and P '  a partial deduction of 
P wrt to A --4 G. 

Definition 6 (Correctness of partial deduction of LL1 specification) The 
function (or its computational equivalent) for the computation of A ---r G is deriv- 
able (can be extracted from a proof of A --+ G) from P if it is derivable from P'. 

Completeness is the converse: 

Definit ion 7 (Completeness  of partial deduct ion of  LL1 specifications) 
The function (or its computational equivalent) for the computation of A --+ G 
is derivable (can be extracted from a proof of A__ ~ G) from P' if  it is derivable 
from P. 

Our definitions of correctness and completeness require only derivation of a 
function which implements the goal (all functions which satisfy this criteria are 
computational equivalents). This may correspond, for example, to the following 
case. Let an LL1 specification contains computability statements C -4  B and 

- -  h 

C -+ B. Then functions f and h are computational equivalents. 
] 
The notions of correctness and completeness are defined with respect to the 

possibility of proving the goal and extracting a function from the proof [10]. 
Our proof of correctness and completeness is based on proving that derivation 
of LL1 unconditional resultant is a derivation (proof + program extraction) in 
a calculus corresponding to the LL1 language. 

Lemma 1 Derivation form (1) of LL1 unconditional resultants is a derivation 
by SSRI inference rules. 

P r o o f  Consider the case, when 

Rj = B_.L&...&Bi&...&Bn > G 
- -  A b l . . . b i . . . b n . f ( b l , . . . , b i , . . . , b ~ )  

or in a short form 

Rj = Bl_____&B2&B___33 ) G 
ablb~b~.1(h,b~, h) 

and the matching computability statement is C -+ B2 
- -  h 

According to Def in i t ion  3 the LL1 unconditional resultant will be 

BI&C__&B3 ) G 

Rj and the matching computability statement have the form of the following 
problem-oriented axioms in the calculus for LL1 language: 

~- B__L&B2&B3 ) G 
- -  .~blb2ba.] (b_k ,b~,b_.~s  ) 

~-C --+ B2 
h 
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Given these axioms, the following derivation is obtained by SSR1 inference 
rules: 

C(c) ~- C(c); Bl(bl) e Bl(bl); Bs(b~) ~ Bs(b~); _C ~ B~; 
h (~ _) 

C(c) F- B~(h(c)); ~- B I ~ B ~ B 3  ) G; 
- -  - -  X b l b a b a . f ( b x  ,b2 ,ba . )  

B1 (51), C(c), Ba(b3) 1- G( ( )tblb2b3.f (b._L , b..~2, b_.a) )(bl, h(c_), b s)) 
( ~  - )  

B_.L&C__gzBa > G 
(-~ +) 

- -  )~b,_c_ba.(()tbl..._b2ba.f(b._zl,b.~,b._a.a))(b..zt,h(c_),ba__) ) 

After a simplification of the h-expression under the arrow in the last sequent 
we end up with: 

BI___~C~B3 } G 
- -  )~blcb_._..~a.:f(b_.L,h(c),b_~a ) 

which is equal to the LL1 unconditional resultant. 
The above derivation is a derivation of the inference rule which corresponds 

to the PD step: 

l- BI__~B2~Ba ~ G; ~- C -+ B2 
- -  ) t b l b ~ b a . f ( b l , b 2 , b ~ a )  - -  h 

[- B._L&C__&B3 ) G 
Xb~b~4(b__,,h(~),h ) 

If the unconditional computability statements are in the form of resultants 
and matching statements (see Def ini t ion 3), then a derivation in the calculus 
corresponding to the LL1 language will be done in accordance to the derived 
inference rule. 

Q.E.D. 

L e m m a  2 Derivation form (2) of LL1 unconditional resultants is a derivation 
by SSR1 inference rules. 

P r o o f  The proof of L e m m a  2 is analogous to the proof of L e m m a  1. The 
only difference is in the derivation of the inference rule for PD. We describe only 
the essential part of the proof and omit the part of the proof which is common 
with the previous proof. 

Rj and matching computability statements in calculus for LL1 language have 
the form of the following problem-oriented axioms: 

i- AI&A2&Aa ) F 
X a  l a ' ~ a a . ]  ( al,a..~2,aa__) 

}- A2&F -4 H 
h 

Hence, the following derivation is obtained by SSR1 inference rules: 
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Al(al) ~Al(al);  A2(a2) ~A2(a2); Aa(a3) ~ Az(a3); 

AI&A2&A3 ~ F 
)~ala2aa.](ai ,a2,a3) 

A1 (al), A2(a2), Az(az) b F((Aala2az.f(al, a~, a_.~))(a_.a, a2, as)); b A2&F --4 H ('+ - )  
h 

Al(al) ,  A2(az), A3(a3) ~- H(h(a.__22, (~ata2a3.f(aL, a..22, a_.33))(a_.L, a._.22, a....3a))) ('-+ - )  

~- AI&A2&A3 ) F (-+ +) 
)~al )~a2)~a3 h( a2,( )~al a2aa.l ( al ,a_.?.2,aa) )( at,a2,a~ ) ) ) 

A simplification of the h-expression in the last sequent leads to 

AI&A~&A3 ~ F 
)~al a2aa.h( a2,l  ( al,a2,aa ) ) 

which is equal to the LL1 unconditional resultant. 
The above derivation is a derivation of the inference rule which corresponds 

to the PD step: 

}- A~&A~&A3 ) F; F A2&F --+ H 
)Laxa2aa.](at ,a2,aa) - -  h 

F At&A2&A3 > H 
Aal a2aa.h(a2,l ( a_L, az,a3) ) 

In case of a conjunction F in the matching computability statement, a set of 
resultants Rj (0 > j > j+ l )  for all Fi from _F is considered. 

Q.E.D. 

Theorem 1 (Correctness  and Completeness  of PD in LL1 specification) 
Partial Deduction o f  a LL1 specification is correct and complete. 

Proof of the theorem immediately follows from L e m m a  1 and L e m m a  2. 
Since PD is a proof by SSR1 inference rules proof of A -+ G in pi is a subproof 
of A ~ G in P where paths to resultants are replaced by the derived resultants 
themselves. It means that both specifications P and P '  are equal with respect 
to derivation of the goal and extraction of a program. 

3.2 Pa r t i a l  deduc t ion  of  conditional computability s t a t e m e n t s  

Until now we have considered only unconditional computability statements as 
sources for PD. In case of conditional computability statements, the main frame- 
work for definitions is the same. However, particular definitions become more 
complicated. Here we do not consider all definitions for PD of conditional state- 
ments but rather point out most important moments. 
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D e f i n i t i o n  8 (LL1 c o n d i t i o n a l  r e s u l t a n t )  A LL1 c o n d i t i o n a l  r e s u l t a n t  
is a conditional computability statement (I9 --~ E) --+ A - -  § G where F is 

- -  ~ . F ( ~ _ , g )  

a term representing the function which computes G from potentially composite 
functions over a l , . . .  ,a , ,  g~,... ,g, & , . . .  ,g, are terms for all (19 + E)).  

We would like to notice that  the main difference in this case is the treatment 
of nested implications. 

There are several possibilities to apply conditional computabil i ty statements 
in PD. Conditional resultant can be a matching statement for derivation of 
unconditional resultant as follows. 

D e f i n i t i o n  9 ( D e r i v a t i o n  o f  an  LL1 u n c o n d i t i o n a l  r e s u l t a n t )  [with con- 
ditional computability statements]. Let ~ be a fixed computation rule. A de r iva -  
t i o n  o f  a n  LL1 u n c o n d i t i o n a l  r e s u l t a n t  R0 w i t h  c o n d i t i o n a l  c o m p u t a b i l -  
i t y  s t a t e m e n t s  is a finite sequence of LL1 resultants: Ro ~ R1 ~ R~ ~ 
. . . ,  where, 

(4) if Rj is an unconditional computability statement of the form 

B__L&...&B~&...&Bn 

then Rj+I (if any) is of the form: 

> G  
~ b l . . . b i . . . b n .  f ( b _ L , . . . , b l , . . . , b n  ) 

if 

(D--+ E) -+ (B,&...~E~...~:B. ) a) 
~ . . . ~ . . . ~ . f ( ~  ..... h(a_,~) ..... b~) 

�9 the ~-selected atom in Rj is Bi and 
�9 there exists a conditional computability statement 

(D ~g E) -4 (C_ -----4 Bi) E P 
- -  h(a_,~ 

called the matching computability statement. Bi is called the matching atom. 

(5) if Rj is an unconditional computability statement of the form 

AI&...&AIgz...&Am > F 
- -  - -  - -  ) ~ a l . . . a i . . . a m . f ( . a l  . . . . .  a i  . . . . .  a , , . )  

then Rj+I (if any) is of the form: 

(D-+ E) -+ (A1,...,A_A,...,A,~ ~ H) 
) ~ g a l . . . a i . . . a m . h ( g , a l , ] ( . a l  ,...,al,...,am)) 
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* the ~-seleeted atoms in Rj are A__s and/or F. F denotes a conjunction 
o f f  (heads of computability statements} from resultants Ro, ..., Rj 

. there exists a conditional computability statement 

( D - +  E) -+ (A_s ) H) E P 
g h(g_,~,f_) 

called the matching computability statement. Ai, F are called the matching 
atoms. 

Derivation of conditional resultants by unconditional computabil i ty state- 
ments can be considered as separate derivations of the head and b'ody of condi- 
tional statements. Derivation of heads is similar to derivations of unconditional 
resultants. However, derivation of bodies is more complicated. We remind that  
bodies of conditional statements describe a function (program) to be synthesized. 
Actually, they are subgoals of a general goal. In our case, PD of a goal (subgoal) 
does not make sense (c.f. Definition 4 where A and G cannot be selected atoms 
in derivations form (1) and (2) correspondingly). The only way to apply PD in 
this case is to have an ordered set of derivations with respect to the goal and 
the subgoals. 

This is not the only problem with PD of bodies of conditional statements. 
Assumptions from the head of the conditional s tatement can be used during 
derivation of subgoals. For example, if we have a conditional resultant 

(D -+ E) -+ (A__L&...&A_A~&...&Am H) 
)~gal ...aL...a n.h(g_,ai,f ( al ,...,ai,...,a,~ ) ) 

then the proof of (D -+ E)  may use A__L, ..., A_A , ..., Am as assumptions. This causes 
a more complex form of resultants. 

Unfortunately, derivation of conditional resultants with conditional com- 
putabili ty statements cannot be defined in our framework. In this case we would 
have come up with more then one level of nested implications in the resulting 
formulae. This is out of the scope of the language defined in the Sect. 2. 

Correctness and completeness for derivations of resultants with conditional 
computabil i ty statements are defined similarly to those in Sect. 3., this subject 
is out of the scope of this paper. 

4 Partial Deduct ion  tactics  

PD is a very simple principle and its practical value is limited without defining 
appropriate strategies. These are called tactics and refer to the selection and 
stopping criteria. We describe them informally. 
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4.1 Select ion cr i ter ia  

Selection functions (computation rules) define which formula should be tried next 
for derivation of resultant. We consider the following possible selection criteria. 

. Unconditional computability statements are selected first and if there is no 
unconditional computability statements that can be applied to derivation of 
resultant then a conditional statement ( i f  any) is selected. 

This is the main selection criterion which is implemented in the NUT system. 
This criterion keeps simplicity of derivation when it is possible. However it 
does not say which unconditional/conditional statement to choose next if 
more then one statement is applicable at the same time. 

2. Priority based selection criteria. 

These criteria require binding priorities to computability statements. They 
should be done by user. Synthesis with priorities was considered in some work 
on SSP. The most reasonable base for priorities is an estimated computa- 
tional cost of function/program which implements computations specified 
by computability statements. Whenever it is possible to obtain such costs, 
the criterion allows to synthesize more efficient program. This criterion al- 
lows to make decision when the same objects can be computed by different 
functions. Until now the criterion was implemented only experimentally. 

3. Only a specified set of computability statements is used in the derivation. 

This criterion requires partitioning of the set of statements. It is not realistic 
to ask the user to point out particular computability statements which could 
be used in derivation. However, such partitioning can be done on the level 
of the specification language. For example, the user can specify that s/he 
would like to perform computations on objects of class NAND only and 
then only computability statements derived from this class description are 
considered for the derivations. This criterion is implemented and widely used 
in the NUT system and it is a feature of object-orientation rather than of 
the logical part of the system (message sending to an object means that the 
context of computations/derivations is restricted by this object). 

4. A mixture of forward and backward derivations. 

This is quite interesting but a less investigated criterion. The idea is to de- 
velop derivation forms (1) and (2) (see Sect. 2) concurrently or in parallel. It 
means that computability statements are selected to support derivations of 
both resultants in some order. It can be strict alteration or some other crite- 
rion. We think that such criteria should be investigated in more detail in the 
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context of distributed computations. Another application of this approach 
was investigated in the context of debugging of specifications [14], 

We would like to notice that the above criteria are not mutually exclusive 
but rather complementary to each other. 

4.2 Stopping criteria 

Stopping criteria define when to stop derivation of resultants. They can be com- 
bined freely with all the selection criteria above. We suggest the following stop- 
ping criteria. 

1. Stepwise: The user is queried before each derivation which of the possible 
derivations s/he wants to perform. Actually, this stopping criterion can be 
of interest in debugging and providing the user with traces of the derivation 
process. 

2. Restricted: A goal is given together with an indicator of the maximum depth 
of the derivation. This criteria is of a similar virtue as the previous one. 

3. Goal-based: A derivation stops when resultant is equal to the goal. This 
criterion allows to synthesize a program when the goal is completely defined. 
A more interesting case is specialization of this criterion to a mixture of 
forward and backward derivations. In this case, a derivation can stop when 
bodies of resultants of derivation form (1) (backward derivation) are included 
in the union of bodies and heads of resultants of derivation form (2) (forward 
derivation). 

4. Exhaustive: A derivation stops when no new resultants are available. This is 
the case when goals are not specified completely (Sect. 3) or when problem 
is not solvable (derivation of the goal can not be done). 

The last stopping criteria is very important for PD and makes possible de- 
riving programs from incompletely specified goals. Notice that the Goal - based 
criterion allows to derive programs in case of completely specified goals. 

5 C o n c l u d i n g  r e m a r k s  

The notion of partial deduction has been transferred from logic programming to 
the framework of SSP. Our main results are a definition of partial deduction in 
this framework, a proof of completeness and correctness of PD in the framework 
and a set of selection criteria for utilizing them together with a set of stopping 
criteria. 

In addition to the theoretical interest partial SSP defines a method for syn- 
thesis of programs in the case of incompletely specified goal. One specific appli- 
cation of the partial deduction technique in connection with SSP is to support 
debugging of LLl-specifications. In case of a non-solvable problem (a proposi- 
tional goal cannot be derived) PD of an LL1  specification contains the set of 
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all possible derivations and is a good starting point for reasoning about possible 
inconsistency and/or incompleteness of the specification [14]. 

This paper has focused on partial deduction of the unconditional computabil- 
ity statements. We have only pointed out how the approach can be extended to 
the case of conditional computability statements. This and tactics supporting a 
mixture of backward and forward derivations of resultants will be investigated 
in future. 
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